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EL2620 Nonlinear Control

Lecture 4

e Lyapunov methods for stability analysis
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Today’s Goal

You should be able to

e Prove local and global stability of equilibria using
Lyapunov’s method

e Prove stability of a set (e.g., a periodic orbit) using
LaSalle’s invariant set theorem
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Alexandr Mihailovich Lyapunov (1857-1918)

Master thesis “On the stability of ellipsoidal forms of equilibrium of
rotating fluids,” St. Petersburg University, 1884.

BEAVKHN PYCCKHH MATEMATHK
44 A M. ASTIYHOR
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:
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Doctoral thesis “The general problem of the stability of motion,” 1892.
Formalized the idea:

If the total energy is dissipated, the system must be stable.
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A Motivating Example

S

OO
T
e Balance of forces yields
mi = — bi|x| — kox — k12®, b, ko, k1 >0
\\/J %/—’l
damping spring

2
e Total energy = kinetic + potential energy: V' = "5~ + fox Fopringds

V(x,i) = mi?/2 + kox?/2 + kyx* /4 >0,  V(0,0)=0
e Change in energy along any solution z(t)

d
- V@, @) = mii + kowd + kiadi = —b|2]® <0, ##0
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Stability Definitions

Recall from Lecture 3 that an equilibrium z = 0 of & = f(x) is
Locally stable, if for every ¢ > 0 there exists 0 > 0 such that

[z(O) <6 = [zl <e VE=0
Locally asymptotically stable, if locally stable and

lz(0)|| <o = tlim xz(t) =0

Globally asymptotically stable, if asymptotically Va(0) € R™.
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Lyapunov Stability Theorem
Theorem: Let & = f(x), f(0) = 0,and 0 € 2 C R". If there
exists a C! function V' : 2 — R such that
(1 V(0)=0
(2 V(z)>O0forallz € Q,x#0
@) V(z) < Oforallz € Q
then x = 0 is locally stable. Furthermore, if

4) V(z) <Oforallz € Q,x #0

then x = 0 is locally asymptotically stable.

The result is called Lyapunov’s Direct Method
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Lyapunov Function

A function V' that fulfills (1)—(3) is called a Lyapunov function.

Condition (3) means that V' is non-increasing along all trajectories

in €2
. d oV oV
V(z) dtV(x) axx e () <0

€y
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Conservation and Dissipation

Conservation of energy: V() = 9V f(x) = 0, i.e. the vector field

f(z) is everywhere orthogonal to the normal % to the level surface
V(z)=c.

Example: Total energy of a lossless mechanical system or total fluid in
a closed system.

Dissipation of energy: 1 (z) = %—Zf(x) < 0, i.e. the vector field
f(z) and the normal 2 to the level surface V(z) = ¢ make an
obtuse angle.

Example: Total energy of a mechanical system with damping or total
fluid in a system that leaks.
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Geometric interpretation
Boundedness:
av l
@ For an trajectory x(t)
V (z) =constant . x(t) t
V((z(t) = V(2(0)) +/ V(x(r))dr < V(x(0))
0
which means that the whole trajectory lies in the set
{1 V(z) < V(2(0))}
Vi field points int blevel set For stability it is thus important that the sublevel sets
ector field points into sublevel sets {2 | V(2) < ¢)} are locally bounded.
Trajectories can only go to lower values of V(x)
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Example—Pendulum

Is the origin stable for a mathematical pendulum?
. .9 .
r1 = Lo, T = —Z SN rq

Lyapunov function candidate: V' (z) = (1 — coszy)g/{ + x3/2

I O R e
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0
(x) > 0for =27 < 1 < 27 and (21, x2) # 0
(x

Hence, x = 0 is locally stable.

(1) V(0)
2 V(zx) >
) V(z)

%i’l sin T+ 56'25532 = 0, YV

Note that z = 0 is not asymptotically stable, so, of course, (4) is not
fulfiled: V' (z) £ 0, Vo # 0.

Conservation of energy!

Lecture 4 12




EL2620 2011

5 minute exercise: Consider Example 2 from Lecture 3:

i’l = $2(t)
To = —xq(t) — ex%(t):@(t)

For what values of € is the steady-state (O, 0) locally stable? Hint: try
the "standard” Lyapunov function

V(r) =a"x

Can you say something about global stability of the equilibrium?
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Lyapunov Theorem for
Global Asymptotic Stability

Theorem: Let o = f(z) and f(0) = 0. If there exists a C! function
Vi R" — R such that

V(0

x >0foral|:z:7é0

)=
Vi(x)
V(x) < Oforallz # 0

V(z) = ooas ||z| — o0

then z = 0 is globally asymptotically stable.
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Radial Unboundedness is Necessary

If (4) is not fulfilled, then global stability cannot be guaranteed.

Example: Assume V' (z) = 22 /(1 + 2?) + 23 is a Lyapunov
function for some system. Then might () — oo even if V() < 0,
as shown by the contour plot of V' (x):

=
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Somewhat Stronger Assumptions

Theorem: Let i = f(x) and f(0) = 0. If there exists a C! function
V : R" — R such that

V(0) =
V(z) >0forallx740
V(e

) < —aV(x)forall x
(4) The sublevel sets {x|V (z) < ¢} are bounded for all ¢ > 0

then = = 0 is globally asymptotically stable.
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Proof Idea
Assume z(t) # 0 (otherwise we have x(7) = 0 for all 7 > t). Then

V(x)

< —«a

Integrating from 0 to ¢ gives

log V(z(t)) —log V(z(0) < —at = V(z(t)) < eV (z(0))
Hence, V(x(t)) — 0,t — oc.

Using the properties of V' it follows that z:(t) — 0, t — 0.
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Converse Lyapunov theorems

Example: If the system is globally exponentially stable
le(@®)]| < Me™™||z(0)[], M >0, >0

then there is a Lyapunov function that proves that it is globally
asymptotically stable.

There exist also Lyapunov instability theorems!
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Positive Definite Matrices

Definition: A matrix )M is positive definite if 7 Mz > 0 for all
x # 0. ltis positive semidefinite if 7 Mz > 0 for all .

Lemma:
o M = M7 is positive definite <= \;(M) > 0, Vi
o M = M7 is positive semidefinite <= \;(M) > 0, Vi
Note that if A/ = M7 is positive definite, then the Lyapunov function

candidate V' (z) = a2 M fulfils V (0) = 0 and V (x) > 0,
Va # 0.
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Symmetric Matrices

Assume that M = MT. Then

i M)[[2]]? < 2T M < N (M) |22

Hint: Use the factorization M = UAU™, where U is an orthogonal
matrix UUT = I)and A = diag(A1, ..., \,).
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Lyapunov Stability for Linear Systems

Linear system: © = Ax

Lyapunov equation: Consider the quadratic function
V(z) =a2"Pr, P=P'>0
= V(z)=2"Pi+i"Pr=2" (PA+ ATP)2 = —2"Qu

—_——
Q

Thus, V' < 0Vt if there exista Q = Q7 > 0 such that
PA+ ATP =-Q
Global Asymptotic Stability: If () is positive definite, then the

Lyapunov Stability Theorem implies global asymptotic stability, and
hence the eigenvalues of A must satisfy Re \;(A4) < 0 for all ¢
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Converse Theorem for Linear Systems

If Re \;(A) < 0, then for every symmetric positive definite () there
exist a symmetric positive definite matrix I such that

PA+ATP=-Q

Proof: Choose P = [ e tQeAtdt. Then

ATP 4 PA = / (AT Qe + Qe A) i

0

_ /OOO <%€ATthAt> dt — [GATthAt]ZO -0
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Interpretation

Assume & = Ax, x(0) = z. Then

/ T (O)Qu(t)dt = o ( / N eATthAtdt) = aps
0 0

Thus v(2) = 27 Pz is the cost-to-go from the point 2 (no input) with
integral quadratic cost function using weighting matrix ().
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Lyapunov’s Linearization Method

Recall from Lecture 3:

Theorem: Let o be an equilibrium of & = f(z) with f € C.
Denote A = 9L (z,) and a(A) = max Re(A(A)).

(1) If a(A) < 0 then x is asymptotically stable
(2) If «(A) > 0then x is unstable
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Proof of (1) in Lyapunov’s Linearization

Let f(x) = Az + g(x) where limy; 0 [|g(x)||/||z|| = 0. The
Lyapunov function candidate V' (z) = a7 Px satisfies VV(0) = 0,
V(x) > 0forx # 0, and
V(e) =a"Pf(x) + [T (x) Pz
= 2" P[Ax + g(z)] + [T AT + ¢" (2)] Pz
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For all v > 0 there exists 7 > 0 such that

lg@)l <All=ll, Vil <r

Thus, )
V< = Xin(@Q)12]1* + 29 Amae (P)]|2]1?

=27 (PA + AT P)x + 22" Pg(x)
_ _xTQx + 2$TPg(x) which becomes strictly negative if we choose
where N < 1 Anin(@)
2T Qr > Anin(Q) ]| 2 Amaz (P)
e we need to show that ||227 Pg(z)|| < Apmin(Q)]|z||*
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LaSalle’s Theorem for Global Asymptotic
Stability

Theorem: Let & = f(x) and f(0) = 0. If there exists a C' function
Vi R"™ — R such that

1)V 0) =
()>0fora|l:1;7é0
V(z) < 0forall z

(4) V(x) — oo as ||z]| = oo

(5) The only solution of & = f(z) such that V' (z) = Ois z(t) = 0
forall ¢

then x = 0 is globally asymptotically stable.
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A Motivating Example (cont’d)

mi = —bi|t| — kow — k1a®
V(z) = (2mi? + 2ko2® + k1z*) /4 > 0, V(0,0) =0
V(z) = —blif*

Assume that there is a trajectory with (¢) = 0, z(¢) # 0. Then

which means that 4 () can not stay constant.

Hence, (t) = 0 is the only possible trajectory for which V (z) = 0,
and the LaSalle theorem gives global asymptotic stability.
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Invariant Sets

Definition: A set M is invariant with respectto © = f(x), if
z(0) € M implies that z(t) € M forall t > 0.

Definition: x(¢) approaches a set M as t — o0, if for each € > 0
thereis a 7' > 0 such that dist(x(t), M) < eforallt > T Here
dist(p, M) = infepr [|p — |-
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LaSalle’s Invariant Set Theorem

Theorem: Let () C R" be a compact set invariant with respect to

i = f(x). LetV : R" — R be a C" function such that V' (z) < 0
for z € Q. Let E be the set of points in Q where V (z) = 0. If M is
the largest invariant set in F, then every solution with 2(0) € €2
approaches M ast — oo.

= T

Note that V' does not have to be a positive definite function.
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Example—Periodic Orbit

Show that x(t) approaches {z : ||z|| = 1} U {0} for
iy = @1 — w9 — a1 (2} + 23)
By = 21 + 2y — wo(a] + 23)

It is possible to show that 2 = {||z|| < R} is invariant for sufficiently
large R > 0. Let V(x) = (27 + 23 — 1)

) 1% d
V(r) = s () = 2(a} 4 25 — 1)@@% + 23— 1)
= 2@t 4+l —1)*2? +23) <0, Ve
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E={zeQ:V(z)=0}={z: ||z]| =1} U{0}
The largest invariant set of F is M = E because

d
a(xf—i—xg —1) =2 +a25—1)(z]+25) =0 forx € M
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