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Nonlinear Control, EL2620 / 2E1262
Answers December 11 , 2012
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A=[-63;-3 — 3] and A5 = —2 £ 1/27/4, hence stable focus.

V= (Iji?‘l (1;6%%2 < 0 and equal to 0 only for z = 0, hence asymptotically
stable. 'We can not conclude globally asymptotically stable since V is not

radially unbounded.

V = 422xy 4 452 4 625u. To make V negative (semi)definite we choose

1
u= 6(—41;% — 4a] — x9)
to yield V = —x5 < 0. To check for global stability we consider LaSalle and
determine invariant sets for which V' =0, i.e., 2o = 0 and @5 = 0. We see that
iy = 227 — 222 — 227 — 0.529 and hence xy = 0,45 = 0 only if also z; = 0.
Hence we have made the origin globally stable.

The system has only one equilibrium which furthermore is unstable. Hence if
we can find an invariant subspace in the state-plane, then there must exist a
stable limit cycle within that subspace. If we consider sets with level curves
V =22 +y2 = ¢, with ¢ > 0 some positive constant, we get V = 2y% — 2y222 —
Syt = 2y%(1 — 2? — 49?) = 2y*(1 — ¢ — 3y®). With ¢ > 1 we have V < 0 and
hence all trajectories point inwards, hence there must be a stable limit cycle
within the circle with radius 1 in the (z, y)-plane. Likewise, for ¢ < 1/4 we have
that V' > 0 and hence all trajectories pointing outwards. Thus, all trajectories
startting outside the unit circle and inside the circle with radius 1/4 will be
attracted to the region between these two circles. Assuming there is a unique
limit cycle within the region, all trajectories will end up at the limit cycle and
the limit cycle is then globally attracting.

(i) With y = x5 we have § = @9 = —z,75 + 23 + u and the choice
U= T1Ty — a:;’ + v

yields y = v or G(s) = 1/s. The zero dynamics is given by &1 = cos(x1) — x9
which clearly is not stable since x; while increase (decrease) continuously if

ze < 0(> 0).
(ii) With y = 21 we have § = cos(x1) — x2, § = —sin(x1)(cos(r1) — x2) +
T179 — T3 — u and u = —sin(r1)(cos(x1) — T3) + T122 — 23 — v yields § = v or

G(s) = 1/s% In this case there are no zero dynamics.



(b) On the sliding manifold we have x; + azy = 0 or x5 = —%xl and this yields
iy = (1 — 1)x1(¢) and hence we should choose 0 < a < 1 to get covergence
to the origin on the sliding manifold. To globally stabilize S we consider the
control Lyapunov function V = 0.50% and V = 06 = o(z, + x5+ az? + azs+au)
and we choose u = (—x1 — 29 —ax? — axy — sign(o)) /a to yield V < 0 for o # 0.

The equivalent control when on the manifold is u = (—z; — x5 — az? — axy)/a.

(a) G(s) stable and hence we can consider the stationary frequency response of
the linear part. The linear system has amplification |G(j0.7)| = 1.3 and phase
shift —7/2. Hence the signal into f has amplitude 1.3 and in phase with the
output of f. This implies that the nonliearity is y = v when |u| > 1 and y =0
when |u] < 1. Sketch not shown here.

(b) The gain v(f) = 1 and the small gain theorem guarantees stability if |k||G (jw)|v(f) <
1Vw. Since |G(jw)| < v/2 we get stability for [k| < 1//2.
(c) We have that kG(s) has no poles in RHP and we can bound the nonlinearity
f by
f(v)

0<k <—=<k
v

with k1 = 0 and ky = 1. The circle criterion guarantees stability of the closed
loop if the Nyquist curve kG (jw) does not encircle or intersect the circle defined
by the points —1/k; and —1/ky. Here —1/k; = oo and —1/ky = —1.

Hence we require that min, Re kG(jw) > —1. From the plot of the frequency
response of G(jw) we see that if £ > 0 then min, Re kG(jw) ~ —0.7k and that
if £ < 0 then min, Re kG (jw) = V2k.

The circle criterion hence guarantees stability for —\% <k<14.

(a) The optimization problem, with states (z1,x9) = (x, %) is

T
min/ 1dt
v Jo

1 = Ta, &z = u, 21(0) = 22(0) = 0, [u| <5

subject to

and
21(T) = 0.5,29(T) = 0.2, p(x) = 0,91 (x) = 21 — 0.5, 19(x) = x5 — 0.2

(b) The fastest movement from x = 0 to x = 0.5 is obtained with maximum
acceleration ¥ = 5 or x(t) = 5t>/2 and hence 5T7%/2 = 0.5 yields T' = 0.45 s.
If we require rest at the end, ie., #(T) = 0, then we we need to have full
acceleration for half the time and then full retardation under half the time. In
this case we reach halfway at 577/2 = 0.25 or T; = 0.316 s, and then we have
the same velocity profile reversed from 7 to T such that T'= 2T} = 0.63 s.

(¢) We have L =1 and with ng =1

H:1+)\1x2+)\2u



with A\ (T") = p1, Ao(T) = po. This yields
M) =ps X)) =—-mt+C
with —pu T+ C' = o and hence
A(t) =g () =m(T =) + pe

The optimal u is given by minimizing H wrt u and hence u = 5 for Ay < 0 and
u = —5 for Ay > 0. Since A\y(t) is a continuously increasing function, there will
be one switch at t; with Ay = g (T — t1) + e = 0.

To determine ¢; and T' consider the sketch of the velocity below.

velocity

bt

v=02 /

fll T time

The area under the curve is the distance x and should satisfy z(7") = 0.5. The
area is
5t2/2 4+ (T — t1)(5t; — 0.2)/2 + (T — ;)0.2 = 0.5

The end speed should be 0.2
5ty —5(T —t1) = 0.2

which yields t; = 0.3175 s and 7" = 0.595 s.



