
Föreläsning 7 IS1300 Inbyggda system

• Short note about solving problems with ASIC
or microcontroller

• Real time operating system

– Basic concepts

– Scheduling principles

• Lab exercise, discussion

1

ASIC or microcontroller?

A task can be solved with
• Hardware

– ASIC (Application Specific Integrated Circuit)
– Custom chip, large quantities
– FPGA (Field Programmable Gate Array)

• Software
– Programming processor or microcontroller
– MPU (Microprocessor Unit)
– MCU (Microcontroller Unit)

• MCU or MPU can be integrated in FPGA
– IP cores (Intellectual Property)
– Example of State of the art today (Xilinx)

2

http://en.wikipedia.org/wiki/ASIC
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
http://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
http://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
http://www.xilinx.com/products/silicon-devices/soc/index.htm
http://www.xilinx.com/products/silicon-devices/soc/index.htm
http://www.xilinx.com/products/silicon-devices/soc/index.htm
http://www.xilinx.com/products/silicon-devices/soc/index.htm
http://www.xilinx.com/products/silicon-devices/soc/index.htm

Tasks and processes

• Task

– Real time application

• Process

– Execution of program

• Event

– Specific time and place

3

http://en.wikipedia.org/wiki/Task_(computing)
http://en.wikipedia.org/wiki/Process_(computing)

Time requirements

• Release time

– Time at which process become ready to execute

• Deadline

– When the computations has to be finished

• Period

– Time between successive executions

• Rate

– Inverse of period (rate=1/period)

4

CPU metrics

• Initiation time

– Time at which process starts executing

• Completion time

– Time at which process finishes

• Utilization U

5

CPU time for useful work

total available CPU time
U

RTOS – Real Time Operating Systems

• The RTOS determines which applications should
run in what order and how much time should be
allowed for each application before giving
processor access to another process:
– manages the sharing of internal memory among

multiple tasks.
– handles input and output to and from attached

hardware devices, such as serial ports, buses, and I/O
device controllers.

– sends messages about the status

Source slide 6-12: An introduction to Real-Time Operating Systems www.quadros .com

6

http://www.quadros.com/resources/white-papers/Introduction-to-real-time-operating-systems.pdf
http://www.quadros.com/resources/white-papers/Introduction-to-real-time-operating-systems.pdf
http://www.quadros.com/resources/white-papers/Introduction-to-real-time-operating-systems.pdf

Reasons to Use an RTOS

A well-designed RTOS provides a number of tangible benefits to the developer. It

• abstracts away the complexities of the processor,

• provides a solid infrastructure constructed of rules and policies that provide
consistency and repeatability

• simplifies development and improves developer productivity by utilizing high level
kernel objects to easily handle complex functions

• integrates and manages resources needed by communications stacks and
middleware (TCP/IP, USB, SDIO, CAN, FAT and Flash file systems, etc.)

• optimizes use of system resources and improves pro-duct reliability,
maintainability and quality

An RTOS can bring all those elements together into a plat-form that allows the
application developer to begin devel-opment at a much higher point, enabling a
shorter time-to-market with higher reliability and lower risk.

7

RTOS properties

RTOS needs to:

• manage the processor and other system resources to
meet the requirements of the application

• be able to respond to, and synchronize with, events

• be able to move data efficiently between processes

• be able to manage the demands of the process with re-
spect to an independent variable such as time

• perform in a predictable manner with operations that
take place within a predictable about of time

8

RTOS kernel

A RTOS kernel includes

• a scheduler that determines which programs get
access to the CPU and in what order

• a function library serving as an interface between
the application code and the kernel

• a library of services that operate on classes of
data objects to cause desired program behavior

• a set of user-defined data objects, representing
the needs of the application,

9

System Resource Management

• System memory is a finite resource and
therefore must be shared.

• Because the CPU operates much faster than
the physical process it is controlling or
monitoring, the CPU can be shared to prevent
delays in processing. Such delays would
violate a basic system policy.

• Time is the most difficult and unforgiving
resource managed by the kernel.

10

Multitasking

11

Preemption

12

For example, tasks of
low priority may have
their execution
preempted by a task
of higher priority to
permit a high priority
task to perform a
time-critical function.

Scheduling state of process

13

Running

Blocked,

waiting
Ready

Process blocks
 for input

Input becomes
available

Scheduler
picks this process

Preempted

Cyclostatic scheduling
(Time Division Multiple Access)

• Divided over equal-length timeslots over
interval equal to hyperperiod H

• Hyperperiod is the least common multiple of
the periods for all processes

• Utilization depends on

– Numbers of timeslots used

– Fraction of timeslots used for useful work

Example on white board

14

Round robin scheduling

• Same hyperperiod as cyclostatic

• If a process do not have any useful work to do
the scheduler moves on to the next process in
order to fill the time slot with useful work

Example on white board

15

http://en.wikipedia.org/wiki/Round-robin_scheduling

Preemptive RTOS

• The most reliable way to meet timing
constraints is to build a preemptive OS and to
use priorities to control what process to run

• Priority Driven Scheduling

– Rate-monotic scheduling (RMS)

– Earliest deadline first (EDF)

• Example: Priority driven scheduling

16

http://en.wikipedia.org/wiki/Preemption_(computing)

Rate-monotic scheduling (RMS)

• Static scheduling policy

– All processes runs periodically on a single CPU

– Context switching time is ignored

– There are no data dependicies between processes

– The execution time for a process is constant

– All deadlines are at the end of their periods

– The highest-priority is always selected for execution

Example

17

http://en.wikipedia.org/wiki/Rate-monotonic_scheduling
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

Earliest deadline first (EDF)

• Dynamic scheduling policy
– Changes process priorities dynamically during

execution based on initiation times

– Assigns process in order of deadline

– Highest priority is the one whose deadline is
nearest in time

• Implementation more complex than RMS

Example

18

http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling

Real time lab exercise

19

16 givare (G01-G16) som känner när lok
passerar
5 växlar (V06-V11) som kan styras
Lokets hastighet kan styras
Två lok skall kunna köras samtidigt enligt given
bana utan att kollidera

