
Mobila appliaktioner och
trådlösa nät,
HI1033,
HT 2012

Today:
- Challengers with mobile
 services
 - Platforms
 - Android

What is a Mobile Service?

What is a Mobile Service?

Mobile devices

Pico Pocket Palm Pad Lap Desk

 Mobile PDA E-reader Laptop PC

 Smartphone Net-book

 Tablet

Smartphone vs Feature phone

• Smartphone - “A handheld computer integrated within a mobile telephone”

• Smartphones run complete operating system software providing a platform for
application developers

• Common features (italics: usually not on a feature phone)
- Play media
- Connect to internet
- Touch screen
- Hard/Soft keyboard
- Run third party software (e.g. J2ME or “apps”)
- Run third party software written in a native language
- Additional devices like WiFi, GPS, accelerometer, …
- Access to hardware

Market

Market

Computer Sweden, februari 2012

Some platforms

• iPhone, iPad (derived from Mac OS X, Unix-like). API: Objective C.

• Symbian OS (derived from EPOC). API: C++.
Open source, today maintained by Nokia.

• Android. Linux kernel + Dalvik Virtual Machine running applications. API in
Java dialect.
Open source, maintained by Open Handset Alliance

• Windows Phone. Operating system with 3rd party and Microsoft services.

• Java Micro Edition: Cross platform; runs on a virtual machine on top of other
OS. Designed for embedded systems. Down-scaled Java API.

Some Smartphone platforms
Q2 2012. Källa: Millennial Media

Market; App Stores

• Revolution in distribution of mobile applications.

• Applications available for download “over the air” (June 2011)
- App Store: 400 000 (from approximately 30 000 developers)
- Google Play (tidigare Android Market): 400 000
- Windows Phone Marketplace: > 20 000
- BlackBerry AppWorld: > 30 000

• App Store 2009:
Every app store user spends an average of €4.37 every month.
There is over 58 million app store users.

Typical Smartphone specs

iPhone 5 Samsung
Galaxy S III

Typical PC

Mass storage 16-64 GB 16-64 GB
(microSD, up
to 64 GB)

1 TB

RAM

1 GB 1 GB 8-16 GB

Processor Dual-core
1.2 GHz

Quad-core
Cortex-A9
1.4 GHz

3-3.5 GHz*

Battery Stand
by/Talk

300 hours/420
minutes

220 hours/480
minutes

-

Expect this when developing software for limited
devices such as smartphones

• Limited memory capacity and processor speed

• Network: High latency, low speeds. Might be associated with a cost(!)

• Small screens, of different sizes

• Application might get interrupted at any time(!)

• Hardware-imposed design considerations

• Design with this in mind:
 Be efficient and be responsive

What’s consuming memory, processor resources
and battery?

• Memory
- Unnecessary allocation of objects
- Inefficient data structures
- Size of application code(!)
- Multiple processes

• Processor recources
- Inefficient algorithms
- Garbage Collection(!)
- Multiple processes and threads
- Rendering of GUI
- Unnessecary polling

• Battery
- Processor working
- Network communication, especially when using WiFi

Mobile Internet Services

Telecom

• GSM, GPRS, EDGE, 3G and 4G

• Network and Services is often connected

Datacom

• Local IEEE 802.11 networks (WiFi)

• Network and Services is separated

Challenges with mobile data

• Low bandwidth, Frequency vs. Bandwidth

• GSM, GPRS, EDGE, 3G/4G, WLAN, LAN

• Wireless connection using different networks

• Datacom vs. Telecom - Best effort vs. Quality of Service

• Cost and distance

• Push vs. Pull

• Question regarding benefit, design and standards

Java Micro Edition

• In the middle of the 90s OAK was developed (Java predecessor)
1999 Palm included KVM (Kilobyte Virtual Machine)

• Supposed to work on:
- “high-end” PDA and
cellular phones
- set-top boxes, TV,
embedded
- smart cards

• Limitations that have had great impact on the development of Java ME:

• Capacity; CPU and Memory

• 16 MHz to 1G Hz

• 128 kb to 128 Mb RAM

• Power

• Connection

• User Interface and physical form

Java Micro Edition, Limitations

CLDC and CDC

• Two different Java ME configurations:

• CLDC (Connected Limited Device Configuration) Focus on the most limited
devices

• CDC (Connected Device Configuration) Devices that almost handle a
complete Java environment

• Why:

• One common ground for similar devices

• Keep “core” API’s between different devices

• Define requirements on virtual machines

Java Micro Edition

• There are billions of Java ME enabled mobile phones and PDAs

• Java ME might become an old technology, as it is not used on any of today's
newest mobile platforms;
e.g. iPhone, Android, Windows Phone 7, BlackBerry's new QNX

• http://www.oracle.com/technetwork/java/javame/overview/index.html

http://www.oracle.com/technetwork/java/javame/overview/index.html

At last…

• Android is: A mobile device platform including
an OS based on the Linux kernel, middleware
and key applications

• Designed to support many different hardware devices

• Applications run on the Dalvik Virtual Machine

• An extensive API, including most Java SE classes, for 3rd party application
development

• Available under a free software / open source license (no license cost)
Standard maintained by Open Handset Alliance, a consortium including
Texas Instruments, Google, HTC, Intel, Motorola, SonyEricsson, Samsung, ...

The Android Software Stack

The Dalvik VM

• Every Android application runs in its own process, with its own instance of the
Dalvik virtual machine.

• And, yes, Dalvik has been written so that a device can run multiple VMs
efficiently.

• The Dalvik VM executes files in the Dalvik Executable (.dex) format which is
optimized for minimal memory footprint

• JIT, Just-In-Time compilation enhance performance (since Android 2.2)

• Android starts the process when any of the application's code needs to be
executed.
The process is shut down when it's no longer needed and system resources
are required by other applications

Android applications

• Android applications don't have a single entry point (no main method)
Instead: Consists of essential components that the system can instantiate and
run as needed

• Activities presents a visual user interface (holding View components)

• Services doesn't have a visual user interface, but rather runs in the
background

• Broadcast receivers receive and react to broadcast announcements, e.g.
battery is low

• Content providers makes a specific set of the application's data available to
other applications

Android applications, Activities

• When the first of an application's components needs to be run, Android starts
a Linux process for it with a single thread of execution.

• By default, all components of the application run in that process and thread.

An activity has essentially three states:

• active or running when it is in the foreground

• paused if it has lost focus but is still visible to the user

• stopped if it is completely obscured by another activity

Android applications, Activities

• A paused or stopped activity retains all state and member information,
however…

• …the system can drop it from memory when memory is needed elsewhere

• As an activity transitions from state to state, it is notified of the change by calls
to the following protected methods:

• void onCreate(Bundle savedInstanceState)
void onStart()
void onRestart()
void onResume()
void onPause()
void onStop()
void onDestroy()

Activity lifecycle

Android applications, Activities

package se.kth.hello;

import android.app.Activity;
import . . .;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setText("Hello, Android");
 setContentView(tv);
 }
}

Alternative: layout defined in layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, Android" />

</LinearLayout>

Alternative (cont): “load” layout in actvivity

package se.kth.hello;

import android.app.Activity;
import . . .;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 TextView tv = (TextView) this.findViewById(R.id.textView);
 tv.setText("Hello, Android");
 }
}

Android from the developer perspective

• High level Java APIs for accessing hardware such as camera, GPS,
accelerometer – same interface for different devices

• Native and 3rd party applications are treated equal. You may
- replace native applications
- access the same underlying data and hardware
- use components of native applications

• Reuse of application components (Activities) in other applications possible

• Support for background services

• WebKit, persistent storage using SQLite, OpenGL, …

Android from the perspective of the developer

APIs including

• WiFi hardware access. GSM and 3G for telephony or data transfer

• GPS

• Bluetooth

• HTML 5 WebKit-based browser

• Hardware accelerated graphics (if possible) including OpenGL

• And more…

Some ”Designing For Performance” guide lines

• Memory management
- Avoid creating unnessecary objects
- When concatenating text in a loop – use a StringBuffer instead of Strings

• Minimize (virtual) method calls
- Avoid internal use of getters and setters
- Declare methods that don’t access member fields as ”static”

• Use the ”for-each” loop except for arrays and ArrayLists

• Know and use the API-libraries – they are probably more efficient than your
custom code (e.g. animations)

• Use events +callbacks methods instead of polling for data

Android – where to go from here?

• This is where you find it all:
http://developer.android.com/index.html

• More on developing for performance:
Meier, pp 30-38
http://developer.android.com/guide/practices/design/performance.html

http://developer.android.com/index.html
http://developer.android.com/guide/practices/design/performance.html

	Mobila appliaktioner och trådlösa nät, �HI1033, �HT 2012��
	What is a Mobile Service?
	What is a Mobile Service?
	Mobile devices
	Smartphone vs Feature phone
	Market
	Market
	Some platforms
	Some Smartphone platforms
	Market; App Stores
	Typical Smartphone specs
	Expect this when developing software for limited devices such as smartphones
	What’s consuming memory, processor resources and battery?
	Mobile Internet Services
	Challenges with mobile data
	Java Micro Edition
	Java Micro Edition, Limitations
	CLDC and CDC
	Java Micro Edition
	At last…
	The Android Software Stack
	The Dalvik VM
	Android applications
	Android applications, Activities
	Android applications, Activities
	Activity lifecycle
	Android applications, Activities
	Alternative: layout defined in layout/main.xml
	Alternative (cont): “load” layout in actvivity
	Android from the developer perspective
	Android from the perspective of the developer
	Some ”Designing For Performance” guide lines
	Android – where to go from here?

