
Föreläsning 6 IS1300 Inbyggda system

• Real time problem

– Hard and soft deadline

– Sequence versus concurrence programming

– Processes

• Real Time Operating System

– MicroC/OSII (used in lab exercise)

1

Diverse

• Embeddedpriset.nu

• Schemaändring Onsdag 6 februari em

http://www.embeddedpriset.nu/
http://schema.sys.kth.se/4DACTION/WebShowSearch/2/1-0?wv_type=4&wv_category=0&wv_ts=20130131T083249X3796&wv_search=IL2218&wv_startWeek=1305&wv_stopWeek=1323&wv_first=0&wv_addObj=&wv_delObj=&wv_obj1=20413000&wv_obj2=19017000&wv_graphic=Grafiskt+format

Deadlines

• Hard deadline

– System failure if deadline fails

• Soft deadline

– Degraded performance if deadline fails

Give examples!

3

Sequence vs concurrent programming

• Sequential Programming

– Sequence of actions that produce a result

– Is called a process, task or thread

• Concurrent Programming

– Two or more processes that work together

– Need synchronisation and communication

4

http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Concurrent_computing

Constructs needed for concurrent
programming

• Notion of processes to express concurrent
execution

• Process synchronization

• Communication between processes

Via shared memory and/or by message passing

5

Concurrent programming

Usually takes one of three forms.

• Single processor

– processes multiplex their executions on a single
processor

• Multiprocessor

– processes multiplex their executions on a
multiprocessor system where there is access to shared
memory

• Multicomputer (Distributed System)

– processes multiplex their executions on several
processors which do not share memory

6

Process

• A process is an executing sequential program

• Each process has its own virtual CPU

7

Process states

8

Running

Blocked Ready

Process blocks
 for input

Scheduler pick
another process

Input becomes
available

Scheduler
picks this process

Processes

• Processes can be

– Independent

• Not synchronized or communicating

– Cooperating

• Synchronized and communicating

– Competing

• Peripheral devices, memory, and processor power

• Must communicate to fairly share resources.

9

Hierarchy of processes

• A process can create a child process

• The child process can create new processes

• Parent / Child
– Parent responsible for the creation of Child

process

• Guardian / Dependent
– The guardian process can not terminate until all

dependent processes have terminated.

10

Hierarchy of processes

• A process tree
– A creates two child processes, B and C

– B creates three child processes, D, E, and F

11

Concurrent Programming in OS

Two main categories

• Pre-emptive multitasking
The OS controls which process is executing.

• Co-operative multitasking
The current process decides if it shall stop
executing.

12

http://en.wikipedia.org/wiki/Preemption_(computing)
http://en.wikipedia.org/wiki/Preemption_(computing)
http://en.wikipedia.org/wiki/Preemption_(computing)

MicroC/OS-II

int main(int argc, char *argv[])

{

 INT8U err;

 OSInit(); /* Initialize "uC/OS-II, The Real-Time Kernel" */

 OSTaskCreate(AppStartTask,

 (void *) 0,

 (OS_STK*) &AppStartTaskStk[TASK_STK_SIZE-1],

 TASK_START_PRIO);

 OSStart(); /* Start multitasking (i.e. give control to uC/OS-

II) */

}

13

http://en.wikipedia.org/wiki/MicroC/OS-II
http://en.wikipedia.org/wiki/MicroC/OS-II
http://en.wikipedia.org/wiki/MicroC/OS-II
http://en.wikipedia.org/wiki/MicroC/OS-II

MicroC/OS-II

void AppStartTask (void *p_arg)

{

 p_arg = p_arg;

 while (TRUE) /* Task body, always written as an infinite

loop. */

 {

 OS_Printf("Delay 1 second and print\n");

 OSTimeDlyHMSM(0, 0, 1, 0);

 /* OSTimeDly(1000) */

 }

}

14

