Creating a System Architecture*

V3 V3 33
g 22
FLASHCS# 5 1]Cs# VC J o
uMIsO | 2]s0 RsT# (7
| 3| WP# SCLK [6 uSCLK PI02_11/SCK |31 FLASHCS#
alvss SI[5 uMosl 22|PI00_6/SCLK 30

: IMx8 Flash 29 . .

GND M25P80-VMNGTP PIOD_9/MOSI/SWO |28 uMOSI
PIO0_ 8/MISO/MAT [27 uMISO
LPC1313FBD48,151

Schematic snapshot with simplified processor

* Source: White, Making Embedded Systems

Block Diagram

33 3V3 3V3
LRI, X S
FLASHCS# T 1] CS# VCC |8
uMIsO | 2150 RST# |7
| 3| WP# SCLK |6 uSCLK PI02_11/5CK |31 FLASHCS#
4fvss SIS uMosI 22| PI00_6/SCLK 30)
L1 IMx8 Flash b
GND M25P80-VMNGTP PI00_9/MOSI/SWO [28 uMOS! _
PI00_8/MISO/MAT {27 uMISO
Schematic snapshot with simplified processor ETR Al
AT RS T AR Tl 0 S S i W YA A e Ao i ST i Wl i -
FLASH S el
Frocessor kil
Hardware block diagram Software architecture block diagram
Hardware Block Diagram Software Architecture Block Diagram

Software Block Diagram

|—"'_"r MATN PROCESSOR
|)

~laeh iach _fﬂ"ll:l.,f.rf‘_',

-II'J'Er':'--'{\ﬂ - EFI JE;?'-I'.-"EI"- - 4

T ex+ g .
) RENDEETIN&
_fm;tcge saTa freneratec
Fond data graphics J
——— Scr'.?gn
buffer i
Parallel LCD LCT
Priver |
fs--:e,.v:,i'..-'r'j,"-_.f’ SloM T Backlighst

——— ey

Sketch the system, try to figure out as many boxes as possible, combine them later
Looking at various views may show you some hidden spots with critical bottlenecks,
poorly understood specifications or failure to implement on intended platform

Identify tricky modules and see a path to a good solution.
3

Hierarchy of Control

MATN

1

Ix‘i*_aF a"a.-?r

enaders

T
EJ

Sensor I Legsing

Tewd ane
+Fonts

Tmaces e neradte o LoD
1+
raphics

| Parallef
Flash | interface

SPT

A hierarchical view of the software. Main is highest level.
Fill in next levels with algoritm-related objects.
It shows discrete components and which components call others

Hierarchy of Control, shared resource

MAIN
Lisplay Sensor Legsing
r |
Rendering o Frind serial
nvmber
Tewd andd Tmages (reneraded e
Fends A phics
L
Farallel
Frash inderfac

SAT

Each time something that this is added, some little piece where you are using
A and B and have to consider a potential interaction with C, the system becomes

a little less robust.
Shared resources may cause pains in the design, implementation and maintance

phases of the project.

Layered Software Architecture Diagram

frenerated
; ra Ph-'cg
LOGEITNG RENDERIN &

SA [;-Eﬂ-r{'_':. ITmases I LD |5ﬁ_fr..;ﬁr .;_,.r.,ft'

r Flash J rar.:zf.-’ef _I',-f] [F;M Oud

Represent objects by their estimated size. Let the size reflect the complexity.
Start at the bottom of the page and draw boxes for the the things that go off
the processor (communication boxes).

Add o the diagram the items that use the lowest layer.

Each object that uses something below it should touch all of the things it uses.

This shows you where the layers in your code are. ;

Model-View-Controller, algoritm boxes

One goal of good
architecture is to keep
the algoritm as
segregated as possible

User action (i.e. button press) Controller
' : Change state
Translate user input from .
: W : Take action
Change display view into model actions
A 4 A 4
™} I
View < Change notification Model
(User interface) Application-specific state
Shows representation of Request data and state > data and algorithms
model to user) {;
M V) (]
Shown here Model receives data only Controller is translator Model-View pattern

from controller

