
Föreläsning 9 IS1300 Inbyggda system

• Real Time Operating System

– Communication principles

– µC/OSII (used in lab exercise)

1

Interprocess communication
mechanisms

• Blocking / Nonblocking

• Shared memory and Message passing

• Events

– Semaphores

– Message Mailboxes

– Message Queues

2

Real time lab exercise

3

16 givare (G01-G16) som känner när lok
passerar
5 växlar (V06-V11) som kan styras
Lokets hastighet kan styras
Två lok skall kunna köras samtidigt enligt given
bana utan att kollidera

Avoiding Interference

• The parts of a process that access shared
variables must be executed indivisibly with
respect to each other

• These parts are called critical sections

• The required protection is called mutual
exclusion

Mutual Exclusion

• In computer science, mutual exclusion refers to the problem
of ensuring that no two processes or threads (henceforth
referred to only as processes) are in their critical section at
the same time.

• Here, a critical section refers to a period of time when the
process accesses a shared resource, such as shared memory.

http://en.wikipedia.org/wiki/Mutual_exclusion

http://en.wikipedia.org/wiki/Mutual_exclusion

Critical Section

• No two processes may be simultaneously
inside their critical regions.

• No processes running outside its critical region
may block other processes

• No process should have to wait forever to
enter its critical region.

http://en.wikipedia.org/wiki/Critical_section

http://en.wikipedia.org/wiki/Critical_section

Cricital Section

Deadlock

Circular Wait causes deadlock

Deadlock

typeT buffer;

sem empty = n;

sem full = 0;

sem mutex = 1;

process Producer

{

 while(true)

 {

 //producera data

 wait(mutex);

 wait(empty); //fel ordning

 insert(data);

 wait(mutex);

 signal(full);

 }

}

process Consumer

{

 while(true)

 {

 //hämta data

 wait(full);

 wait(mutex);

 data = remove();

 wait(mutex);

 signal(empty);

 }

}

Deadlock if the buffer is full

• Philosophers either eat or
thinks.

• A philosopher needs two
forks to be able to eat the
spaghetti.

• When a philosopher gets
hungry, she tries to
acquiring her left and right
fork, one at a time.

• How do you avoid deadlock
or starvation?

Dining Philosophers

Dining Philosophers

sem fork[5] = {1, 1, 1, 1, 1};

//i=0 to 3

process Philospher[i]

{

 while(true)

 {

 wait(fork[i]);//get left

 wait(fork[i+1]);//get right

 //eat;

 signal(fork[i]);

 signal(fork[i+1]);

 //think;

 }

}

process Philospher[4]

{

 while(true)

 {

 wait(fork[0]);//get right fork

 wait(fork[4]);// then left fork

 //eat;

 signal(fork[0]);

 signal(fork[4]);

 //think

 }

}

http://en.wikipedia.org/wiki/Dining_philosophers_problem

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Semaphores

12

Semaphores

13

Semaphores

14

Mailbox and Queue

15

Micrium µC/OS-II and Related Files

CPU

Specific

(Port)

CPU

Independent

Board

Support

Package

16 http://en.wikipedia.org/wiki/UC/OS

http://en.wikipedia.org/wiki/UC/OS

RTOS Tasks

• A task is a simple program that thinks it has
the CPU all to itself

• Each Task has

– Its own stack space

– A priority based on its importance

• A task contains YOUR application code

17

RTOS Tasks

• A task is a simple program that thinks it has
the CPU all to itself

• Each Task has

– Its own stack space

– A priority based on its importance

• A task contains YOUR application code

18

What is a Task?

• A task is an infinite loop
void Task (void *p_arg)
{
 Do something with ‘argument’ p_arg;
 Task initialization;
 for (;;) {
 /* Processing (Your Code) */
 Wait for event; /* Time to expire ... */
 /* Signal from ISR ... */
 /* Signal from task ... */
 /* Processing (Your Code) */
 }
}

19

Designing with µC/OS-II
Splitting an application into Tasks

High Priority Task

Low Priority Task

Task

Task

Task

Task

Task

Task

Event Event

Each Task

Infinite Loop

Importance

20

µC/OS-II Task States

21

Why Create a Task?

• To make it ready for multitasking

• The kernel needs to have information about
your task

– Its starting address

– Its top-of-stack (TOS)

– Its priority

– Arguments passed to the task

– Other information about your task

22

Creating a task with µC/OS-II

OSTaskCreateExt(void (*task)(void *parg),
 void *parg,
 OS_STK *pstk,
 INT8U prio,
 INT16U id,
 OS_STK *pbos,
 INT32U stk_size,
 void *pext,
 INT16U opt);

23

Initializing µC/OS-II
Execution Path

24

