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1. (a) x1 = 0, x2 = 0

(b) A = [−6 3;−3 − 3] and λ1,2 = −9
2
±
√

27/4, hence stable focus.

(c) V̇ =
−12x2

1

(1+x2
1)

4 +
−6x2

2

(1+x2
1)

2 ≤ 0 and equal to 0 only for x = 0, hence asymptotically

stable. We can not conclude globally asymptotically stable since V is not
radially unbounded.

2. (a) V̇ = 4x21x2 + 4x2x
4
1 + 6x2u. To make V negative (semi)definite we choose

u =
1

6
(−4x21 − 4x41 − x2)

to yield V̇ = −x22 ≤ 0. To check for global stability we consider LaSalle and
determine invariant sets for which V̇ = 0, i.e., x2 = 0 and ẋ2 = 0. We see that
ẋ2 = 2x41 − 2x21 − 2x41 − 0.5x2 and hence x2 = 0, ẋ2 = 0 only if also x1 = 0.
Hence we have made the origin globally stable.

(b) The system has only one equilibrium which furthermore is unstable. Hence if
we can find an invariant subspace in the state-plane, then there must exist a
stable limit cycle within that subspace. If we consider sets with level curves
V = x2 + y2 = c, with c > 0 some positive constant, we get V̇ = 2y2− 2y2x2−
8y4 = 2y2(1 − x2 − 4y2) = 2y2(1 − c − 3y2). With c > 1 we have V̇ < 0 and
hence all trajectories point inwards, hence there must be a stable limit cycle
within the circle with radius 1 in the (x, y)-plane. Likewise, for c < 1/4 we have
that V̇ > 0 and hence all trajectories pointing outwards. Thus, all trajectories
startting outside the unit circle and inside the circle with radius 1/4 will be
attracted to the region between these two circles. Assuming there is a unique
limit cycle within the region, all trajectories will end up at the limit cycle and
the limit cycle is then globally attracting.

3. (a) (i) With y = x2 we have ẏ = ẋ2 = −x1x2 + x32 + u and the choice

u = x1x2 − x32 + v

yields ẏ = v or G(s) = 1/s. The zero dynamics is given by ẋ1 = cos(x1) − x2
which clearly is not stable since x1 while increase (decrease) continuously if
x2 < 0(> 0).
(ii) With y = x1 we have ẏ = cos(x1) − x2, ÿ = −sin(x1)(cos(x1) − x2) +
x1x2 − x32 − u and u = −sin(x1)(cos(x1)− x2) + x1x2 − x32 − v yields ÿ = v or
G(s) = 1/s2. In this case there are no zero dynamics.
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(b) On the sliding manifold we have x1 + ax2 = 0 or x2 = − 1
a
x1 and this yields

ẋ1 = (1 − 1
a
)x1(t) and hence we should choose 0 < a < 1 to get covergence

to the origin on the sliding manifold. To globally stabilize S we consider the
control Lyapunov function V = 0.5σ2 and V̇ = σσ̇ = σ(x1+x2+ax21+ax2+au)
and we choose u = (−x1−x2−ax21−ax2−sign(σ))/a to yield V̇ < 0 for σ 6= 0.
The equivalent control when on the manifold is u = (−x1− x2− ax21− ax2)/a.

4. (a) G(s) stable and hence we can consider the stationary frequency response of
the linear part. The linear system has amplification |G(j0.7)| = 1.3 and phase
shift −π/2. Hence the signal into f has amplitude 1.3 and in phase with the
output of f . This implies that the nonliearity is y = u when |u| > 1 and y = 0
when |u| < 1. Sketch not shown here.

(b) The gain γ(f) = 1 and the small gain theorem guarantees stability if |k||G(jω)|γ(f) <
1∀ω. Since |G(jω)| <

√
2 we get stability for |k| < 1/

√
2.

(c) We have that kG(s) has no poles in RHP and we can bound the nonlinearity
f by

0 ≤ k1 ≤
f(v)

v
≤ k2

with k1 = 0 and k2 = 1. The circle criterion guarantees stability of the closed
loop if the Nyquist curve kG(jω) does not encircle or intersect the circle defined
by the points −1/k1 and −1/k2. Here −1/k1 =∞ and −1/k2 = −1.

Hence we require that minω Re kG(ω) > −1. From the plot of the frequency
response of G(jω) we see that if k > 0 then minω Re kG(jω) ≈ −0.7k and that
if k < 0 then minω Re kG(jω) =

√
2k.

The circle criterion hence guarantees stability for − 1√
2
< k < 1.4.

5. (a) The optimization problem, with states (x1, x2) = (x, ẋ) is

min
u

∫ T

0

1dt

subject to
ẋ1 = x2, ẋ2 = u, x1(0) = x2(0) = 0, |u| < 5

and

x1(T ) = 0.5, x2(T ) = 0.2, φ(x) = 0, ψ1(x) = x1 − 0.5, ψ2(x) = x2 − 0.2

(b) The fastest movement from x = 0 to x = 0.5 is obtained with maximum
acceleration ẍ = 5 or x(t) = 5t2/2 and hence 5T 2/2 = 0.5 yields T = 0.45 s.
If we require rest at the end, i.e., ẋ(T ) = 0, then we we need to have full
acceleration for half the time and then full retardation under half the time. In
this case we reach halfway at 5T 2

1 /2 = 0.25 or T1 = 0.316 s, and then we have
the same velocity profile reversed from T1 to T such that T = 2T1 = 0.63 s.

(c) We have L = 1 and with n0 = 1

H = 1 + λ1x2 + λ2u

λ̇1 = 0 ; λ̇2 = −λ1
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with λ1(T ) = µ1, λ2(T ) = µ2. This yields

λ1(t) = µ1 ; λ2(t) = −µ1t+ C

with −µ1T + C = µ2 and hence

λ1(t) = µ1 ; λ2(t) = µ1(T − t) + µ2

The optimal u is given by minimizing H wrt u and hence u = 5 for λ2 < 0 and
u = −5 for λ2 > 0. Since λ2(t) is a continuously increasing function, there will
be one switch at t1 with λ2 = µ1(T − t1) + µ2 = 0.

To determine t1 and T consider the sketch of the velocity below.

The area under the curve is the distance x and should satisfy x(T ) = 0.5. The
area is

5t21/2 + (T − t1)(5t1 − 0.2)/2 + (T − t1)0.2 = 0.5

The end speed should be 0.2

5t1 − 5(T − t1) = 0.2

which yields t1 = 0.3175 s and T = 0.595 s.
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