
Mobila applikationer
och trådlösa nät

HI1033

Lecturer: Anders Lindström,
anders.lindstrom@sth.kth.se

Lecture 10
Today’s topics
• Bluetooth
• NFC

mailto:anders.lindstrom@sth.kth.se

Bluetooth

Bluetooth

• Wireless technology standard for exchanging data
over short distances, peer-to-peer

• Ericsson, IBM, Toshiba, Nokia, Intel, ...
• Proprietary open

Bluetooth

• Each device has a Bluetooth chip and antenna
• Radio frequency 2.45 GHz
• Relativly slow; 721 kbit/sec – 3 Mbit/sec (ver. 2.0)

• Frequency jumps, 1600/sec, takes care of

interference problems
• Up to 7 connections simultaneously

• Can run in parallell with WiFi (802.11b)

Bluetooth

Class Min. power,
sender

Max. power,
sender Min. range Typical use

Class 1 0 dBm
(1 mW)

20 dBm
(100 mW) <100 m

Devices with
no limit on
current

Class 2 -7 dBm
(0,25 mW)

4 dBm
(2,5 mW) <10 m

Battery
powered
devices

Class 3 0 dBm
(1 mW)

0 dBm
(1 mW) <1 m

Battery
powered
devices

Bluetooth
• Bluetooth protocols simplify the discovery and setup of

services between devices
• Bluetooth devices can advertise all of the services they

provide
• A device in discoverable mode on demand transmits

- Device name
- Device class
- List of services
- Technical information

• Two devices need to be paired to communicate with
each other

• Bluetooth v2.1 - Encryption is required for all non
Service Discovery Protocol connections

Bluetooth profiles

• Generic Access Profile, Service Discovery
Application Profile supported by all devices

• Other, optional, profiles defining e.g.
- audio/video/image distribution
- Object exchange (push)
- Remote control
- Headsets, hands free
- SIM access
- Health Device Profile
- …

Serial Port Profile (SPP)

• Based on the RFCOMM protocol which provides a
simple reliable data stream to the user, similar to TCP

• Emulates a serial cable to provide a simple
substitute for existing RS-232

• The basis for other profiles, such as DUN, FAX,
HSP and AVRCP

Android Bluetooth stack

Communicate using Bluetooth

Steps:
1. Setting up Bluetooth
2. Finding devices that are either available in the local

area (discovery) or already paired
3. Connecting devices
4. Transferring data between devices

Android Bluetooth API

• Supports Bluetooth 2.1
• Using Bluetooth APIs, an Android application can

perform the following:
– Scan for other Bluetooth devices
– Query the local Bluetooth adapter for paired

Bluetooth devices
– Connect to other devices through service discovery
– Establish RFCOMM channels
– Transfer data to and from other devices
– Manage multiple connections

Android Bluetooth API
• BluetoothAdapter

- the local adapter (Bluetooth radio)
- the entry point for all interaction

• BluetoothDevice
- represents a remote Bluetooth device

• BluetoothSocket
- represents the interface for a Bluetooth socket
- allows an application to exchange data with another device

• BluetoothServerSocket
- represents an open server socket listening for incoming requests
- to connect two devices, one must open a server socket

• BluetoothClass
- describes the general characteristics and capabilities of a
Bluetooth device

Uses permissions

• BLUETOOTH
- required for requesting/accepting a connection and
data transfer

• BLUETOOTH_ADMIN
- required to initiate device discovery and manage
bluetooth settings

• <manifest . . .>
 <uses-permission android:name=
 “android.permission.BLUETOOTH” />
</manifest>

Set up the local adapter
• BluetoothAdapter adapter =

 BluetoothAdapter.getDefaultAdapter();
if (adapter != null) {
 // Device does support Bluetooth
}

• if(adapter.isEnabled() == false) {
 Intent intent = new Intent(
 BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(
 intent, REQUEST_ENABLE_BT);

• The user is prompted to enable the device

Finding devices

• Android devices are not discoverable by default!
• An application can request that the user enable

discoverability for limited time
• Discover remote devices by

- Querying for paired devices
- Starting a device discovery

• Device discovery
- inquiry scan + page scan
- > 10 sec, consumes bandwith!

Discovering devices

• startDiscovery() - stopDiscovery() (!)
• Asynchronous

-Register a BroadcastReceiver to receive information
on individual devices being discovered

• IntentFilter filter = new
IntentFilter(BluetoothDevice.ACTION_FOUND);
registerReceiver(discoveryReceiver, filter);

• Don't forget to unregister, e.g. during onDestroy

Discovering devices
private class DiscoveryReceiver extends BroadcastReceiver {

 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();

 // Device discovered?
 if (BluetoothDevice.ACTION_FOUND.equals(action)) {

 // Get the discovered device
 BluetoothDevice device =
 intent.getParcelableExtra(
 BluetoothDevice.EXTRA_DEVICE);

 // Do something . . .
 arrayAdapter.add(device.getName() + "\n" +
 device.getAddress());
 }
 }
};

Enabling discoverability
• Prompts the user
• Makes the local device discoverable

to others for 120 (max 300) secs
• Bluetooth is automatically enabled

• Intent intent = new Intent(
 BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
intent.putExtra(
 BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION,
 300);
startActivityForResult(intent, REQ_DISCOVERABLE);

Pairing (bonding)
• When a connection is made with a remote device for the

first time, a pairing request is automatically presented to
the user

• Information about the remote device is stored; device
name, class, MAC address, . . .

• A connection can be initiated with a paired device without
performing discovery

• Paired vs. Connected:
- Paired devices are aware of each other's existence, having
a shared link-key that can be used for authentication
- Connected devices currently share an RFCOMM channel

Querying paired devices
Set<BluetoothDevice> pairedDevices =
 adapter.getBondedDevices();

if (pairedDevices.size() > 0) {
 for (BluetoothDevice device : pairedDevices) {
 // Show name and MAC address in a ListView
 arrayAdapter.add(device.getName() + "\n" +
 device.getAddress());
 }
}

• Normally:
First search paired devices, then (if necessary) make
a discovery

Connecting devices

• Server listens for incoming connections using
BluetoothServerSocket

• Client initiate the connection using a
BluetoothSocket + the servers MAC address

• Communication via BluetoothSockets and streams
• If not yet paired, user will be prompted for this

• P2P? Prepare each device as a client and as a server,

listening for incoming connections?

Server side
• Get a BluetoothServerSocket via
 listenUsingRfcommWithServiceRecord(
 String name, UUID id)

• The UUID identifies your application – must match the

client UUID
• Set a time out!
• Call accept() to start listen

- blocks until connection or time out

• Returns a BluetoothSocket for the data transfer
• Close the server socket

Sever side
private class AcceptThread extends Thread {

 private BluetoothServerSocket serverSocket;

 public AcceptThread() {
 serverSocket= null;
 try {
 serverSocket =
 adapter.listenUsingRfcommWithServiceRecord(NAME, MY_UUID);
 } catch (IOException e) { }
 }

 public void run() {
 BluetoothSocket socket = null;
 try {
 socket = serverSocket.accept();
 // Manage the connection, in a separate threa/ASyncTask
 manageConnectedSocket(socket);
 }
 catch (IOException e) { . . . }
 finally {
 serverSocket.close();
 }
 }

Server side
private class AcceptThread extends Thread {
 private final BluetoothServerSocket serverSocket;

 . . .

 /** Will cancel the listening socket, and cause the
 thread to finish */
 public void cancel() {
 try {
 serverSocket.close();
 } catch (IOException e) { }
 }
}

Client side

• Use the BluetoothDevice object representing the
remote device to get a BluetoothSocket

• createRfcommSocketToServiceRecord(UUID id)

• Initiate the connection by calling socket.connect()
- blocking, call in a separate thread.

• Times out after 12 seconds, throwing an exception
- close the socket

• If the UUID matches and the remote device accepts the
connection, the socket is ready to transfer data

Client side
private class ConnectThread extends Thread {
 private BluetoothSocket socket = null;
 private BluetoothDevice device;

 public ConnectThread(BluetoothDevice device) {
 this.device = device;
 try {
 socket = device.createRfcommSocketToServiceRecord(MY_UUID);
 } catch (IOException e) { }
 }

 public void run() {
 try {
 socket.connect();
 // Manage the connection in a separate thread/ASyncTask
 manageConnectedSocket(socket);
 }
 catch (IOException connectException) {
 socket.close(); // Unable to connect; close the socket
 }
 }

Client side
private class ConnectThread extends Thread {
 private final BluetoothSocket socket = null;
 private final BluetoothDevice device;

 . . .

 // Will cancel an in-progress connection,
 // and close the socket
 public void cancel() {
 try {
 mmSocket.close();
 } catch (IOException e) { }
 }
}

RFCOMM-socket API

• Prior to Android version 4.x
bluetoothSocket = bluetoothDevice.
 createRfcommSocketToServiceRecord(
 STANDARD_SPP_UUID);
bluetoothSocket.connect();

• Version 4.x
bluetoothSocket = bluetoothDevice.
 createInsecureRfcommSocketToServiceRecord(
 STANDARD_SPP_UUID);
bluetoothSocket.connect();

• UUID STANDARD_SPP_UUID = UUID.fromString("00001101-
0000-1000-8000-00805F9B34FB");

Transfering data

• getInputStream() / getOutputStream()
• Read and write data to the streams with read(byte[])

and write(byte[]), or
• Add wrapper/filter streams like BufferedReader,

PrintWriter, …
• Use a separate thread for all stream reading and

writing (read/write calls are blocking)
• Provide a method to shut down the connection, by

raising a flag and closing the socket

Transferring data
private class DataTransferThread extends Thread {
 . . .
 public DataTransferThread(socket) {
 this.socket = socket;
 try {
 sin = socket.getInputStream();
 sout = socket.getOutputStream();
 } catch (IOException e) { }
 }

 public void run() {
 byte[] buffer = new byte[1024]; int bytes;
 // Keep listening to the InputStream until an exception occurs
 while (true) {
 try {
 bytes = sin.read(buffer);
 // Send the obtained bytes to the UI Activity
 handler.obtainMessage(
 MESSAGE_READ, bytes, -1, buffer).sendToTarget();
 } catch (IOException e) {
 break;
 }
 }
 }

Transferring data
private class DataTransferThread extends Thread {
 private final BluetoothSocket socket;
 private final InputStream sin;
 private final OutputStream sout;
 . . .

 // Call this from the main Activity to send data
 // to the remote device
 public void write(byte[] bytes) {
 try {
 sout.write(bytes);
 } catch (IOException e) { }
 }

 // Call this from the main Activity to shutdown the connection
 public void cancel() {
 try {
 socket.close();
 } catch (IOException e) { }
 }
}

Bluetooth Health Device Profile (HDP)

• BT profile designed to facilitate transmission and
reception of Medical Device data

• API available on Android 4.0 (API level 14)

Testing, resources
• Currently, the AVD doesn’t support Bluetooth
• Test the BT part of your application on 2 devices, or
• Use a 3rd part simulator

https://github.com/cheng81/Android-Bluetooth-Simulator

• Readings
- Meier – chapter 13
-
http://developer.android.com/guide/topics/wireless/blueto
oth.html
- Bluetooth chat:
http://developer.android.com/resources/samples/Bluetoot
hChat/index.html

https://github.com/cheng81/Android-Bluetooth-Simulator
http://developer.android.com/guide/topics/wireless/bluetooth.html
http://developer.android.com/guide/topics/wireless/bluetooth.html
http://developer.android.com/resources/samples/BluetoothChat/index.html
http://developer.android.com/resources/samples/BluetoothChat/index.html

Near Field Communication

• NFC is a set of short-range
wireless technologies, typically <
5 cm

• Radio frequency 13.56 MHz
• Rates ranging from 106 kbit/s to

848 kbit/s
• Very low power consumption
• Initiator and Target - the initiator

actively generates an RF field that
can power a passive target

Near Field Communication
• Mobile ticketing in public transport, such as Mobile

Phone Boarding Pass
• Mobile payment: the device acts as a debit/credit

payment card
• Smart poster: the mobile phone is used to read RFID

tags
• Bluetooth pairing
• Applications in the future, e.g.

- Electronic money
- Identity documents
- Mobile commerce
- Electronic keys - car keys, house/office keys, hotel
room keys, etc.

Mobile payment

• Primary models for mobile payments:
- SMS based transactional payments
- Direct Mobile Billing
- Mobile web payments (WAP)
- Contactless Near Field Communication

• NFC: A Mobile phone equipped with a smartcard is
brought near a reader module

• No authentication, or authentication using PIN
• Europe, e.g. parking payment

NFC Mobile payment

• Standard by NFC Forum 2004, supported by Nokia
and others

• Banks, Payment technology companies and
Telecommunications companies has to cooperate...

• Breakthrough 2012? 2013?

NFC and (Smart)phones at present

• Today (Spring 2012)
- 10% of devices has NFC hardware
- < 1% are used

• Nokia Money: NFC supported by all new devices,
2011 -

• Apple: NFC chip in Iphone 5? – Nope.
• Android API from version (>) 2.3, android.nfc package

(of course, hardware support needed)

	Mobila applikationer och trådlösa nät��HI1033��Lecturer: Anders Lindström, anders.lindstrom@sth.kth.se
	Bluetooth
	Bluetooth
	Bluetooth
	Bluetooth
	Bluetooth
	Bluetooth profiles
	Serial Port Profile (SPP)
	Android Bluetooth stack
	Communicate using Bluetooth
	Android Bluetooth API
	Android Bluetooth API
	Uses permissions
	Set up the local adapter
	Finding devices
	Discovering devices
	Discovering devices
	Enabling discoverability
	Pairing (bonding)
	Querying paired devices
	Connecting devices
	Server side
	Sever side
	Server side
	Client side
	Client side
	Client side
	RFCOMM-socket API
	Transfering data
	Transferring data
	Transferring data
	Bluetooth Health Device Profile (HDP)
	Testing, resources
	Near Field Communication
	Near Field Communication
	Mobile payment
	NFC Mobile payment
	NFC and (Smart)phones at present

