
Course: Foundations in Digital Communications, KTH Due: January 16, 2013

Homework Set #9

The intention is that you do the exercises yourself. Oral discussion (without
using pen/paper) between students is allowed, but the solution should be
written down individually.
If you find the solution to any of the exercises do not simply copy

it. Instead, reference the source and discuss the result and the

method used for deriving it.

The homework must be submitted one day before each tutorial session either
on paper (before 6 PM) or via email (before mid night).
A correctly solved problem gives either 1 or 2 points, depending on the prob-
lem. A partially correct solutions will be awarded half of the points (i.e.
either 0.5 or 1 point). A mostly wrong or mostly incomplete solution gives 0
points.

Numbers below refer to problems in the text book: H. Van Trees “Detection, Estimation,
and Modulation Theory.” (Part I).
NOTE: As opposed to the standard notation (e.g. Lapidoth), Van Trees uses lower case
letters for random variables and upper case letters for the realizations. For example X ∼ x
(instead of the more standard form x ∼ X).

1. (1p) Exercise 2.2.1

2. (1p) Exercise 2.2.2

3. (1p) Exercise 2.2.4

4. (2p) Exercise 2.2.5

5. (1p) Exercise 2.2.6

6. (1p) Exercise 2.2.7

7. (1p) Exercise 2.2.10

8. (1p) Exercise 2.2.11

9. (1p) Exercise 2.3.3

10. (2p) Suppose that Y is a random variable that under hypothesis H0 has pdf

fY |H0(y|H0) =

{

2

3
(y + 1) 0 ≤ y ≤ 1,

0 otherwise,
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and under hypothesis H1 has pdf

fY |H1(y|H1) =

{

1 0 ≤ y ≤ 1,

0 otherwise.

(a) Find the Bayes test and the minimum Bayes risk H0 versus H1 with uniform
costs and equal priors.

(b) Find the minimax rule and minimax risk for uniform costs.

(c) Find the Neyman-Pearson test and the corresponding detection probability PD

for false-alarm probability PF equal to α ∈ (0, 1).

11. (2p) Properties of the ROC (I). Consider a Neyman-Pearson binary detection problem
with likelihood ratio L and threshold γ. That is, if L ≥ γ then choose hypothesis H1;
otherwise choose hypothesis H0. The probabilities of detection PD and false-alarm
PF are functions of the threshold value γ and are given by

PD(γ) =

∫ ∞

γ

fL|H1(l|H1)dl,

PF (γ) =

∫ ∞

γ

fL|H0(l|H0)dl,

respectively. Here fL|H0(l|H0) and fL|H1(l|H1) are the conditional density functions
of L given H0 and H1, respectively. The receiver operating characteristic (ROC) is
the curve defined by pairs (PF (γ), PD(γ)) for different values of γ. We want to show
that the slope of this curve at a particular point (PF (γ), PD(γ)) is equal to the value
of the threshold γ. That is,

dPD

dPF

= γ (1)

(You can assume that both PD and PF are smooth continuous functions of γ).

(a) Express

dPD

dPF

=
dPD/dγ

dPF/dγ
.

in terms of fL|H0 and fL|H1 .

(b) Express PD(γ) as an integral of L and fL|H0(l|H0) and show that

dPD(γ)

dγ
= −γfL|H0(γ|H0).

Hint:

d

ds

∫ ∞

s

g(t)dt = −g(s).

(Differentiation under the integral sign).
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(c) Conclude the desired result (i.e. (1)) and verify it by drawing a typical ROC
and considering γ → 0 and γ → ∞.

12. (1p) Properties of the ROC (II). Assume that the ROC is a continuous function.
Argue that it must be concave downwards ∩.

13. (2p) Consider the following binary detection problem. The observation Y is the
sum of the squares of two independent zero-mean Gaussian random variables whose
variance depends on the hypothesis. That is,

Y = X2

1
+X2

2

with X1, X2 ∼ N (0, σ2

i ) with

σi =

{

σ0 H0

σ1 H1

with σ1 > σ0.

(a) Compute PF (γ), PD(γ).
Hint: Use polar coordinates: z =

√

x2

1
+ x2

2
, θ = arctan x2

x1
. With this change of

variables, Z is Rayleigh distributed and θ is uniform on [−π, π).

(b) Express PD as a function of PF (i.e. the explicit form of the ROC). Plot the

resulting function for different values of
σ2
1

σ2
0
and interpret the results.

14. (2p) Tests with unwanted parameters. Consider the following hypothesis testing
problem. Under hypothesis H0, Y is a N (0, σ2) random variable. Under hypothesis
H1, Y is a N (M,σ2) random variable. Thus,

H0 : fY |H0(y|H0) =
1√
2πσ

e−
y2

2σ2 ,

H1 : fY |H1(y|H1) =
1√
2πσ

e−
(y−M)2

2σ2 .

We consider the case where σ2 is known but M is an unwanted parameter. We look
at two different approaches to model M :

(a) Bayesian approach. First assume that M is a random variable whose pdf under
hypothesis H1 is given by

fM |H1(m|H1) =
1√
2πσm

e
− m2

2σ2
m .

(σ2

m known). Find the likelihood ratio test

fY |H1(y|H1)

fY |H0(y|H0)

and the threshold.
Hint: Integrate over the density of M .
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(b) Neyman-Pearson approach (I). Now assume that M is an unknown but deter-
ministic positive parameter, i.e. M > 0. Write the integral defining PF (i.e. the
probability that H1 is declared when H0 is true) and sketch the probability dis-
tributions. Will the Neyman-Pearson test (i.e. likelihood ratio and threshold)
depend on the value of M? Why?

(c) Neyman-Pearson approach (II). Finally, what happens if M is an unknown but
deterministic parameter that can be positive or negative? Will the test depend
on M?
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