2-10 Problems

P-2.1 Define $x(t)$ as

$$
x(t)=3 \cos \left(\omega_{0} t-\pi / 4\right)
$$

For $\omega_{0}=\pi / 5$, make a plot of $x(t)$ that is valid over the range $-10 \leq t \leq 20$.

P-2.2 Figure P-2.2 is a plot of a sinusoidal wave. From the plot, determine values for the amplitude (A), phase (ϕ), and frequency $\left(\omega_{0}\right)$ needed in the representation:

$$
x(t)=A \cos \left(\omega_{0} t+\phi\right)
$$

Give the answer as numerical values, including the units where applicable.

Figure P-2.2

P-2.7 Simplify the following expressions:
(a) $3 e^{j \pi / 3}+4 e^{-j \pi / 6}$
(b) $(\sqrt{3}-j 3)^{10}$
(c) $(\sqrt{3}-j 3)^{-1}$
(d) $(\sqrt{3}-j 3)^{1 / 3}$
(e) $\Re i e\left\{j e^{-j \pi / 3}\right\}$

Give the answers in both Cartesian form $(x+j y)$ and polar form $\left(r e^{j \theta}\right)$.

P-A. 6 Simplify the following complex-valued sum:

$$
z=e^{j 9 \pi / 3}+e^{-j 5 \pi / 8}+e^{j 13 \pi / 8}
$$

Give the numerical answer for z in polar form. Draw a vector diagram for the three vectors and their sum (z).

P-A. 8 Solve the following equation for z :

$$
z^{4}=j
$$

Be sure to find all possible answers, and express your answer(s) in polar form.

