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Bluetooth 



Bluetooth 

• Wireless technology standard for exchanging data 
over short distances, peer-to-peer 

• Ericsson, IBM, Toshiba, Nokia, Intel, ... 
• Proprietary open 

 



Bluetooth 

• Each device has a Bluetooth chip and antenna 
• Radio frequency 2.45 GHz 
• Relativly slow; 721 kbit/sec – 3 Mbit/sec (ver. 2.0) 

 
• Frequency jumps, 1600/sec, takes care of 

interference problems 
• Up to 7 connections simultaneously 

 
• Can run in parallell with WiFi (802.11b)  

 



Bluetooth 

Class Min. power, 
sender 

Max. power, 
sender Min. range Typical  use 

Class 1 0 dBm  
(1 mW) 

20 dBm  
(100 mW) <100 m 

Devices with 
no limit on 
current 

Class 2 -7 dBm  
(0,25 mW) 

4 dBm  
(2,5 mW) <10 m 

Battery 
powered 
devices 

Class 3 0 dBm  
(1 mW) 

0 dBm  
(1 mW) <1 m 

Battery 
powered 
devices 



Bluetooth 
• Bluetooth protocols simplify the discovery and setup of 

services between devices 
• Bluetooth devices can advertise all of the services they 

provide 
• A device in discoverable mode on demand transmits 

- Device name  
- Device class  
- List of services  
- Technical information  

• Two devices need to be paired to communicate with 
each other 

• Bluetooth v2.1 - Encryption is required for all non 
Service Discovery Protocol connections 



Bluetooth profiles 

• Generic Access Profile, Service Discovery 
Application Profile supported by all devices 

• Other, optional, profiles defining e.g.  
- audio/video/image distribution 
- Object exchange (push) 
- Remote control 
- Headsets, hands free 
- SIM access 
- Health Device Profile 
- … 
 



Serial Port Profile (SPP) 

• Based on the RFCOMM protocol which  provides a 
simple reliable data stream to the user, similar to TCP 

• Emulates a serial cable to provide a simple 
substitute for existing RS-232 

• The basis for other profiles, such as DUN, FAX, 
HSP and AVRCP 



Android Bluetooth stack 



Communicate using Bluetooth 

Steps: 
1. Setting up Bluetooth 
2. Finding devices that are either available in the local 

area (discovery) or already paired 
3. Connecting devices 
4. Transferring data between devices 



Android Bluetooth API 

• Supports Bluetooth 2.1 
• Using Bluetooth APIs, an Android application can 

perform the following: 
– Scan for other Bluetooth devices  
– Query the local Bluetooth adapter for paired 

Bluetooth devices  
– Connect to other devices through service discovery  
– Establish RFCOMM channels  
– Transfer data to and from other devices  
– Manage multiple connections  

 



Android Bluetooth API 
• BluetoothAdapter  

- the local adapter (Bluetooth radio)  
- the entry point for all interaction 

• BluetoothDevice 
- represents a remote Bluetooth device  

• BluetoothSocket 
- represents the interface for a Bluetooth socket 
- allows an application to exchange data with another device 

• BluetoothServerSocket 
- represents an open server socket listening for incoming requests 
- to connect two devices, one must open a server socket  

• BluetoothClass 
- describes the general characteristics and capabilities of a 
Bluetooth device 



Uses permissions 

• BLUETOOTH 
- required for requesting/accepting a connection and 
data transfer 

• BLUETOOTH_ADMIN 
- required to initiate device discovery and manage 
bluetooth settings 
 

• <manifest . . .> 
 <uses-permission android:name= 
   “android.permission.BLUETOOTH” /> 
</manifest> 



Set up the local adapter 
• BluetoothAdapter adapter = 

 BluetoothAdapter.getDefaultAdapter(); 
if (adapter != null) { 
    // Device does support Bluetooth 
} 
 

• if(adapter.isEnabled() == false) { 
   Intent intent = new Intent( 
     BluetoothAdapter.ACTION_REQUEST_ENABLE); 
   startActivityForResult( 
  intent, REQUEST_ENABLE_BT); 
 

• The user is prompted to enable the device 
 



Finding devices 

• Android devices are not discoverable by default! 
• An application can request that the user enable 

discoverability for limited time 
• Discover remote devices by  

- Querying for paired devices 
- Starting a device discovery 

• Device discovery 
- inquiry scan + page scan 
-  > 10 sec, consumes bandwith! 
 



Discovering devices 

• startDiscovery() - stopDiscovery() (!) 
• Asynchronous  

-Register a BroadcastReceiver to receive information 
on individual devices being discovered 
 

• IntentFilter filter = new 
IntentFilter(BluetoothDevice.ACTION_FOUND); 
registerReceiver(discoveryReceiver, filter);  
 

• Don't forget to unregister, e.g. during onDestroy 



Discovering devices 
private class DiscoveryReceiver extends BroadcastReceiver { 
 
    public void onReceive(Context context, Intent intent) { 
        String action = intent.getAction(); 
 
        // Device discovered? 
        if (BluetoothDevice.ACTION_FOUND.equals(action)) { 
 
            // Get the discovered device  
            BluetoothDevice device =  
   intent.getParcelableExtra( 
    BluetoothDevice.EXTRA_DEVICE); 
 
            // Do something . . . 
            arrayAdapter.add(device.getName() + "\n" +  
   device.getAddress()); 
        } 
    } 
}; 
 



Enabling discoverability 
• Prompts the user 
• Makes the local device discoverable  

to others for 120 (max 300) secs 
• Bluetooth is automatically enabled 

 
 

• Intent intent = new Intent( 
 BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE); 
intent.putExtra( 
 BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION, 
 300); 
startActivityForResult(intent, REQ_DISCOVERABLE); 
 
 



Pairing (bonding) 
• When a connection is made with a remote device for the 

first time, a pairing request is automatically presented to 
the user 

• Information about the remote device is stored; device 
name, class, MAC address, . . . 

• A connection can be initiated with a paired device without 
performing discovery 
  

• Paired vs. Connected: 
- Paired devices are aware of each other's existence, having 
a shared link-key that can be used for authentication 
- Connected devices currently share an RFCOMM channel  



Querying paired devices 
Set<BluetoothDevice> pairedDevices =   
 adapter.getBondedDevices(); 
 
if (pairedDevices.size() > 0) { 
    for (BluetoothDevice device : pairedDevices) { 
        // Show name and MAC address in a ListView 
       arrayAdapter.add(device.getName() + "\n" +  
    device.getAddress()); 
    } 
} 
 

• Normally:  
First search paired devices, then (if necessary) make 
a discovery 



Connecting devices 

• Server listens for incoming connections using 
BluetoothServerSocket 

• Client initiate the connection using a 
BluetoothSocket + the servers MAC address 

• Communication via BluetoothSockets and streams 
• If not yet paired, user will be prompted for this 

 
• P2P? Prepare each device as a client and as a server, 

listening for incoming connections? 



Server side 
• Get a BluetoothServerSocket via 
  listenUsingRfcommWithServiceRecord( 
 String name, UUID id) 
 
• The UUID identifies your application – must match the 

client UUID 
• Set a time out! 
• Call accept() to start listen 

- blocks until connection or time out 
 

• Returns a BluetoothSocket for the data transfer 
• Close the server socket 
 

 
 



Sever side 
private class AcceptThread extends Thread { 
 
    private BluetoothServerSocket serverSocket; 
 
    public AcceptThread() { 
        serverSocket= null; 
        try { 
            serverSocket =  
  adapter.listenUsingRfcommWithServiceRecord(NAME, MY_UUID); 
        } catch (IOException e) { } 
    } 
 
 
    public void run() { 
        BluetoothSocket socket = null; 
        try { 
                socket = serverSocket.accept(); 
                // Manage the connection, in a separate threa/ASyncTask 
                manageConnectedSocket(socket); 
         } 
        catch (IOException e) { . . . }  
        finally { 
    serverSocket.close(); 
        } 
    } 



Server side 
private class AcceptThread extends Thread { 
    private final BluetoothServerSocket serverSocket; 
 
    . . . 
 
    /** Will cancel the listening socket, and cause the 
  thread to finish */ 
    public void cancel() { 
        try { 
            serverSocket.close(); 
        } catch (IOException e) { } 
    } 
} 



Client side 

• Use the BluetoothDevice object representing the 
remote device to get a BluetoothSocket 
 

• createRfcommSocketToServiceRecord(UUID id) 
 

• Initiate the connection by calling socket.connect() 
- blocking, call in a separate thread.  

• Times out after 12 seconds, throwing an exception  
- close the socket 

• If the UUID matches and the remote device accepts the 
connection, the socket is ready to transfer data 
 



Client side 
private class ConnectThread extends Thread { 
    private BluetoothSocket socket = null;  
    private  BluetoothDevice device; 
 
    public ConnectThread(BluetoothDevice device)  { 
        this.device = device; 
        try { 
            socket = device.createRfcommSocketToServiceRecord(MY_UUID); 
        } catch (IOException e) { } 
    } 
 
    public void run() { 
        try { 
            socket.connect(); 
            // Manage the connection in a separate thread/ASyncTask 
           manageConnectedSocket(socket); 
        }  
       catch (IOException connectException) { 
            socket.close(); // Unable to connect; close the socket  
        } 
    } 
 
 



Client side 
private class ConnectThread extends Thread { 
    private final BluetoothSocket socket = null; 
    private final BluetoothDevice device; 
 
    . . . 
 
    // Will cancel an in-progress connection,  
    // and close the socket 
    public void cancel() { 
        try { 
            mmSocket.close(); 
        } catch (IOException e) { } 
    } 
} 



RFCOMM-socket API 

• Prior to Android version 4.x 
bluetoothSocket = bluetoothDevice. 
   createRfcommSocketToServiceRecord( 
   STANDARD_SPP_UUID); 
bluetoothSocket.connect(); 
 

• Version 4.x 
bluetoothSocket = bluetoothDevice. 
   createInsecureRfcommSocketToServiceRecord( 
   STANDARD_SPP_UUID); 
bluetoothSocket.connect(); 
 

• UUID STANDARD_SPP_UUID = UUID.fromString("00001101-
0000-1000-8000-00805F9B34FB"); 



Transfering data 

• getInputStream() / getOutputStream()  
• Read and write data to the streams with read(byte[]) 

and write(byte[]), or 
• Add wrapper/filter streams like BufferedReader, 

PrintWriter, … 
• Use a separate thread for all stream reading and 

writing (read/write calls are blocking) 
• Provide a method to shut down the connection, by 

raising a flag and closing the socket 

 



Transferring data 
private class DataTransferThread extends Thread { 
    . . . 
    public DataTransferThread(socket) { 
        this.socket = socket; 
        try { 
            sin = socket.getInputStream(); 
            sout = socket.getOutputStream();  
        } catch (IOException e) { } 
    } 
 
    public void run() { 
        byte[] buffer = new byte[1024];          int bytes;  
        // Keep listening to the InputStream until an exception occurs 
        while (true) { 
            try { 
                bytes = sin.read(buffer); 
                // Send the obtained bytes to the UI Activity 
                handler.obtainMessage( 
   MESSAGE_READ, bytes, -1, buffer).sendToTarget(); 
            } catch (IOException e) { 
                break; 
            } 
        } 
    } 



Transferring data 
private class DataTransferThread extends Thread { 
    private final BluetoothSocket socket; 
    private final InputStream sin; 
    private final OutputStream sout; 
    . . . 
 
    // Call this from the main Activity to send data  
    // to the remote device  
    public void write(byte[] bytes) { 
        try { 
            sout.write(bytes); 
        } catch (IOException e) { } 
    } 
 
    // Call this from the main Activity to shutdown the connection 
    public void cancel() { 
        try { 
            socket.close(); 
        } catch (IOException e) { } 
    } 
} 



Bluetooth Health Device Profile (HDP) 

 
 
 
 

• BT profile designed to facilitate transmission and 
reception of Medical Device data 

• API available on Android 4.0 (API level 14)  



Testing, resources 
• Currently, the AVD doesn’t support Bluetooth 
• Test the BT part of your application on 2 devices, or 
• Use a 3rd part simulator 

https://github.com/cheng81/Android-Bluetooth-Simulator  
 

• Readings 
- Meier – chapter 13 
-
http://developer.android.com/guide/topics/wireless/blueto
oth.html  
- Bluetooth chat: 
http://developer.android.com/resources/samples/Bluetoot
hChat/index.html  
 

https://github.com/cheng81/Android-Bluetooth-Simulator
http://developer.android.com/guide/topics/wireless/bluetooth.html
http://developer.android.com/guide/topics/wireless/bluetooth.html
http://developer.android.com/resources/samples/BluetoothChat/index.html
http://developer.android.com/resources/samples/BluetoothChat/index.html


Near Field Communication 

• NFC is a set of short-range 
wireless technologies, typically < 
5 cm 

• Radio frequency 13.56 MHz 
• Rates ranging from 106 kbit/s to 

848 kbit/s 
• Very low power consumption 
• Initiator and Target - the initiator 

actively generates an RF field that 
can power a passive target  



Near Field Communication 
• Mobile ticketing in public transport, such as Mobile 

Phone Boarding Pass 
• Mobile payment: the device acts as a debit/credit 

payment card 
• Smart poster: the mobile phone is used to read RFID 

tags 
• Bluetooth pairing 
• Applications in the future, e.g. 

- Electronic money  
- Identity documents  
- Mobile commerce  
- Electronic keys - car keys, house/office keys, hotel 
room keys, etc.  



Mobile payment 

• Primary models for mobile payments: 
- SMS based transactional payments 
- Direct Mobile Billing  
- Mobile web payments (WAP)  
- Contactless Near Field Communication 

• NFC: A Mobile phone equipped with a smartcard is 
brought near a reader module  

• No authentication, or authentication using PIN 
• Europe, e.g. parking payment 

 



NFC Mobile payment 

• Standard by NFC Forum 2004, supported by Nokia 
and others 

• Banks, Payment technology companies and 
Telecommunications companies has to cooperate...  

• Breakthrough 2012? 2013? 



NFC and (Smart)phones at present 

• Today (Spring 2012) 
- 10% of devices has NFC hardware 
- < 1% are used 

• Nokia Money: NFC supported by all new devices, 
2011 -  

• Apple: NFC chip in Iphone 5? – Nope. 
• Android API from version (>) 2.3, android.nfc package 

(of course, hardware support needed) 
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