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EL2620 Nonlinear Control

Lecture 9

• Nonlinear control design based on high-gain control
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Today’s Goal

You should be able to analyze and design

• High-gain control systems

• Sliding mode controllers

Lecture 9 2



EL2620 2012

History of the Feedback Amplifier

New York–San Francisco communication link 1914.

High signal amplification with low distortion was needed.

f(·)f(·)
−

r y
f(·)

k

Feedback amplifiers were the solution!

Black, Bode, and Nyquist at Bell Labs 1920–1950.
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Linearization Through High Gain Feedback

−

r y
f(·)

K

e

α1e

α2e f(e)

α1 ≤
f(e)

e
≤ α2 ⇒

α1

1 + α1K
r ≤ y ≤

α2

1 + α2K
r

choose K ≫ 1/α1, yields

y ≈
1

K
r
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A Word of Caution

Nyquist: high loop-gain may induce oscillations (due to dynamics)!
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Inverting Nonlinearities

Compensation of static nonlinearity through inversion:

F (s) f̂−1(·) f(·) G(s)
−

Controller

Should be combined with feedback as in the figure!
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Remark: How to Obtain f−1 from f using

Feedback

−

v uk

s

f(·)

u

f(u)

u̇ = k
(
v − f(u)

)

If k > 0 large and df/du > 0, then u̇ → 0 and

0 = k
(
v − f(u)

)
⇔ f(u) = v ⇔ u = f−1(v)
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Example—Linearization of Static Nonlinearity

r e u y

−
K f(·)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y(r)

f(u)

Linearization of f(u) = u2 through feedback.

The case K = 100 is shown in the plot: y(r) ≈ r.
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The Sensitivity Function S = (1 +GF )−1

The closed-loop system is

Gcl =
G

1 +GF

−

r y
G

F

Small perturbations dG in G gives

dGcl

dG
=

1

(1 +GF )2
⇒

dGcl

Gcl

=
1

1 +GF

dG

G
= S

dG

G

S is the closed-loop sensitivity to open-loop perturbations.
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Distortion Reduction via Feedback

The feedback reduces distortion in each link.

Several links give distortion-free high gain.

− −
f(·)f(·)

KK
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Example—Distortion Reduction

Let G = 1000,

distortion dG/G = 0.1
−

r y
G

K

Choose K = 0.1 ⇒ S = (1 +GK)−1 ≈ 0.01. Then

dGcl

Gcl

= S
dG

G
≈ 0.001

100 feedback amplifiers in series give total amplification

Gtot = (Gcl)
100 ≈ 10100

and total distortion

dGtot

Gtot

= (1 + 10−3)100 − 1 ≈ 0.1
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Transcontinental Communication Revolution

The feedback amplifier was patented by Black 1937.

Year Channels Loss (dB) No amp’s

1914 1 60 3–6

1923 1–4 150–400 6–20

1938 16 1000 40

1941 480 30000 600
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Sensitivity and the Circle Criterion

r

−1

GF (iω)

−

r y
GF

f(·)

Consider a circle C := {z ∈ C : |z + 1| = r}, r ∈ (0, 1).

GF (iω) stays outside C if

|1 +GF (iω)| > r ⇔ |S(iω)| ≤ r−1

Then, the Circle Criterion gives stability if
1

1 + r
≤

f(y)

y
≤

1

1− r
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Small Sensitivity Allows Large Uncertainty

If |S(iω)| is small, we can choose r large (close to one).

This corresponds to a large sector for f(·).

Hence, |S(iω)| small implies low sensitivity to nonlinearities.

k1 =
1

1 + r

k2 =
1

1− r

y

k1y

k2y f(y)
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On–Off Control

On–off control is the simplest control strategy.

Common in temperature control, level control etc.

r e u y

−
G(s)

The relay corresponds to infinite high gain at the switching point
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Example: Stabilizing control of inverted

pendulum

Model with x1 = θ − α, α = π/2 and x2 = θ̇

ẋ1 = x2

ẋ2 = −
g

l
sin(x1 + α)−

k0
m
x2 +

1

ml2
u

Thus,

f(x) = −
g

l
sin(x1 + α)−

k0
m
x2, g(x) =

1

ml2

We choose the sliding manifold

σ(x) = x2 + ax1 = 0
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Control design

The control law

u(x) = β(x)−Ksign(σ)

where

β(x) = −
f(x) + ax2

g(x)
= gml sin(x1 + α) + k0ml2x2 −ml2ax2

and we choose

K = k1 + k2σ
2
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Design of Sliding Mode Controller

Idea: Design a control law that forces the state to σ(x) = 0. Choose

σ(x) such that the sliding mode tends to the origin. Assume

d

dt




x1

x2

.

.

.

xn


 =




f1(x) + g1(x)u

x1

.

.

.

xn−1


 = f(x) + g(x)u

Choose σ(x) = pTx with pT =
(
p1 . . . pn

)
the coefficients of a

stable polynomial Then the control law

u = −
pTf(x)

pT g(x)
−

µ

pTg(x)
sgn σ(x),

where µ > 0 is a design parameter, will make the sliding mode and

the equilibrium globally asymptotically stable.
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Closed-Loop Stability

Consider V (x) = σ2(x)/2 with σ(x) = pTx. Then,

V̇ = σT (x)σ̇(x) = xTp
(
pTf(x) + pT g(x)u

)

With the chosen control law, we get

V̇ = −µσ(x) sgn σ(x) < 0

so x tend to σ(x) = 0.

0 = σ(x) = p1x1 + · · ·+ pn−1xn−1 + pnxn

= p1x
(n−1)
n

+ · · ·+ pn−1x
(1)
n

+ pnx
(0)
n

where x(k) denote time derivative. Now p corresponds to a stable

differential equation, and xn → 0 exponentially as t → ∞ . The

state relations xk−1 = ẋk now give x → 0 exponentially as t → ∞.
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Example—Sliding Mode Controller

Design state-feedback controller for

ẋ =

(
1 0

1 0

)
x+

(
1

0

)
u

y =
(
0 1

)
x

Choose p1s+ p2 = s+ 1 so that σ(x) = x1 + x2. The controller is

given by

u = −
pTAx

pTB
−

µ

pTB
sgn σ(x)

= 2x1 − µ sgn(x1 + x2)
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Phase Portrait

Simulation with µ = 0.5. Note the sliding surface σ(x) = x1 + x2.
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Time Plots

Initial condition

x(0) =
(
1.5 0

)T
.

Simulation agrees well with

time to switch

ts =
σ0

µ
= 3

and sliding dynamics

ẏ = −y

x1

x2

u
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The Sliding Mode Controller is Robust

Assume that only a model ẋ = f̂(x) + ĝ(x)u of the true system

ẋ = f(x) + g(x)u is known. Still, however,

V̇ = σ(x)

[
pT (f ĝT − f̂ gT )p

pT ĝ
− µ

pT g

pT ĝ
sgn σ(x)

]
< 0

if sgn(pT g) = sgn(pT ĝ) and µ > 0 is sufficiently large.

The closed-loop system is thus robust against model errors!

(High gain control with stable open loop zeros)
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Comments on Sliding Mode Control

• Efficient handling of model uncertainties

• Often impossible to implement infinite fast switching

• Smooth version through low pass filter or boundary layer

• Applications in robotics and vehicle control

• Compare pulse-width modulated control signals
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Today’s Goal

You should be able to analyze and design

• High-gain control systems

• Sliding mode controllers
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Next Lecture

• Lyapunov design methods

• Exact feedback linearization

Lecture 9 29


