
Distributed Estimation

Distributed Estimation∗

Yuzhe Xu†1, Vijay Gupta‡2, and Carlo Fischione§1

1School of Electrical Engineering, ACCESS Linnaeus Center, KTH
Royal Institute of Technology, SE-100 44,Stockholm, Sweden

2Department of Electrical Engineering, University of Notre Dame,
Notre Dame, IN-46556, USA

September 17, 2012

Abstract

Distributed estimation plays an essential role in many networked ap-
plications, such as communication, networked control, monitoring and
surveillance. Motivated by this, the chapter provides an overview on
some of the fundamental aspects of distributed estimation over networks
together with an investigation of the computational complexity and com-
munication cost. A phenomenon being observed by a number of sensors in
networks having a star and a general topology are considered. Under the
assumptions of noises and linear measurements, the resulting distributed
estimators are derived respectively. The limited bandwidth, communica-
tion range and message loss in the communication are considered. Dis-
tributed estimators can provide accurate estimates of the parameters of
the phenomenon, while the less the limitations are in networks, the lower
complexity of the estimator is.
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1 Notation
Given a stochastic variable x, let E [x] denote its expected value, while Var[x] =
E [x − E [x]]2 is its variance. With E xy(x) we mean that the expected value
is taken with respect to the probability density function (pdf) px(·) of x, where
y is some function of the random variable x. Given a set of K nodes at time
n = 0, 1, 2, . . . , let xn,k denote the variable x from k-th node at time n for all
k = 1, 2, . . . ,K. Furthermore, let Xn denote the vector [xn,1, xn,2, . . . , xn,K ]T ∈
RK at time n. With x̂ we denote the estimate of the random variable x. With
‖ · ‖ we denote the `2-norm of a vector or the spectral norm of a matrix. Given
a matrix A, `m(A) and `M (A) denote the minimum and maximum eigenvalue
(with respect to the absolute value of their real part), respectively, and its largest
singular value is denoted by γ(A). If A is a square matrix, we use tr(A) denote
the trace of the matrix A, the sum of the elements on its diagonal. Suppose the
matrix B having same size of A, A ◦B is the Hadamard (element-wise) product
between A and B. With A† we denote the Moore-Penrose pseudo-inverse of the
matrix A. With a � b and a � b denote the element-wise inequalities. With
I and 1 we denote the identity matrix and the vector (1, . . . , 1)T , respectively,
whose dimensions are clear from the context.

2 Network with a Star Topology
In this section, we assume that the network is organized as a star, where multiple
sensors make measurements that are transmitted with no messages losses to a
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fusion center, which is assumed to be the star of the network. An example is
illustrated by Fig. 1.
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Figure 1: An example of star topology network with nodes and links (solid
lines indicating that there is message communication between nodes). In this
network, Node 9 can receive information from all other nodes. Thus Node 9 is
the central unit.

2.1 Static Sensor Fusion
Here we study the problem of estimating a static phenomenon that is observed
by a number of sensors. The observations of these sensors are then reported to
a central unit that fuses them with the aim of extracting an estimate of higher
accuracy.

2.1.1 Combining Estimators

In this subsection, we study distributed Minimum Mean Square Estimators
(MMSE). In Appendix A.1, we recall the general result of MMSE for centralized
linear estimators. Here, we rewrite those results in an alternative form.

Proposition 2.1. Let y = Hx+ v, where H is a matrix and v is a zero mean
Gaussian noise with covariance matrix RV independent of X. Then the MMSE
estimate of X given Y = y is

P−1x̂ = HTR−1
V y,

with P is the corresponding error covariance given by

P−1 =
(
R−1
X +HTR−1

V H
)
.
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Proof. The expression for P follows by applying the matrix inversion lemma in
Appendix A.2. For the estimate, consider

P−1x̂ =
(
R−1
X +HTR−1

V H
)
RXH

T
(
HRXH

T +RV
)−1

y

= HT
(
HRXH

T +RV
)−1

y +HTR−1
V HRXH

T
(
HRXH

T +RV
)−1

y

= HTR−1
V

(
HRXH

T +RV
) (
HRXH

T +RV
)−1

y

= HTR−1
V y.

This alternate form is useful because it combines local estimates directly
without recourse to sending all the measurements to a central data processing
unit that runs a giant estimator. This is called static sensor fusion.

2.1.2 Static Sensor Fusion for Star Topology

Proposition 2.2. Consider a random variable x being observed by K sensors
that generate measurements of the form

yk = Hkx+ vk, k = 1, · · · ,K,

where the noises vk are all uncorrelated with each other and with the variable x.
Denote the estimate of x based on all the n measurements by x̂ and the estimate
of x based only on the measurement yk by x̂k. Then x̂ can be calculated using

P−1x̂ =
K∑
k=1

P−1
k x̂k,

where P is the estimate error covariance corresponding to x̂ and Pk is the error
covariance corresponding to x̂k. Further

P−1 =
K∑
k=1

P−1
k − (K − 1)R−1

X .

Proof. Denote y as the stacked vector of all the measurements yk’s, H the
corresponding measurement matrix obtained by stacking all the Hk’s and v the
noise vector obtained by stacking all the noises vk’s. The global estimate x̂ is
given by

P−1x̂ = HTR−1
V y.

But all the vk’s are uncorrelated with each other. Hence RV is a block diagonal
matrix with blocks RVk

. Thus the right hand side can be decomposed as

HTR−1
V y =

K∑
k=1

HT
k R
−1
Vk
yk.

But each of the terms H∗kR
−1
Vk
yk can be written in terms of the local estimates

P−1
k x̂k = HT

k R
−1
Vk
yk.
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Thus

P−1x̂ =
K∑
k=1

P−1
k x̂k.

The proof for the expression for the global error covariance is similar.

This result is useful since it allows the complexity of calculation at the fusion
center to go down considerably1. Of course it assumes that the sensors can do
some computation, but that is reasonable. The form of the global estimator
shows that what we really want is a weighted mean of the local estimates. Each
estimate is weighted by the inverse of the error covariance matrix. Thus more
confidence we have in a particular sensor, more trust do we place in it.

2.1.3 Sequential Measurements from One Sensor

The same algorithm can be extended to the case when there are multiple mea-
surements from one sensor. Furthermore, the processing can be done in a se-
quential manner. Consider a random variable evolving in time as

Xn+1 = AXn + wn,

where wn is white zero mean Gaussian noise with covariance matrix Q. The
sensor generates a measurement at every time step according to the equation

Yn = CXn + vn,

where vn is again white zero mean Gaussian noise with covariance matrix R. We
wish to obtain an estimate of Xn given all the measurements {Y0, Y1, . . . , Yn}.
Suppose we divide the measurements into two sets:

1. The measurement Yn.

2. The set Y of the remaining measurements Y0 through Yn−1.

Now note that the two sets of measurements are related linearly to Xn and
further the measurement noises are independent. Thus we can combine the
local estimates to obtain a global estimate. First we calculate the estimate of
Xn based on Yn. It is given by

M−1X̂ = CTR−1Yn,

where M is the error covariance given by

M−1 = R−1
Xn

+ CTR−1C.

Let X̂n−1|n−1 be the estimate of Xn−1 based on Y and Pn−1|n−1 be the corre-
sponding error covariance. Then the estimate of Xn given Y is given by

X̂n|n−1 = AX̂n−1|n−1,

with the error covariance

Pn|n−1 = APn|n−1A
T +Q.

1As an exercise, compare the number of elementary operations (multiplications and addi-
tions) for the two algorithms.
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Thus the estimate of Xn given all the measurements is given by the combination
of local estimates and can be seen to be

P−1
n|nX̂n|n =P−1

n|n−1X̂n|n−1 +M−1X̂

=P−1
n|n−1X̂n|n−1 + CTR−1Yn.

The corresponding error covariance is

P−1
n|n = P−1

n|n−1 +M−1 −R−1
Xn

= P−1
n|n−1 + CTR−1C.

These equations form the time and measurement update steps of the Kalman
filter. Thus the Kalman filter can be seen to be a combination of estimators.
This also forms an alternative proof of the optimality of the Kalman filter in the
minimum mean squared sense under the stated assumptions. We will give more
detail on Kalman filtering, and in particular on distributed Kalman filtering
below.

2.2 Dynamic Sensor Fusion
Suppose there are multiple sensors present that generate measurements about a
random variable that is evolving in time. We can again ask the question about
how to fuse data from all the sensors for an estimate of the state Xn at every
time step n. This is the question of dynamic sensor fusion. We will begin by
seeing why this question is difficult.

To begin with, the problem can be solved if all the sensors transmit their
measurements at every time step. The central node in that case implements a
Kalman filter (which we will refer to from now as the centralized Kalman filter).
However, there are two reasons why this may not be the preferred implementa-
tion.

1. The central node needs to handle matrix operations that increase in size
as the number of sensors increases. We may want the sensors to shoulder
some of the computational burden.

2. The sensors may not be able to transmit at every time step. Hence we
may want to transmit after some local processing, rather than transmit
raw measurements.

We will initially assume that the sensors can transmit at every time step and
concentrate on reducing the computational burden at the central node.

2.2.1 Transmitting Local Estimates

Our first guess would be to generate a local estimate at each sensor that extracts
all the relevant information out of the local measurements and then to combine
the estimates using methods outlined above. However, in general, it is not
possible to use above method. Consider K sensors being present with the k-th
sensor generating a measurement of the form

yn,k = Ckxn + vn,k.

Suppose we denote by Yk the set of all the measurements from the sensor k that
can be used to estimate the state xn, i.e., the set {y0,k, y1,k, . . . , yn,k}. We wish
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to see if the local estimates formed by the sets Yk’s can be combined to yield
the optimal global estimate of xn. We can think of two ways of doing this:

1. We see that the set Yi is linearly related to x(k) through an equation of
the form

yn,k

yn−1,k

...
y0,k

 =


Ck

CkA
−1

...

xn +


vn,k

vn−1,k − CA−1wn−1

...

 .
However we notice that the process noise w appears in the noise vector.
Thus even though the measurement noises vn,k’s may be independent,
the noise entering the sets Yk become correlated and hence the estimates
cannot be directly combined. Of course, if the process noise is absent, the
estimates can be combined in this fashion (see, e.g, [1] where the optimality
in this special case was established. For a general discussion about the
effects introduced by the process noise see, e.g. [2, 3, 4, 5, 6]).

2. We see that xn can be estimated once the variables x0, w0, . . . , wn−1 are
estimated. Now Yk is linearly related to these variables through

yn,k

yn−1,k

...
y0,k

 =


CiA

k CiA
k−1 · · · C

CiA
k−1 · · · C 0

...



wn−1

wn−2

...
x0

+


vn,k

vn−1,k

...
v0,k

 .
Now the measurement noises for different sensors are uncorrelated and
the estimates can be combined. However, the vector being transmitted
from either of the sensors is increasing in dimension as the time step n
increases. Moreover the computation required is increasing since a matrix
of size growing with time needs to be inverted at every time step. Hence
this is not a practical solution.

Thus we see that it is not straight-forward to combine local estimates to
obtain the global estimate. We can ask the question if it is possible at all to
obtain the global estimate from the local estimates. Thus imagine that the
local estimates x̂n,k were being combined in the optimal fashion. Is it possible
to generate the global estimate x̂n? As noted above, for the special case when
there is no process noise, this is indeed true. However, in general, it is not
possible.

Proposition 2.3. (From [7]) Suppose two sets of measurements Y1 and Y2 are
used to obtain local estimates x̂1 and x̂2. Let[

x̂1

x̂2

]
= L

[
Y1

Y2

]
4
= LY.

Then the global estimate x̂ can be obtained from the local estimates x̂1 and x̂2

if and only if
RY Y L

T
(
LRY Y L

T
)−1

LRY X = RY X .
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Proof. The global estimate generated from the measurements is given by

x̂ = RXYR
−1
Y Y Y.

If it is generated from the local estimates, it is given by

x̂ = RXY L
T
(
LRY Y L

T
)−1

LY.

The result is thus obvious.

If L is invertible, the condition is satisfied and hence the global estimate can
be generated from the local estimates. In general, however, L would be a fat
matrix and hence the condition will not be satisfied. We thus have two options:

1. Find the best possible global estimator from the space spanned by the
local estimates. This is left as an exercise.

2. Find the extra data that should be transmitted that will lead to the cal-
culation of the global estimate. We will now describe some such schemes.
For these and more such strategies see, e.g., [1],[6]–[19].

2.2.2 Distributed Kalman Filtering

For this section we will assume that the sensors are able to transmit information
to the central node at every time step. We will use the following information
form of the Kalman filter update equations.

Proposition 2.4. Consider a random variable evolving in time as

xn+1 = Axn + wn.

Suppose it is observed through measurements of the form

yn = Cxn + vn.

Then the measurement updates of the Kalman filter can be given by this alternate
information form.

P−1
n|nx̂n|n = P−1

n|n−1x̂n|n−1 + CTR−1yn

P−1
n|n = P−1

n|n−1 + CTR−1C.

Proof. The equations were derived in section 2.1.3.

The basic result about the requirements from the individual sensors can be
derived using the above result.

Proposition 2.5. The global error covariance matrix and the estimate are given
in terms of the local covariances and estimates by

P−1
n|n = P−1

n|n−1 +
K∑
k=1

(
P−1
n,k|n−1 − P

−1
n,k|n

)
P−1
n|nx̂n|n = P−1

n|n−1x̂n|n−1 +
K∑
k=1

(
P−1
n,k|nx̂n,k|n − P

−1
n,k|n−1x̂n,k|n−1

)
.
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Proof. Proof follows by noting that the global estimate is given by

P−1
n|nx̂n|n = P−1

n|n−1x̂n|n−1 + CTR−1yn

P−1
n|n = P−1

n|n−1 + CTR−1C.

Since R is block diagonal, the terms CTR−1yn and CTR−1C are decomposed
into the sums

CTR−1yn =
K∑
k=1

CTk R
−1
k yn,k

CTR−1C =
K∑
k=1

CTk R
−1
k Ck.

Noting the for the k-th sensor, the estimate and the error covariance are given
by

P−1
n,k|nx̂n,k|n = P−1

n,k|n−1x̂n,k|n−1 + CTk R
−1
k yn,k

P−1
n|n = P−1

n|n−1 + CTk R
−1
k Ck,

the result follows immediately.

Based on this result we now give two architectures for dynamic sensor fusion.

1. In the first, rather obvious, architecture, the individual sensors transmit
the local estimates x̂n,k|n. The global fusion center combines the estimates
using the theorem given above. Note that the terms x̂n|n−1 and x̂n,k|n−1

can be calculated by the fusion node by using the time update equation

x̂n|n−1 = Ax̂n−1|n−1.

Similarly all the covariances can also be calculated without any data from
the sensor nodes. This method is simple, especially at the sensor level.
However, the fusion node has to do a lot of computation.

2. This method makes the computation at the fusion node simple at the ex-
pense of more data transmitted from the sensor node. The essential point
is the observation as developed, e.g., in [20, 21] that the term P−1

n|n−1x̂n|n−1

can be written in terms of contributions from individual sensors, i.e.,

P−1
n|n−1x̂n|n−1 =

K∑
k=1

zn,k. (1)

This can be proved using straight-forward algebraic manipulation as fol-
lows.

P−1
n|n−1x̂n|n−1 =P−1

n|n−1Ax̂n−1|n−1

=P−1
n|n−1APn−1|n−1P

−1
n−1|n−1x̂n−1|n−1

=P−1
n|n−1APn−1|n−1

(
P−1
n−1|n−2x̂n−1|n−2

+
K∑
k=1

(
P−1
n−1,k|n−1x̂n−1,k|n−1 − P−1

n−1,k|n−2x̂n−1,k|n−2

))
.

9



Distributed Estimation

Thus zi(k) evolves according to the relation

zn,k = P−1
n|n−1APn−1|n−1zn,k|n−1

+
(
P−1
n−1,k|n−1x̂n−1,k|n−1 − P−1

n−1,k|n−2x̂n−1,k|n−2

)
, (2)

which depends only on the k-th sensor’s data. The covariances do not
depend on the data and can be calculated anywhere. Hence each sensor
transmits the quantity

γn,k =
(
P−1
n,k|nx̂n,k|n − P

−1
n,k|n−1x̂n,k|n−1

)
+ zn,k (3)

and the fusion node just calculates the sum of these quantities. Thus at
expense of more data transmitted from the sensor nodes, we have made
the central node very simple.

3 Non-Ideal Networks with Star Topology
In this section, we will give some strategies or algorithms for sensors to per-
form distributed estimation if the communication network suffers from limited
bandwidth, transmit range, and message loss. We consider various cases in the
sequel.

3.1 Sensor Fusion in Presence of Message Loss
This research direction considers the following problem. Consider multiple sen-
sors as above with a central fusion center. The sensors transmit data to the
fusion center across an analog erasure link that drops messages stochastically.
More formally, an analog erasure link accepts as input a real vector i(n) ∈ Rt

for a bounded dimension t. At every time n, the output o(n) is given by

o(n) =

{
i(n) with probability 1− p

∅ otherwise.

• The case when o(n) = ∅ is referred to as an erasure event. It implies
that the channel drops the messages and the receiver does not receive any
information apart from that an erasure event has occurred.

• This model assumes that the erasure events occur according to a Bernoulli
process with erasure probability 1−p. Other models, in which such events
occur according to a Markov chain or other more general processes, can
be considered.

• If the transmitter also knows that an erasure event has occurred, then we
say that the receiver transmits an acknowledgement to the transmitter.
Such an acknowledgement may always be available, may itself be trans-
mitted across an erasure channel so that it is stochastically available, or
may not be available at all.
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The basic effect of the sensors transmitting across such channels is that
information from the sensors is not available at the fusion center at every time
step. This fact also requires some care in how the performance of the estimator
is defined. Consider a realization of the erasure process such that at time n,
the last transmission from sensor k was received at the fusion center at time nk.
Obviously, there is no algorithm that can provide a better estimate than the
MMSE estimate of x(n) given measurements {y0,1, · · · , yn1,1}, {y0,2, · · · , yn2,2},
· · · , {y0,K , · · · , ynK ,K} (where we assume K sensors are present). Denote the
error covariance of this estimator by P opt

n . Due to the stochastic erasure process,
it may be more convenient to consider the expected value of this covariance
E[P opt

n ] where the expectation is taken with respect to the erasure processes.
Several questions arise:

1. What information should the sensors transmit to enable the fusion center
to achieve the covariance P opt

n at every time step?

2. If this covariance is not achievable, what is the best covariance that any
algorithm can achieve?

3. Clearly, the error covariance at the fusion center degrades as the erasure
probabilities increase. What are the conditions on the erasure probabilities
so that any algorithm can achieve stability of the estimate error covariance,
i.e., ensure that the expected error covariance remains bounded as n→∞?

We discuss below some recent work on these questions, although a complete
solution is unavailable at this time.

It should be clear that an algorithm may lead to stability of the error covari-
ance without being optimal in the sense of achieving the covariance P opt

n . In
other words, the requirement in the third question posed above is less strenuous
than the requirement in the first question. The third question was answered
in [21] which presented conditions on erasure probabilities and the process ma-
trices for stability. We present the result below for the case when two sensors
transmit data to the fusion center across individual analog erasure links with
Bernoulli erasures with erasure probabilities 1 − pk, k = 1, 2. Various general-
izations are available in the cited reference.

Theorem 3.1 (From [21]). Consider a process evolving as

xn+1 = Axn + wn

being observed using two sensors that generate measurements of the form

yn,k = Ckxn + vn,k, i = 1, 2

where wn and vn,k are white zero mean independent noises. Let the sensors
transmit information through a real vector with bounded dimension to a fu-
sion center across analog erasure channels with Bernoulli erasures with erasure
probabilities p1 and p2 respectively. Denote by ρ(Ak) the spectral radius of the
unobservable part of matrix A when the pair (A,Ck) is written in the observer
canonical form and by ρ(A) the spectral radius of matrix A. Assume that the
pair (A, [CT1 , C

T
2 ]T ) is observable.

11
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1. Irrespective of the information transmitted by the sensors, and the algo-
rithm used by the fusion center, the quantity E[P opt

n ] is not bounded as
n→∞ if at least one of the following inequalities is not satisfied:

p1ρ(A2)2 ≤ 1 (4)

p2ρ(A1)2 ≤ 1 (5)

p1p2ρ(A)2 ≤ 1. (6)

2. Conversely, if the inequalities (4)–(6) are satisfied, then there is an algo-
rithm such that the corresponding expected error covariance at the fusion
center is bounded as time increases.

Thus, this result solves the third problem posed above. It is important
to note that the necessity of the inequalities (4)–(6) holds irrespective of the
availability of acknowledgements at the sensors. The necessity part of the re-
sult follows from system theoretic considerations. The sufficiency part of the
result is proved by constructing an algorithm that guarantees stability of the
estimator error covariance, even though the error covariance is not P opt

n (i.e.,
the algorithm is not optimal in the sense of achieving the minimal error covari-
ance at every step). Perhaps somewhat surprisingly, the algorithm is based on
the sensors transmitting local estimates of the process state based on their own
measurements. Specifically, sensor 1 transmits the estimate x̂1

n,1 of the modes
of the process observable only from sensor 1, and x̂2

n,1 of the modes observable
from both sensors. Similarly sensor 2 transmits the estimate x̂1

n,2 of the modes
of the process observable only from sensor 2, and x̂2

n,2 of the modes observable
from both sensors. The fusion center maintains an estimate x̂1

n of the modes
observable only from sensor 1, x̂2

n of the modes observable only from sensor 2,
and x̂3

n of the modes observable from both sensors. At any time step, it updates
the modes as follows:

x̂1
n =

{
x̂1
n,1 transmission successful from sensor 1

Ax̂1
n−1 otherwise

x̂2
n =

{
x̂1
n,2 transmission successful from sensor 2

Ax̂2
n−1 otherwise

x̂2
n =


x̂2
n,1 transmission successful from sensor 1

x̂2
n,2 transmission successful from sensor 2 but not from sensor 1

Ax̂1
n−1 otherwise.

The estimate of the state xn can be formed from the three components x̂kn.
Given this algorithm, the sufficiency of the inequalities (4)–(6) for stability of
the expected error covariance can then be proved.

Given Proposition 2.3, it is not surprising that this algorithm cannot lead to
the calculation of the optimal global estimate at the fusion center. In fact, the
optimal information processing algorithm at the sensors remains unknown in
most cases. Most recent advances (e.g. [20]–[23] build from the basic algorithm
identified in equations (1)–(3). Thus the sensors transmit the quantity γn,k
at every time step and the fusion center sums these quantities to generate the

12



Distributed Estimation

estimate x̂n. If there are no erasures, this estimate is indeed the global estimate
with the optimal error covariance P opt

n . However, if there are erasures, then the
calculation of γn,k requires some global knowledge. In particular, the quantity
Pn−1|n−1 in (2) at each sensor requires the knowledge of the last time step at
which the transmission from every sensor to the fusion center was successful.
Notice that the data transmitted by other sensors is not required, merely the
confirmation of successful transmission is enough.

One mechanism for such global knowledge can be acknowledgements trans-
mitted from the fusion center. If such acknowledgements are available, then it
was shown in [21] that minor modifications of the algorithm outlined in equa-
tions (1)–(3) will generate the optimal global estimate at the fusion center.
Depending on the problem scenario, such an assumption may or may not be
realistic. If acknowledgements are also transmitted across an analog erasure
link, [23] presented some further modifications to the algorithm that guaran-
teed that the estimation error covariance degraded continuously as a function
of the probability of loss of acknowledgement. However, the optimal algorithm
when acknowledgements are not available, or only available intermittently, is
not known.

Other special cases where such global knowledge is available can be if only
one of the sensors transmits across an analog erasure link [20] or if only one
sensor transmits at any time [22]. Once again, in these cases, the optimal global
estimate can be calculated. However, it remains unknown if the optimal global
estimate can be calculated outside of these cases, or if it cannot be calculated,
then what is the best performance that is achievable.

3.2 Sensor Fusion with Limited Bandwidth
3.2.1 Static Sensor Fusion

Consider a limited bandwidth communication network, in which K sensors mea-
sure an unknown parameter θ ∈ [−U,U ]. The measurement xk, from k-th sen-
sor, is corrupted by noise nk, which is assumed independent, zero mean, and
with a pdf p(u), namely Pr(nk = u) = p(u).

xk = θ + nk for k = 1, 2, . . . ,K . (7)

Depending on the distribution of the noise, and on the amount of information
that it is transmitted, there can be the cases studied in the following sub-
sections:

An ε-estimator with known noise pdf Here an ε-estimator is defined as
an estimator providing estimates with MSE lower than ε2. Assume the limited
bandwidth forces each sensor to send just one bit messages mk(xk) to the fusion
center. The message is defined as

mk(xk) =

{
1, if xk ∈ Sk
0, if xk 6∈ Sk

, (8)

where Sk is a subset of R and is independent of the noise pdf. Let R+ denote
the subset of R for all positive real number.

13
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Example 3.2. (From [24]) Suppose that the noise is uniformly distributed over
the interval [−U,U ]. Let Sk = R+ for all k. Suppose a linear fusion function
that gives the estimator θ̂ as

θ̂ := f(m1, . . . ,mk) = −U +
2U
K

K∑
k=1

mk .

Then, the estimator is unbiased:

E [θ̂] = −U +
2U
K

K∑
k=1

E [mk]

= −U +
2U
K
K
U + θ

2U
= θ .

Furthermore, since mk’s are independent,

E [θ̂ − θ]2 =
4U2

K2
E

[
K∑
k=1

(
mk −

U + θ

2U

)]2

=
4U2

K2

K∑
k=1

E [mk − E [mk]]2 ≤ U2

K
,

where we used that the variance of a binary random variable is bounded above by
1/4. It indicates that, even with the binary message constraint, a total number
of K = U2/ε2 sensors are still sufficient to perform an ε-estimator for θ.

Generally, if the p(u) is given, we can still choose the message function as
Eq.(8) with Sk = R+ for all k. Then

Pr(mk = 1) = Pr(nk > −θ) =
∫∞
−θ p(u)du ,

Pr(mk = 0) = Pr(nk ≤ −θ) =
∫ −θ
−∞ p(u)du .

Then the expectation value for E [mk] is obtained by

E [mk] =
∫ ∞
−θ

p(u)du = 1− F (−θ), k = 1, 2, . . . ,K ,

where F (·) is the cumulative distribution function (cdf) of the noise. If one
chooses the final fusion function for θ̂ as introduced in [24], then

θ̂ := f(m1, . . . ,mk) = −F−1

(
1− 1

K

K∑
k=1

mk

)
, (9)

where F−1 is the inverse of F . By the strong law of large numbers, it follows

lim
K→∞

θ̂ = −F−1

(
1− lim

K→∞

1
K

K∑
k=1

mk

)
= −F−1(1− E [mk]) = −F−1(F (−θ)) = θ .

Suppose the noise pdf p(u) is known and bounded over [−U,U ], then θ̂ obtained
by Eq.(9) is an ε-estimate of θ implying a total number of O(1/ε2) sensors, by
the following theorem:

14
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Theorem 3.3. (From [24]) Suppose the noise pdf p(u) is known and bounded
from below by µ > 0 over [−U,U ]. Let K ≥ 1/(4µ2ε2). Then the decentralized
estimation scheme (8) and (9) produces an ε-estimator of θ.

Proof. Notice that

|F (−θ)− F (−θ′)| = |1− F (−θ)− (1− F (−θ′))|

=

∣∣∣∣∣
∫ −θ′
−θ

p(u)du

∣∣∣∣∣ ≥ µ|θ − θ′| ∀θ, θ′ ∈ [−U,U ]

⇒ |F−1(v)− F−1(v′)| ≤ 1
µ
|v − v′| ∀v, v′ ∈ [0, 1] ,

Then,

|θ̂ − θ| =

∣∣∣∣∣−F−1

(
1− 1

K

K∑
k=1

mk

)
+ F−1(1− E (mk))

∣∣∣∣∣
≤ 1
µ

∣∣∣∣∣ 1
K

K∑
k=1

mk − E (mk)

∣∣∣∣∣
⇒ E [θ̂ − θ]2 ≤ 1

µ2
E

[
1
K

K∑
k=1

mk − E (mk)

]2

≤ 1
4µ2K

.

Thus, the variance of the estimator given by Eq.(9) is lower than ε2 as long as

K ≥ 1
4µ2ε2

.

which concludes the proof.

A universal ε-estimator for unknown noise pdf The ε-estimator intro-
duced in Section 3.2.1 needs the explicit pdf p(u) for the noise. However, some-
times for a large number of sensors, to characterize the measurement noise
distribution would cost too much, or could be even impossible in a dynamic
environment. To cope with these situations, a distributed estimator providing
accurate estimates regardless the noise pdf under the bandwidth constraint is
required. In this subsection, we summarize a universal distributed estimator for
unknown noise pdf.

The idea, proposed in [24], is to represent the estimates in binary form
by quantizing the sensor measurements into the corresponding bit positions.
Specifically, it tries to quantize 2−i of the sensors’ measurements into the i-th
most significant bit (MSB), e.g. 1/4 of the sensors quantize their measurement
to the second MSB. Then it can be shown that the statistics average of these
message functions (m1 +m2 + · · ·+mK)/K is a unbiased estimator for θ, while
its MSE is upper bounded by 4U2/K.

The procedure of this distributed estimation scheme is described as fol-
lows [25, 26]:

1. Each measurement, xk, in node k is quantized into the i-th MSB with
probability 2−i, being converged to a binary message. Then this message
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is sent to the fusion center. This step can be described as following

Pr(a = i) =

{
2−i i = 1, 2, 3, . . .
0 otherwise

(10a)

mk(x, a) = [b(2U + x; a); a] , (10b)

where the value of the random variable a indicates the position for MSB,
and the notation b(z; a) denotes the i-th MSB of a real number z.

2. The fusion center recursively computes the average of all received binary
messages that are distinct (determined by, say, the sender’s ID), and uses
it as estimator of θ.
Suppose the fusion center, which also has measurement capability, has
received a total of j independent messages. Based on these messages, it
can first form the sets

Ni = {k|ak = i, 1 ≤ k ≤ j}, i = 1, 2, 3, . . . . (11)

Then, based on the received messages and its own observation x, the center
can be proceed to form

yi = b(2U + x; i) +
∑
k∈Ni

b(2U + xk; ak), i = 1, 2, 3, . . . , (12)

and perform the estimate of θ

θ̂j = fj(x,m(x1, a1), . . . ,m(xj , aj)) = −2U + 4U
∞∑
i=1

2−i

|Ni|+ 1
yi (13)

Theorems 3.4 and 3.5 show that this distributed estimator is unbiased and has
an expected MSE of 4U2/K, where K is the number of sensors in the network:

Theorem 3.4. Let fj(x,m(x1, a1), . . . ,m(xj , aj)) be defined by Eq.(13). Then
for all 0 ≤ j ≤ K − 1

E [fj(x,m(x1, a1), . . . ,m(xj , aj))] = θ, ∀θ ∈ [−U,U ], ∀p ∈MU , (14)

where the expectation is taken with respects to the distribution of a and unknown
noise, and where

MU =

{
p(u) :

∫ U

−U
p(u)du = 1,

∫ U

−U
up(u)du = 0, p(u) ≥ 0,Supp(p) ⊆ [−U,U ]

}
.

Proof. From Eq.(12) and (13), using that xk is i.i.d to each others, we obtain

E [fj(x,m(x1, a1), . . . ,m(xj , aj))]

= −2U + 4U
∞∑
i=1

E

[
2−i

|Ni|+ 1

(
b(2U + x; i) +

∑
k∈Ni

b(2U + xk; ak)

)]

= −2U + 4U
∞∑
i=1

2−iE [b(θ + 2U + n; i)]

= −2U + E [θ + 2U + n] = θ ,
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where note that every number u in [0, 4U ] can be represented in binary as

u = 4U
∞∑
i=1

2−ib(u; i) ,

which concludes the proof.

Theorem 3.5. Let θ̂ be the distributed estimator of Eq.(13). Then

E [θ̂j − θ]2 ≤
4U2

j + 1

Proof. Similarly, from Eq.(12) and (13), using that xk is i.i.d to each others,

E [(θ̂j − θ)2|a1, . . . , ai]

= 16U2
∞∑
i=1

Var

[
2−i

|Ni|+ 1

(
b(2U + x; i) +

∑
k∈Ni

b(2U + xk; ak)

)]

= 16U2
∞∑
i=1

2−2iVar[b(2U + x; i)]
|Ni|+ 1

≤ 4U2
∞∑
i=1

2−2i 1
|Ni|+ 1

,

where in the last step follows from that the upper bound of var(b(2U + x; a)) is
1/4. Furthermore, notice that

Pr(Ni = r) =

(
i

r

)
2−ir(1− 2−i)(j−r), 0 ≤ r ≤ j ,

and

E

[
1

|Ni + 1|

]
=

j∑
r=0

1
r + 1

(
i

r

)
2−ir(1− 2−i)(j−r)

=
1

i+ 1
1− (1− 2−i)j+1

2−i

Therefore, the MSE is

E [θ̂j − θ]2 = E [E [(θ̂j − θ)2|a1, . . . , ai]]

≤ 4U2
∞∑
i=1

2−2iE

[
1

|Ni|+ 1

]
≤ 4U2

j + 1
,

which concludes the proof.

Remark 3.6. The average message length is
∑∞
i=1 2−i(1 + dlog(a)e) and is

upper bounded by 2.5078 [26].
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3.2.2 Dynamic Sensor Fusion: Sign of innovations-KF

An alternative solution in the presence of limited bandwidth is based on the
Kalman filter. First, recall that generally distributed Kalman filter includes a
prediction step and a correction step. Consider the system

xn = Anxn−1 + wn

yn,k = CTn,kxn + vn,k ,

where the driving input wn is normally distributed with zero mean and variance
Qn and the observation noise vn,k is zero mean AWGN and independent across
sensors with noise R [25]. In this case, we have R = σvI. Suppose that x̂n−1|n−1

and Pn−1|n−1 are available at time n, the predicted estimate x̂n|n−1 and its
corresponding covariance matrix Pn|n−1 are given by

x̂n|n−1 = Anx̂n−1|n−1 (15a)

Pn|n−1 = AnPn−1|n−1A
T
n +Qn . (15b)

The innovation sequence

ỹn := yn − CTn x̂n|n−1 ,

is chosen to obtain the corrected estimate x̂n|n. To deal with the limited band-
width, the sign of the innovation (SOI) is used to ensure that the required
exchange of information among sensors is possible under one bit message con-
straint.

m(n) := sign[ỹn] = sign[yn − ỹn|n−1] . (16)

Due to the sign non-linearity, p[xn|m0:n−1] is non-Gaussian and computa-
tion of the exact MMSE estimate requires numerical integrations and propa-
gation of the posterior pdf. However, base on customary simplifications made
in nonlinear filtering, we can approximate the MMSE with following correction
recursions [27]:

x̂n|n = x̂n|n−1 +mn

(
√

2/π)Pn|n−1Cn√
CTn Pn|n−1Cn + σ2

v

(17a)

Pn|n = Pn|n−1 −
(2/π)Pn|n−1C

T
n Pn|n−1

CTn Pn|n−1Cn + σ2
v

. (17b)

Even at a minimal communication cost, the SOI-KF is strikingly similar to
the clairvoyant KF [25]. To prove it, let us rewrite the SOI-KF correction as

x̂n|n = x̂n|n−1 +
Pn|n−1Cn

CTn Pn|n−1Cn + σ2
v

m̃n|n−1 , (18)

where
m̃n|n−1 :=

√
(2/π)E [ỹ2

n|n−1]mn .

Notice that the units of m̃n|n−1 and ỹn|n−1 are the same, and

E [m̃n|n−1] = E [ỹn|n−1] = 0

E [m̃n|n−1]2 =
2
π
E [ỹn|n−1]2 ,

18



Distributed Estimation

which indicates that Eq.(18) is identical to the KF update if replacing m̃n|n−1

with the innovation ỹn. It is not difficult to show that the MSE increases when
using the SOI-KF is as much as the KF would incur when applied to a model
with π/2 higher observation noise variance [25, 27].

4 Network with Arbitrary Topology
The results above assumed the presence of a star topology in which one central
node had access to local estimates from every other node. It was essentially a
two step procedure: first all the nodes transmit local estimates or local measure-
ments to the central node and then the central node calculates and transmits
the weighted sum of the local estimates back. However, what is required is a
weighted average. Thus, we can generalize the approach to an arbitrary graph
at the expense of more time being employed. The generalization is along the
lines of average consensus algorithms that have been recently considered by
many people (see, e.g., [28]–[30]). An example of arbitrary topology networks
is illustrated in Fig 2. For now, we will only cover the basics.
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Figure 2: An example of arbitrary topology networks with nodes and links (solid
lines indicating that there is message communication between nodes). In this
network, there is no node acting as fusion center.

4.1 Static Sensor Fusion with Limited Communication
Range

Due to the limited communication range, some of the sensors can not send
message to the fusion center. In such cases, we can treat the networks as the
static sensor fusion for arbitrary graphs without a fusion center.
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Consider K nodes each with access to a scalar value being connected accord-
ing to an arbitrary (but time-invariant) graph. Suppose we want each node to
calculate the average of all the numbers. One way to do that is if each node
implements the dynamical system

xn+1,k = xn,k + h
∑
j∈Ni

(xn,j − xn,k) ,

where xn,k is the value for state xk at time n, and h is a small positive constant.
On stacking the states of all the nodes, the entire system evolves as

Xn+1 = (I − hL)Xn,

where Xn = [xn,1, . . . , xn,K ]T , and L is the Graph Laplacian matrix. If the
underlying graph is connected, L has the following properties:

1. It is a symmetric positive-definite matrix. Thus the dynamics is stable
(assuming h is small enough) and reaches a steady-state.

2. Each row sum is 0. Thus any vector with identical components is an
equilibrium.

3. Each column sum is 0. Thus the sum of entries Xn is conserved at every
time step.

Because of these three properties, it is easy to see that each entry must converge
to the average of the sum of the initial conditions. This algorithm can then be
readily extended for calculating weighted averages of vectors [31, 32]. If the
initial values are given by the vectors x0,k, each node calculates the following:

xn+1,k = xn,k + hW−1
k

∑
j∈Ni

(xn,j − xn,k) ,

where Ni denotes the set of sensors connected to i-th sensor. In our case, we let
x0,k to be the local estimate values and Wk to be inverse of the local estimation
error covariance, and obtain the required weighted sum.

4.2 Dynamic Sensor Fusion
4.2.1 With Limited Communication Range

Consider a WSN with K > 1 sensor nodes placed at random and static posi-
tions in space. At every time instant, each sensor in the network takes a noisy
measurement yk(n) of a scalar signal x(n) for n ∈ N0 and for all k = 1, . . . ,K
as described by Eq.(19):

xn = axn−1 + δn−1 (19a)
yn,k = ckxn + vn,k , (19b)

where vn,k for all k is normal distribution with zero means and variance σ2
vn,k

respectively and E (vn,ivn,j) = 0 for all n ∈ N0, i 6= j. Moreover, δn models the
disturbance for the scalar signal.

In this case, each sensor has limited communication range. To estimate the
dynamic state xn in the networked manner, we assume every sensor k computes
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an estimate x̂n,k of xn by taking a linear combination of its own and of its
neighbours’ estimates and measurements. Define x̂n = (x̂n,1, . . . , x̂n,K)T and
similarly yn = (yn,1, . . . , yn,K)T , then each node computes

x̂n,k = aκTn,kx̂n−1 + hTn,k (yn − aCx̂n−1) , (20)

with x̂0 = y0, C is a diagonal matrix diag({c1, . . . , cK}) with κTn,k ∈ RK×1, in
which the j-th element is the weight coefficient used by node k for information
coming from node j at time n, as seen from node k with respect to all nodes of
the network.

Let denote en = (en,1, . . . , en,K)T , with en,k = xn − x̂n,k, k = 1, . . . ,K,
be the vector of the estimation errors. Assume that κTn,k1 = 1, then for each
node k, the error dynamics can be obtained by

en,k =a(κn,k −Chn,k)Ten−1 + (κn,k −Chn,k)T δn−1 − hTn,kvn

=agTn,ken−1 + gTn,kδn−1 − hTn,kvn ,

with gn,k = κn,k −Chn,k and where vn = (vn,1, . . . , vn,K)T .
Define Gn the matrix with k-th row given by the vector gn,k, for k =

1, . . . ,K. The average estimation error of the estimator (20) is bounded through-
out the network provided that a condition on the maximum singular value of
the matrix Gn, γmax(Gn), holds:

Proposition 4.1. Assume that

(i) γ(Gn) ≤ γmax < min(1, 1/a) for all n ∈ N0, where γ(·) is the singular
value of matrix.

(ii) δn = dn + wn, where |dn| < ∆ represents the disturbances and wn ∼
N (0, σ2

w) is Gaussian noise for all n ∈ N0.

Then the correlation function of the estimation error, computed with respect to
the measurement noise and message losses, is

lim
n→+∞

‖Ew,ven‖ ≤
∆
√
Kγmax

1− γmax
. (21)

Proof. The dynamics of en are given by a stochastic time-varying linear system.
Consider the function Vn = ‖E v,wen‖. Simple algebra gives that

V (t) ≤ ‖aGn‖Vn + ‖Gn‖∆
√
K

≤ (aγmax)nV0 + γmax
1− γn−1

max

1− γmax
∆
√
K ,

from where, taking the limit n→ +∞, the proposition follows.

The previous proposition is useful because gives us a constraint on the
weights so that the estimation error is stable. Moreover, we compute the weights
so that the estimation error variance is minimized under the stability constraint.
Every node computes the weights by solving at each time step the following op-
timization problem

min
gn,k,hn,k,ψn,k

gTn,kΓn−1,kgn,k + hTn,kQn−1hn,k (22a)

s.t. (gn,k + Chn,k)T 1 = 1 (22b)

‖gn,k‖2 ≤ ψn,k , (22c)
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where

Γn,k = (a2Pn,k + σ2
wI)

Pn,k = E (en,k − E en,k)(en,k − E en,k)T ,

while Qn = Σn with Σ which is a diagonal matrix, diag({σ2
v1 , . . . , σ

2
vK
}). If the

σ2
w is unknown, let Γn,k = a2Pn,k.
In this optimization problem, the objective function is the average variance of

the estimation error at node k. The first constraint is motivated by assumption
κTn,k1 = 1 , whereas the last constraint is a consequence of Proposition 4.1 and
the Proposition III.1.in [33]. Specifically, the last constraint in problem (22)
guarantees that γ(Gn) ≤ γmax, provided that there exists some positive scalars
ψn,k, k = 1, . . . ,K, such that

Sk(ψn,k) = ψn,k +
√
ψn,k

∑
j∈Θk

√
ψn,j − γmax ≤ 0 , (23)

where Θk = {j 6= k : Nk ∩ Nj 6= ∅} ∪ {Nk}, which is the collection of commu-
nicating nodes located at two hops distance from node k plus communicating
neighbours of k at time n.

The optimal solution to problem (22) is obtained in two steps: first, ψn,k
is assumed fixed and the problem is solved by applying Lagrange dual theory
for the variables gn,k and hn,k, thus achieving expressions of gn,k and hn,k as
function of ψn,k. Finally, these expressions are used in the cost function, which
is then minimized in the valuable ψn,k. Details follows in the sequel:

By the first step, given a covariance matrix Pn−1,k, the weights that solve
the optimization problem (22) are

gn,k =
(Γn−1,k + λn,kI)

−1 1

1T
(

(Γn−1,k + λn,kI)
−1 + CQ−1C

)
1
, (24)

hn,k =
Q−1C1

1T
(

(Γn−1,k + λn,kI)
−1 + CQ−1C

)
1
, (25)

λn,k =

{
0 if

[
gTn,kgn,k

]
λn,k=0

≤ ψn,k
λ∗n,k otherwise

. (26)

Here λ∗n,k is determined by equation[
gTn,kgn,k

]
λ∗

n,k

= ψn,k . (27)

The value of λ∗n,k is in the interval[
0,max

(
0,

1
1TCQ−1C1

√
1

ψn,k
− a2`(Pn−1,k)

)]
,

where `(Pn,k) is the minimum eigenvalue of matrix Pn,k. Then λ∗n,k can be
computed by a simple bisection algorithm [33].

The weights gn,k and hn,k, whose expression are given in (24) and (25),
depend on the thresholds ψn,k, through the values λn,k, and on the error covari-
ance matrix Pn−1,k. In case of perfect communication, each node could estimate
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efficiently the error covariance matrix from data. In particular, let P̂n−1,k the
estimation of the covariance matrix computed by node k, then

P̂n−1,k =
1
n

n−1∑
τ=0

(ε̂τ,k − m̂τ,n) (ε̂τ,k − m̂τ,k)T , (28)

where

m̂n,k =
1
n

n∑
τ=0

ε̂τ,k ,

is the sample mean. The vector ε̂n,k is the vector of the estimation errors of
the neighboring nodes available at node k, which is obtained by a Tichonov
regularization approach, as discussed in [33] with a different matrix A given by

A =

(
1 I

C1 0

)
.

Now let us compute the values of ψn,k that solve the optimization problem (22).
By substituting (24) and (25) in the cost function of (22), we see that the larger
is ψn,k, the lower is the cost function. In other words, the larger is ψn,k, the
lower is the estimation error variance at node k. Since ψn,k must be maximized
for k = 1, . . . ,K, it follows that ψn,k, k = 1, . . . ,K, is given by the solution to
the following multi-criterion optimization problem

max
ψn,k

ψn,k (29)

s.t. S(ψn) � 0 (30)
ψn,k � 0 ,

where S(ψn) = (S1(ψn,1), . . . , SK(ψn,K))T .
Notice that the cost function is a vector whose components are coupled by

the constraints (30). Thus the problem is a multi-criterion optimization problem
and each threshold ψn,k, k = 1, . . . ,K, must be optimized simultaneously. This
problem is a Fast-Lipschitz optimization problem [34]. The solution is given
in [33].

Now let us investigate the performance of this estimator in MSE.

Proposition 4.2. The optimal value of κn,k and hn,k are such that the error
variance at node k satisfies

E [ek − E ek]2 <
1

1T
(

Ωk +
(∑

j∈Nk

1
1T Ωj1

+ 1
1T Ωk1

√
1

ψn,k

)−1
)

1
,

where Ωi = CkQ−1
k Ck.

Proof. First, by using (24) and (25) in the expression of the estimation error
variance it follows that

E [en,k − E en,k]2 ≤ 1
1T (Γn−1,k + λn,kI)

−1 1 + 1TΩk1

<
1

1TΩk1
.
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Then notice that

trΓn,k =
∑
j∈Nk

E (en−1,j − E en−1,j)
2
<
∑
j∈Nk

1
1TΩj1

.

Thus we have

`max(Γn−1,k + λn,kI)

<
∑
j∈Nk

1
1TΩj1

+ max

(
0,

1
1TΩk1

√
1

ψn,k
− a2`min(Pn−1,k)

)

<
∑
j∈Nk

1
1TΩj1

+
1

1TΩk1

√
1

ψn,k
.

Since
1T (Γn−1,k + λn,kI)−11 ≥ 1

1T (`max(Γn−1,k + λn,kI)1
,

we have that

E (en,k − E en,k)2 ≤ 1
1T (Γn−1,k + λn,kI)

−1 1 + 1TΩk1

<
1

1T
(

Ωk +
(∑

j∈Nk

1
1T Ωj1

+ 1
1T Ωk1

√
1

ψn,k

)−1
)

1
.

The previous proposition guarantees that the estimation error at each time
n, in each node k, is always upper-bounded by the Cramer-Rao lower bound.

4.2.2 With Message Losses

Suppose that over a link, messages may be dropped because of bad channel
conditions or radio interference. Let φn,kj , with k 6= j, be a binary random
variable associated to the message losses from sensor k to j at time n. For k 6= j,
we assume that the random variables φn,kj are independent with probability
mass function:

Pr(φn,kj = 1) = pkj ,

Pr(φn,kj = 0) = qkj = 1− pkj ,

where pkj ∈ [0, 1] denotes the successful message reception probability.

Example 4.3. Suppose each sensor computes an estimates x̂i(n) by taking a
linear combination of its own and of its neighbors’ estimates and measurements.
Then with the message losses, the estimator can be written as

x̂n+1,k = x̂n,k + hW−1
k

∑
j∈Nk

φn,kj (x̂n,j − x̂n,k) ,

where Nk denotes the set of neighbours of sensor k plus the node itself.
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Example 4.4. (From [35]) Suppose that the prediction phase of the Kalman
Filter is independent of the observation process as Eq.(15). The measurement
update is stochastic as the received measurements are determined by φn,kj.

Then the covariance update may have following compact expression

P (K)
n = AnPn−1A

T
n +Qn −

K∑
k=1

k∏
i=1

φn,ip

K−k∏
j=1

(1− φn,jp)Ω(k)
n (Pn−1) , (31)

where we use the simplified notation Pn = Pn|n−1, R(k) = (
∑k
i=1 σ

−1
i )−1, in

which σn is the variance for noise vn, and

Ω(k)
n (Pn) = AnPnC

T
n (CnPnCTn +R(k))−1CnPnA

T
n .

Intuitively, the more sensors report, the better estimation performance becomes.

Let us extend the results in Section 4.2.1 with the message losses for the sce-
nario described by Eq.(19). Considering the message losses, each node computes
estimates, instead of Eq.(20), by

x̂n,k = aκϕTn,kx̂n−1 + hϕTn,k (yn − aCx̂n−1) , (32)

where

κϕn,k = κn,k ◦ϕn,k = (κn,1, κn,2, . . . , κn,K)T ◦ (ϕn,k1, ϕn,k2, . . . , ϕn,kK)T ,

where ◦ is the element-wise product between two matrices, with ϕn,k ∈ RK×1

denotes the vector of the message reception process realization of the process
φn,k at time n, as seen from node k with respect to all nodes of the network.
Specifically, let the jth element of ϕn,k, with j 6= k, be ϕn,kj . Notice that at
a given time instant, the j-th component of ϕn,k is zero if no data messages
are received from node j. Let Nϕk

= {j ∈ Nk : ϕn,kj 6= 0}, namely such a set
collects the nodes communicating with node k at time n. The number of nodes
in the set is |Nϕk

| = ϕTn,kϕn,k. The vector hϕn,k ∈ RK×1 is constructed from
the elements hn,k, similarly to κϕn,k.

Similarly, we extend the optimization problem in Eq.(22) to the following

min
gn,k,hn,k,ψn,k

gTn,kΓ′n−1,kgn,k + hTn,kQ
′
n−1hn,k (33a)

s.t.
(
(gn,k + Chn,k)T ◦ϕn,k

)
1 = 1 (33b)

‖gn,k ◦ϕn,k‖2 ≤ ψn,k . (33c)

where Γ′n,k = Γn,k ◦ (ϕn,kϕTn,k), while Q′n = Qn ◦ (ϕn,kϕTn,k). The optimal
weights are

gn,k =

(
(Γn−1,k + λn,kI) ◦ϕn,kϕTn,k

)†
ϕn,k

ϕTn,k

((
(Γn−1,k + λn,kI) ◦ϕn,kϕTn,k

)†
+ CkQ−1

n−1Ck

)
ϕn,k

, (34)

hi(t) =
Q−1
n−1Ckϕn,k

ϕTn,k

((
(Γn−1,k + λn,kI) ◦ϕn,kϕTn,k

)†
+ CkQ−1

n−1Ck

)
ϕn,k

, (35)

λn,k =

{
0 if

[
ϕTn,kg

T
n,kgn,kϕn,k

]
λn,k=0

≤ ψn,k
λ∗n,k otherwise

. (36)
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We have following proposition for the MSE:

Proposition 4.5. It holds

EφE v[en,k − E ven,k]2 ≤
a2(
√

5− 1)
√
γmax + 2N

(a2 + 1)(
√

5− 1)
√
γmax + 2N

·
|Nk|−1∑
i=0

χ(i)
i+ 1

σ2
max .

Observe that the estimation error variance given by the previous proposi-
tion depends on the message loss probabilities qkj , on the maximum number of
neighbors for each node |Nk|, the total number of nodes in the networks K, and
the largest singular value of the matrix κϕn,k. If the number of neighbors is
greater than 2, with a loss of qkj = 0.3 for all j, we have that the product of
the two coefficients does not exceed 0.65 and it is only a 30% higher than the
case when no packet losses are present.

5 Computational Complexity and Communica-
tion Cost

The efficiency of implementation of estimation algorithms can be characterized
in terms of computational complexity and communication cost. Conventionally,
the computational complexity of an algorithm is measured by the amount of
basic operations such as float-point arithmetic performed. The computational
complexity is commonly expressed by using the O notation, which describes the
limiting behaviour of a function. The O notation suppresses the multiplicative
constants and lower order terms. For example, if the time running requirement
for an algorithm is at most 5n3 + 100n2, then we say that the computational
complexity is O(n3). On the other hand, communication cost of an algorithm
refers to the communication resources required in terms of amount and size of
the exchanged messages in bytes or bits. We express the communication cost
by using the O notation as well.

It is important to analyze the computational complexity and communication
cost for distributed estimation algorithms, especially when one designs algo-
rithms for a sensor network. In these networks, larger computational complex-
ity requirement and communication cost always entail the high risk of slower
response speed, smaller transmit rate and thus poorer performance in practice,
though the theoretical performance for the algorithm might be much better. In
fact, due to the limited computational capability of sensors, sometimes we have
to redesign Aalg, or implement an approximate algorithm Ãalg which has lesser
computational complexity but may still provide acceptable performance.

5.1 On Computational Complexity
Before deploying an algorithm for sensors networks, it is desirable to check
whether the sensor nodes have enough computational capability to perform the
computation as designed. Suppose that the sensors are designed to produce
their estimates using some algorithm Aalg. We analyse Aalg’s worst-case com-
putational cost requirements as a function of the size of its input (in terms of
the O-notation). Here we assume that arithmetic or basic operation with indi-
vidual elements has complexity O(1). Thus, the computational complexity of
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a matrix addition, multiplication, and inversion are O(m2), O(m3) and O(m3)
respectively, where m×m is the size of the matrix.

Example 5.1. Consider the combining estimator of Section 2.1.1. According to
Proposition 2.1, some matrix inversions and multiplications to find the MMSE
estimate of X are needed. Denote the largest size of the vector Y and X is M .
Then the computational complexity of the estimators is O(M3).

Example 5.2. Consider the static sensor fusion of Section 2.1.2. According
to Proposition 2.2, similarly to Example 5.1, we need to perform the matrix
inversions and multiplications. Notice that in this case, we need K times ma-
trix inversions and multiplications in each iteration. Thus the computational
complexity of the static sensor fusion is O(KM3).

Example 5.3. Consider the local estimator of Section 2.2.1. According to the
method, we need to perform the matrix inversions and multiplications. Notice
that in this case, the size of the matrix is not M , but nM , where n is the time
step. Thus the computational complexity of the estimator is O(n3M3).

Example 5.4. Consider the Kalman Filtering of Section 2.2.2. According to
the method, we need to perform the matrix inversion and multiplications. Sim-
ilar to Example 5.2, we need K times matrix inversions and multiplications
per iteration. Thus computational complexity of distributed Kalman filtering is
O(KM3).

Example 5.5. Consider the computational complexity of the methods in Sec-
tion 4.2.1 and 4.2.2. It is given by three components: the computational com-
plexity of matrix operations to find the optimal weights, the computational com-
plexity of a bisection algorithm, and the computational complexity for the es-
timation of the covariance matrix. To find the optimal weights gn,k and hn,k,
it is required to compute a matrix pseudo-inversion, and matrix multiplications
with matrices of size Nk.

Matrix pseudo-inversion: In this case, we can shrink the matrix(
(Γn−1,k + λn,kI) ◦ϕn,kϕTn,k

)
from the full-zero rows and columns to form a new matrix of size Nϕk

. Thus
the complexity is still O(N 3

ϕk
).

Matrix multiplication: Similarly the complexity is O(N 3
ϕk

) for these shrunk
matrices.

As a result, the computational complexity needed to find optimal weights
gn,k,hn,k can be obtained as

O(N 3
ϕk

) +O(N 3
ϕk

) +O(N 2
ϕk

) ∼ O(N 3
ϕk

) .

We use the bisection method to find the optimal value for λn,k, which fulfils
the following equations: [

gTn,kgn,k
]
λ∗

n,k

− ψn,k = 0 ,

where λ∗n,k is in the interval:

[0,max (0,Λ)] ,
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in which

Λ =
1

1TCQ−1C1

√
1

ψn,k
− a2`(Pn−1,k) .

Let us assume that ε is the required accuracy for the bisection test. Then the
bisection would search at most log2 Λ/ε times to determine the number, since
each search halves the interval. Furthermore, the complexity of searching for the
bisection method is

O
(
O(N 3

ϕk
) min(log2 Λ/ε,MaxIter)

)
in which Maxiter is a number of maximum iterations.

From the above analysis, we can conclude that the methods used in Sec-
tion 4.2.2 needs several operations. If we set MaxIter large enough, the compu-
tational complexity is approximately O

(
N 3
ϕk

log2 Λ/ε
)
.

5.2 On Communication Cost
Due to the limited communication resources for the network, before implement-
ing a distributed estimator, we need to analyze the communication cost as well.
We define the number of messages exchanged by the sensors as the communi-
cation cost.

Example 5.6. In the network with star topology mentioned in the Section 2,
every sensor need sharing sending messages to the center fusion. Thus the
total communication cost is O(K) for each iteration, where K is the number of
sensors in the network.

Example 5.7. In the network with arbitrary topology mentioned in the Sec-
tion 4, every sensor needs sending its messages with its neighbors. Since via
wireless communication channels, sensor can broadcast its messages to all sen-
sors inside its communication range, the total communication cost is O(K) per
iteration.

5.3 Summary of the computational complexity and com-
munication cost

In this section, we have studied the computational complexities and communi-
cation cost for the distributed estimation methods summarized in the preceding
sections. Now, we summarize the result in Table 1.

In Table 1, Signal represents the signal tracked by the sensors network,
Complexity represents the computational complexity, whereas Cost repre-
sents the communication cost. It is worth mentioning that the R in the Cost
represents the extra communication cost used for routing when the sensors only
have limited communication range.

The table shows that without considering routing, the communication costs
are approximately same for the networks with star and arbitrary topology. How-
ever, the computational complexities vary for different algorithms. Generally,
transmitting local estimation (in Section 2.2.1) needs most running time com-
pared to other algorithms used in star topology. Moreover, dynamic sensor
fusion (in Section 4.2.2) needs more running time than the static sensor fusion.
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Table 1: Summary of the time complexity and communication cost. In the table,
M is the at most size of the tracked signal, n is the time step, while K is the
number of the sensors in the network. R represents the extra communication
cost for the routing, which will be explained later.

Topology Signal Algorithm Complexity Cost

Star

RM Combining Estimators
in Section 2.1.1 O(M3) O(K) +R

RM Static Sensor Fusion
in Section 2.1.2 O(KM3) O(K) +R

RM Transmission Local
in Section 2.2.1 O

(
(n+M)3

)
O(K) +R

RM Distributed Kalman Filter
in Section 2.2.2 O(KM3) O(K) +R

Arbitrary R1 Static Sensor Fusion
in Section 4.1 O(N 3

k ) O(K)

R1 Dynamic Sensor Fusion
in Section 4.2.2 O(O(N 3

k ) log2 Λ/ε) O(K)

6 Conclusion
This chapter introduced basic notions of distributed estimation theory, and some
implications for the applications with and without considering the limitations
in the networks. Moreover, an analysis of the computational complexity and
communication cost of these distributed algorithms was performed. Generally,
the less the limited capability of the network and the greater the knowledge of
the physical phenomenon, the lower the complexity of the resulting estimators.
Nevertheless, it is often possible to establish accurate distributed estimators in
the networks. We remark that, this study we gave here is an essential overview
on some key aspects of distributed estimation. Much more can be summarized
(e.g., the convergence or consensus properties of the distributed estimators).
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A Appendix

A.1 Optimal mean square estimate of a random variable
We will be interested in MinimumMean Square Error (MMSE) estimates. Given
a random variable Y that depends on another random variable X, obtain the
estimate X̂ such that the mean square error given by E [X − X̂]2 is minimized.
The expectation is taken over the random variables X and Y .

Proposition A.1. (Lemma 1 in Henrik’s Kalman Filtering Lecture [36]): The
minimum mean square error estimate is given by the conditional expectation
E [X|Y = y].

Proof. The arguments are standard. Consider the functional form of the esti-
mator as g(Y ). Let fX,Y (x, y) denote the joint probability density function of
X and Y . Then the cost function C is given by

E
[
X − X̂

]2
=

∫
x

∫
y

(x− g(y))2fX,Y (x, y)dxdy

=
∫
y

dyfY (y)
∫
x

(x− g(y))2fX|Y (x|y)dx.

Now consider the derivative of the cost function with respect to the function
g(y).

∂C

∂g(y)
=

∫
y

dyfY (y)
∫
x

2(x− g(y))fX|Y (x|y)dx

= 2
∫
y

dyfY (y)(g(y)−
∫
x

xfX|Y (x|y)dx)

= 2
∫
y

dyfY (y)(g(y)− E [X|Y = y]).

Thus the only stationary point is g(y) = E [X|Y = y] . Moreover it is easy to
see that it is a minimum.

32



Distributed Estimation

The result holds for vector random variables as well.
MMSE estimates are important because forGaussian variables, they coincide

with the Maximum Likelihood (ML) estimates. Of course, for non-Gaussian
random variables, other notions of optimality may be better. (Recall Moving
Horizon Estimation [36]).

It is also a standard result that for Gaussian variables, the MMSE estimate
is linear in the state value. Proof was given in the lecture on Kalman filtering.
So we will restrict our attention to linear estimates now. Also, from now on we
will assume zero mean values for all the random variables. All the results can
however be generalized. The covariance of X will be denoted by RX and the
cross-covariance between X and Y by RXY .

Proposition A.2. The best linear MMSE estimate of X given Y = y is

x̂ = RXYR
−1
Y y,

with the error covariance

P = RX −RXYR−1
Y RY X .

Proof. Let the estimate be x̂ = Ky. Then the error covariance is

C = E
[
(x−Ky)(x−Ky)T

]
= RX −KRY X −RXYKT +KRYK

T .

Differentiating C w.r.t. K and setting it equal to zero yields

−2RXY + 2KR−1
Y = 0.

The result follows immediately.

In the standard control formulations, we are also interested in measurements
that are related linearly to the variable being estimated (usually the state).

Proposition A.3. Let y = Hx + v, where H is a matrix and v is a zero
mean Gaussian noise with covariance RV independent of X. Then the MMSE
estimate of X given Y = y is

x̂ = RXH
T
(
HRXH

T +RV
)−1

y,

with the corresponding error covariance

P = RX −RXHT
(
HRXH

T +RV
)−1

HRX .

Proof. Follows immediately by evaluating the terms RXY and RY and substi-
tuting in the result of Proposition A.2.

A.2 Matrix Inversion Formula
Proposition A.4. For compatible matrices A, B, C and D,

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1,

assuming the inverses exist.
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Proof. Begin by considering the block matrix

M =

[
A B

C D

]
.

By doing the LDU and UDL decomposition ofM and equating them, we obtain[
I 0
CA−1 0

][
A 0
0 D − CA−1B

][
I A−1B

0 I

]

=

[
I BD−1

0 I

][
A−BD−1C 0
0 D

][
I 0
D−1C I

]
.

Thus inverting both sides yields[
I −A−1B

0 I

][
A−1 0

0
(
D − CA−1B

)−1

][
I 0
−CA−1 0

]

=

[
I 0
−D−1C I

][ (
A−BD−1C

)−1 0
0 D−1

][
I −BD−1

0 I

]
.

Equating the (1, 1) block shows(
A−BD−1C

)−1
= A−1 +A−1B

(
D − CA−1B

)−1
CA−1.

Finally substituting C → −D and D → C−1, we obtain

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1.
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