# AUTOMATIC CONTROL <br> KTH 

## Nonlinear Control, EL2620 / 2E1262

Answers December 11, 2012

1. (a) $x_{1}=0, x_{2}=0$
(b) $A=\left[\begin{array}{ccc}-6 & 3 & -3\end{array}-3\right]$ and $\lambda_{1,2}=-\frac{9}{2} \pm \sqrt{27 / 4}$, hence stable focus.
(c) $\dot{V}=\frac{-12 x_{1}^{2}}{\left(1+x_{1}^{2}\right)^{4}}+\frac{-6 x_{2}^{2}}{\left(1+x_{1}^{2}\right)^{2}} \leq 0$ and equal to 0 only for $x=0$, hence asymptotically stable. We can not conclude globally asymptotically stable since $V$ is not radially unbounded.
2. (a) $\dot{V}=4 x_{1}^{2} x_{2}+4 x_{2} x_{1}^{4}+6 x_{2} u$. To make $V$ negative (semi)definite we choose

$$
u=\frac{1}{6}\left(-4 x_{1}^{2}-4 x_{1}^{4}-x_{2}\right)
$$

to yield $\dot{V}=-x_{2}^{2} \leq 0$. To check for global stability we consider LaSalle and determine invariant sets for which $\dot{V}=0$, i.e., $x_{2}=0$ and $\dot{x}_{2}=0$. We see that $\dot{x}_{2}=2 x_{1}^{4}-2 x_{1}^{2}-2 x_{1}^{4}-0.5 x_{2}$ and hence $x_{2}=0, \dot{x}_{2}=0$ only if also $x_{1}=0$. Hence we have made the origin globally stable.
(b) The system has only one equilibrium which furthermore is unstable. Hence if we can find an invariant subspace in the state-plane, then there must exist a stable limit cycle within that subspace. If we consider sets with level curves $V=x^{2}+y^{2}=c$, with $c>0$ some positive constant, we get $\dot{V}=2 y^{2}-2 y^{2} x^{2}-$ $8 y^{4}=2 y^{2}\left(1-x^{2}-4 y^{2}\right)=2 y^{2}\left(1-c-3 y^{2}\right)$. With $c>1$ we have $\dot{V}<0$ and hence all trajectories point inwards, hence there must be a stable limit cycle within the circle with radius 1 in the ( $x, y$ )-plane. Likewise, for $c<1 / 4$ we have that $\dot{V}>0$ and hence all trajectories pointing outwards. Thus, all trajectories startting outside the unit circle and inside the circle with radius $1 / 4$ will be attracted to the region between these two circles. Assuming there is a unique limit cycle within the region, all trajectories will end up at the limit cycle and the limit cycle is then globally attracting.
3. (a) (i) With $y=x_{2}$ we have $\dot{y}=\dot{x}_{2}=-x_{1} x_{2}+x_{2}^{3}+u$ and the choice

$$
u=x_{1} x_{2}-x_{2}^{3}+v
$$

yields $\dot{y}=v$ or $G(s)=1 / s$. The zero dynamics is given by $\dot{x}_{1}=\cos \left(x_{1}\right)-x_{2}$ which clearly is not stable since $x_{1}$ while increase (decrease) continuously if $x_{2}<0(>0)$.
(ii) With $y=x_{1}$ we have $\dot{y}=\cos \left(x_{1}\right)-x_{2}, \ddot{y}=-\sin \left(x_{1}\right)\left(\cos \left(x_{1}\right)-x_{2}\right)+$ $x_{1} x_{2}-x_{2}^{3}-u$ and $u=-\sin \left(x_{1}\right)\left(\cos \left(x_{1}\right)-x_{2}\right)+x_{1} x_{2}-x_{2}^{3}-v$ yields $\ddot{y}=v$ or $G(s)=1 / s^{2}$. In this case there are no zero dynamics.
(b) On the sliding manifold we have $x_{1}+a x_{2}=0$ or $x_{2}=-\frac{1}{a} x_{1}$ and this yields $\dot{x}_{1}=\left(1-\frac{1}{a}\right) x_{1}(t)$ and hence we should choose $0<a<1$ to get covergence to the origin on the sliding manifold. To globally stabilize $S$ we consider the control Lyapunov function $V=0.5 \sigma^{2}$ and $\dot{V}=\sigma \dot{\sigma}=\sigma\left(x_{1}+x_{2}+a x_{1}^{2}+a x_{2}+a u\right)$ and we choose $u=\left(-x_{1}-x_{2}-a x_{1}^{2}-a x_{2}-\operatorname{sign}(\sigma)\right) / a$ to yield $\dot{V}<0$ for $\sigma \neq 0$. The equivalent control when on the manifold is $u=\left(-x_{1}-x_{2}-a x_{1}^{2}-a x_{2}\right) / a$.
4. (a) $G(s)$ stable and hence we can consider the stationary frequency response of the linear part. The linear system has amplification $|G(j 0.7)|=1.3$ and phase shift $-\pi / 2$. Hence the signal into $f$ has amplitude 1.3 and in phase with the output of $f$. This implies that the nonliearity is $y=u$ when $|u|>1$ and $y=0$ when $|u|<1$. Sketch not shown here.
(b) The gain $\gamma(f)=1$ and the small gain theorem guarantees stability if $|k \| G(j \omega)| \gamma(f)<$ $1 \forall \omega$. Since $|G(j \omega)|<\sqrt{2}$ we get stability for $|k|<1 / \sqrt{2}$.
(c) We have that $k G(s)$ has no poles in RHP and we can bound the nonlinearity $f$ by

$$
0 \leq k_{1} \leq \frac{f(v)}{v} \leq k_{2}
$$

with $k_{1}=0$ and $k_{2}=1$. The circle criterion guarantees stability of the closed loop if the Nyquist curve $k G(j \omega)$ does not encircle or intersect the circle defined by the points $-1 / k_{1}$ and $-1 / k_{2}$. Here $-1 / k_{1}=\infty$ and $-1 / k_{2}=-1$.
Hence we require that $\min _{\omega} \operatorname{Re} k G(\mathrm{\jmath} \omega)>-1$. From the plot of the frequency response of $G(j \omega)$ we see that if $k>0$ then $\min _{\omega} \operatorname{Re} k G(j \omega) \approx-0.7 k$ and that if $k<0$ then $\min _{\omega} \operatorname{Re} k G(j \omega)=\sqrt{2} k$.
The circle criterion hence guarantees stability for $-\frac{1}{\sqrt{2}}<k<1.4$.
5. (a) The optimization problem, with states $\left(x_{1}, x_{2}\right)=(x, \dot{x})$ is

$$
\min _{u} \int_{0}^{T} 1 d t
$$

subject to

$$
\dot{x}_{1}=x_{2}, \dot{x}_{2}=u, x_{1}(0)=x_{2}(0)=0,|u|<5
$$

and

$$
x_{1}(T)=0.5, x_{2}(T)=0.2, \phi(x)=0, \psi_{1}(x)=x_{1}-0.5, \psi_{2}(x)=x_{2}-0.2
$$

(b) The fastest movement from $x=0$ to $x=0.5$ is obtained with maximum acceleration $\ddot{x}=5$ or $x(t)=5 t^{2} / 2$ and hence $5 T^{2} / 2=0.5$ yields $T=0.45 \mathrm{~s}$. If we require rest at the end, i.e., $\dot{x}(T)=0$, then we we need to have full acceleration for half the time and then full retardation under half the time. In this case we reach halfway at $5 T_{1}^{2} / 2=0.25$ or $T_{1}=0.316 \mathrm{~s}$, and then we have the same velocity profile reversed from $T_{1}$ to $T$ such that $T=2 T_{1}=0.63 \mathrm{~s}$.
(c) We have $L=1$ and with $n_{0}=1$

$$
\begin{aligned}
& H=1+\lambda_{1} x_{2}+\lambda_{2} u \\
& \dot{\lambda}_{1}=0 ; \quad \dot{\lambda}_{2}=-\lambda_{1}
\end{aligned}
$$

with $\lambda_{1}(T)=\mu_{1}, \lambda_{2}(T)=\mu_{2}$. This yields

$$
\lambda_{1}(t)=\mu_{1} ; \quad \lambda_{2}(t)=-\mu_{1} t+C
$$

with $-\mu_{1} T+C=\mu_{2}$ and hence

$$
\lambda_{1}(t)=\mu_{1} ; \quad \lambda_{2}(t)=\mu_{1}(T-t)+\mu_{2}
$$

The optimal $u$ is given by minimizing $H$ wrt $u$ and hence $u=5$ for $\lambda_{2}<0$ and $u=-5$ for $\lambda_{2}>0$. Since $\lambda_{2}(t)$ is a continuously increasing function, there will be one switch at $t_{1}$ with $\lambda_{2}=\mu_{1}\left(T-t_{1}\right)+\mu_{2}=0$.
To determine $t_{1}$ and $T$ consider the sketch of the velocity below.


The area under the curve is the distance $x$ and should satisfy $x(T)=0.5$. The area is

$$
5 t_{1}^{2} / 2+\left(T-t_{1}\right)\left(5 t_{1}-0.2\right) / 2+\left(T-t_{1}\right) 0.2=0.5
$$

The end speed should be 0.2

$$
5 t_{1}-5\left(T-t_{1}\right)=0.2
$$

which yields $t_{1}=0.3175 \mathrm{~s}$ and $T=0.595 \mathrm{~s}$.

