The Short-Run Security-Constrained Economic Dispatch

By Olga Galland, olgachu@kth.se, TELPM

Supervised by Dr. Mohammad R. Hesamzadeh, mrhesamzadeh@kth.se

Background

In liberalized electricity markets, the outputs of controllable units must be defined at regular time intervals - "dispatch intervals"

In this master project dispatch of balancing services is proposed to be proceeded in an economically efficient manner, considering physical limits of the power system

Overview

In this Master thesis the concept of shot-run economic dispatch (SRED) is mathematically derived as a *linear programming (LP) problem*.

The concept SRED is formulated through *three stages* that model the state of power system *before*, *during*, and *after* contingency (disturbance of the supply-demand balance of power system) occurred:

- The initial steady state equilibrium (ISSE);
- The transition to a new steady state equilibrium (TNSSE);
- The final steady state equilibrium (FSSE).

In this project the proposed formulation is implemented for two applications:

The Power System Security

Credible contingency – low frequency contingency

The Real Time Balancing Market

TNSSE

Demand and wind power fluctuation – high frequency contingency

ISSÈ

Contribution

The proposed model was tested on 24 bus system for both applications:

This master project develops a short-run economic dispatch for handling both low and high frequency contingencies in the power system, respecting its physical limits. The proposed model is a LP problem and therefore Nodal prices are obtained. This approach allows to decrease dispatch cost of the system and consequently electricity price.