Creating a System Architecture*
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Schematic snapshot with simplified processor

* Source: White, Making Embedded Systems



Block Diagram
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Software Block Diagram
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Sketch the system, try to figure out as many boxes as possible, combine them later
Looking at various views may show you some hidden spots with critical bottlenecks,
poorly understood specifications or failure to implement on intended platform

Identify tricky modules and see a path to a good solution.
3



Hierarchy of Control
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A hierarchical view of the software. Main is highest level.
Fill in next levels with algoritm-related objects.
It shows discrete components and which components call others



Hierarchy of Control, shared resource
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Each time something that this is added, some little piece where you are using
A and B and have to consider a potential interaction with C, the system becomes

a little less robust.
Shared resources may cause pains in the design, implementation and maintance

phases of the project.



Layered Software Architecture Diagram
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Represent objects by their estimated size. Let the size reflect the complexity.
Start at the bottom of the page and draw boxes for the the things that go off
the processor (communication boxes).

Add o the diagram the items that use the lowest layer.

Each object that uses something below it should touch all of the things it uses.

This shows you where the layers in your code are. ;



Model-View-Controller, algoritm boxes

One goal of good
architecture is to keep
the algoritm as
segregated as possible

User action (i.e. button press) Controller
' : Change state
Translate user input from .
: W : Take action
Change display view into model actions
A 4 A 4
™} I
View < Change notification Model
(User interface) Application-specific state
Shows representation of Request data and state > data and algorithms
model to user ) {;
M V) (]
Shown here Model receives data only Controller is translator Model-View pattern

from controller



