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1 Exercise 5.1

In a computer network a link has a transmission rate of C bit/s. Messages arrive
to this link in a Poisson fashion with rate λ messages per second. Assume that
the messages have exponentially distributed length with a mean of 1/µ bits and
the messages are queued in a FCFS fashion if the link is busy.
a) Determine the minimum required C for given λ and µ such that the average
system time (service time + waiting time) is less than a given time T0.

Solution: System Description

• Single communication link: C bits per second

• Poisson arrivals: λ messages per second

• Exponential Service times: E[T ] = E[X]/C = 1/(µC), so the exponential
rate is µC.

• First Come First Served policy

• Infinite Queue1

This is a typical M/M/1 System. We see the system diagram in Fig. 1.
We first derive the state distribution (steady-state) of this system through the
solution of the balance equations. We define ρ = λ/(µC). For a no-loss system,
ρ is the OFFERED and, at the same time, the ACTUAL load.

λP0 = (µC)P1 → P1 = ρP0

λP1 = (µC)P2 → P2 = ρP1 = ρ2P0

λP2 = (µC)P3 → P3 = ρP2 = ρ3P0

.............................................................................
λPk = (µC)Pk+1 → Pk+1 = ρPk = ρkP0

........................................

Then, we calculate the P0 through the normalization equation:

∞∑
k=0

Pk = 1→
∞∑
k=0

ρkP0 = 1→ P0

∞∑
k=0

ρk = 1→ P0 ·
1

1− ρ
= 1→ P0 = 1− ρ.

1If no buffer capacity is mentioned, we always assume that this is infinite.
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Figure 1: System diagram for the M/M/1 chain of exercise 5.1

Finally, the state distribution is given as

Pk = (1− ρ)ρk.

We, now, derive the average number of messages in the system, using the state
distribution:

N =
∑∞
k=0 kPk =

∑∞
k=0 k(1− ρ)ρk = (1− ρ)ρ

∑∞
k=0 kρ

k−1 =

= (1− ρ)ρ
∑∞
k=0

dρk

dρ = (1− ρ)ρ
d(

∑∞
k=0 ρ

k)
dρ = (1− ρ)ρd(1/(1−ρ))

dρ = ρ
1−ρ .

In order to solve the first question we can use the LITTLE’s formula:

N = λeffE[Ttotal]→ E[Ttotal] =
N

λ
=
ρ/(1− ρ)

λ
=
λ/(µC)/(1− λ/(µC))

λ
,

since λeff = λ, so, finally,

E[Ttotal] =
1

(µC)− λ
.

The minimum required C is determined by:

1

µC − λ
≤ T0 → µC − λ ≥ T−1

0 → C ≥ λ+ T−1
0

µ
.

2 Exercise 5.5

Consider a queuing system with a single server. The arrival events can be
modeled with Poisson distribution, but two customers arrive at the system at
each arrival event. Each customer requires an exponentially distributed service
time.

1. Draw the state diagram

2. Determine pk using local balance equations

3. Let P (z) =
∑∞
k=0 z

kpk. Calculate P (z) for the system. Note, that P (z)
must be finite for |z| < 1, and we know P (1) = 1.
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Figure 2: System diagram for the M/M/1 chain of exercise 5.5

4. Calculate the mean number of customers in the system with the help of
P (z) and compare it with the one of the M/M/1 system.

Solution: The system can be described by an M/M/1 model, since there is a
single server, the service times are exponential service and the arrival process
is Poisson. We must notice, however, that this Poisson Process models arrival
events, but the events consist of two customer arrivals. (The departure events
are still one-by-one, though.)

As always, for a Markovian System we must guarantee that all transitions
are exponential. We define the usual state space: Sk : k customers in the
system. Then, the state diagram is straightforward. Special care must be taken
on determining the transitions and rates from state to state.

Departure rate = µ

Arrival Event rate = λ

Clearly, the average customer arrival rate is 2λ and is NOT Poisson! What IS
Poisson is the group arrival rate. We also DEFINE ρ = λ

µ . This is neither the
offered nor the actual load. We just use ρ to define this fraction.
The system diagram is given in Fig. 2.
Local Balance Equations:

λP0 = µP1

λPk−2 + λPk−1 = µPk, k ≥ 2

We can go ahead and solve them numerically. Alternatively, we can use
the ZT methodology, since we only want to compute the average number of
customers.

We consider the parametric local balance equation:

µPk = λPk−1 + λPk−2 →

→
∑∞
k=2 z

kµPk =
∑∞
k=2 z

k(λPk−1 + λPk−2)

→ µ(P (z)− zP1 − P0) =
∑∞
k=2 λz

kPk−1 +
∑∞
k=2 λz

kPk−2

→ µ(P (z)− zP1 − P0) = λz
∑∞
k=2 λz

k−1Pk−1 + λz2
∑∞
k=2 λz

k−2Pk−2

→ µ(P (z)− zP1 − P0) = λz(P (z)− P0) + λz2P (z)
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We solve the equation with respect to P (z)

P (z) =
µP0 + µzP1 − λzP0

µ− λz − λz2
=
P0 + zP1 − ρzP0

1− ρz − ρz2
. (1)

We need to apply two conditions that HOLD, in order to determine the unknown
terms above. The first condition comes from the balance equation that we did
not consider. We replace P1 = ρP0 in (1), and obtain:

P (z) =
P0

1− ρz − ρz2
. (2)

The second condition comes from the NORMALIZATION in the probability or
in the Z-domain:

∞∑
k=0

Pk = 1, or, P (z = 1) = 1.

Replacing that in (2) we obtain P0 = 1− 2ρ, so finally

P (z) =
1− 2ρ

1− ρz − ρz2
(3)

Finally, we need to compute the mean number of customers. We have

N =

[
dP (z)

dz

]
z=1

.

Proof:[
dP (z)

dz

]
z=1

=

[
d
∑∞
k=0 z

kPk
dz

]
z=1

=

[ ∞∑
k=0

kzk−1Pk

]
z=1

=

∞∑
k=0

kPk = N.

So, this is what we will do. We differentiate the derived ZT in (3):

dP (z)

dz
=

(−1)(1− 2ρ)(−ρ− 2ρz)

(1− ρz − ρz2)2

Replacing z = 1 we obtain

N =
3ρ

1− 2ρ
=

3λ

µ− 2λ
.

The typical M/M/1 system with the same average customer arrival rate (2λ)
and service rate (µ) has NM/M/1 = ρ

1−ρ , where ρ is its offered load, and is equal

to ρ = 2λ/µ. So, finally,

NM/M/1 =
2λ

µ− 2λ

so it is different, and, actually, less. Why?
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Figure 3: System diagram for the M/M/1 chain of exercise 5.6

3 Exercise 5.6

A queuing system has one server and infinite queuing capacity. The number of
customers in the system can be modeled as a birth-death process with λk = λ
and µk = kµ, k = 0, 1, 2, ... thus, the server increases the speed of the service
with the number of customers in the queue. Calculate the average number of
customers in the system as a function of ρ = λ/µ.

Solution: The system is an M/M/1 queue, since it has infinite buffer, 1
server, and Markovian arrival and departure process. However, as we can see, it
is not a typical M/M/1 case, as the service rates depend on the current system
state. The system diagram is shown in Fig. 3. We need to solve the system of
balance equations:

λP0 = µP1 → P1 = ρP0

λP1 = 2µP2 → P2 = 1
2ρP1 = 1

2ρ
2P0

λP2 = 3µP3 → P3 = 1
3ρP2 = 1

2·3ρ
3P0

.........................................................................
λPk−1 = kµPk → Pk = 1

kρPk−1 = ... = 1
k!ρ

kP0

.........................................................................∑∞
k=0 Pk = 1 (normalization)

From the last general equation and the normalization equation we obtain
the state distribution:

∞∑
k=0

ρk

k!
P0 = 1→ P0e

ρ = 1→ P0 = e−ρ.

so finally, for each k

Pk =
ρk

k!
e−ρ

so the state distribution is POISSON! Then, we can calculate the average num-
ber of customers from the state distribution

N =

∞∑
k=0

kPk = ρ
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or simply say that the average is ρ, from the Poisson distribution.
From LITTLE we can, also, calculate the average system time

E[Ttotal] =
N

λ
=

1

µ
.

This means that the arriving customers only stay in the system for an average
time equal to the service time!2

2This is equivalent to the case where there is no queue and each customer is served in
parallel with the others, so actually this system is equivalent to an M/M/∞ system!
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