
This text can be used to replace Section 4.3 i Bretschers book.

1. Representing linear maps with matrices

1.1. Linear maps. Throughout the text we let V ⊆ Rm and W ⊆
Rn be two subvector spaces of Euclidan spaces. Recall that a map
T : V −→ W is linear if

T (a~x + b~y) = aT (~x) + bT (~y)

for all vectors ~x and ~y in V , and all scalars a and b. What we want
explain is how a linear map T : V −→ W between vector spaces is to
be represented by matrices. In the course we have earlier discussed the
situations with V = W = Rn.

1.2. Bases. In order to represent the linear map T : V −→ W with a
matrix, we need to fix bases for the vector spaces V and W . We know
that bases exists, and therefore we imagine that we have fixed bases.
Let B be a basis of V , and let C be a basis for W . Thus, if V is of
dimension p, we have that B consists of p vectors (~e1, . . . ~ep) that are
linearly independent and that span V . Similiarly if W is of dimension

q, then C = (~f1, . . . , ~fq).

1.3. Coordinate matrix. Recall that for any vector ~w in W we will
with

[
w
]
C

mean the coordinate matrix of the vector ~w with respect to

the basis C. Thus, since C = (~f1, . . . , ~fq) is a basis of W we know that
there are unique scalars a1, . . . , aq such that

~w = a1 ~f1 + a2 ~f2 + · · ·+ aq ~fq.

The coordinate matrix of ~w with respect to the basis C is simply

[
~w
]
C

=


a1
a2
...
aq

 .

1.4. Matrix representing the map. Returning to our linear map
T : V −→ W , we construct the matrix

(1.4.1) AT =
[[
T (~e1)

]
C

[
T (~e2)

]
C
· · ·
[
T (~ep)

]
C

]
Note that the matrix AT has p columns, where p is the dimension of V .
The first coloumn in the matrix is the coordinate matrix of the vector
T (~e1), in W , with respect to the basis C. The second coloumn is the
coordinate matrix of T (~e2), and so on. Note also that matrix is of size
(q × p), where q = dim(W ) and p = dim(V ).
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Proposition 1.5. Let T : V −→ W be a linear map between vector
spaces. Let B = (~e1, . . . , ~ep) be a basis of V , and let C be a basis of W ,
and let AT be the matrix 1.4.1. Then we have, for any vector ~x ∈ V
that [

T (x)
]
C

= AT

[
~x
]
B
.

Proof. The proof is just a matter of writing down what the formula in
the Proposition states, and we leave that for the reader. �

Example 1.6. Let V = Rm, and W = Rn, and that the bases we have
fixed for V and W are both the standard bases. Then, for any linear
map T : V −→ W the matrix representation given in the Proposition,
is the standard matrix discussed in the very beginning of the course.

Example 1.7. Let V = Rm, and W = Rn, and let B be a basis for V
and C be a basis for W . For any linear map T : V −→ W the matrix
in the proposition is the matrix of a linear transformation discussed in
Section 3.4 in the book.

Example 1.8. Let V = Rm = W , and let T : V −→ V be the identity
map. Then, by fixing one basis B for the domain V , and another basis
C for the target V , the proposition gives a matrix AT that is called the
change of basis matrix.

Example 1.9. For further examples, see Exercises 60, 61, 62, and 63
in Bretscher. See also Uppgift 7, Tentamen 2010 10 22, and Uppgift
10, Tentamen 2010 06 05.

1.10. Further ahead. In the end of the course, we will be looking
at the following situation. We have a linear map T : V −→ V , and
in fact we will have V = Rn. Then we choose one basis B both for
the target and the domain. And by the proposition we get a matrix
A representing the linear map T : V −→ V with respect to the fixed
basis B, for target and domain. Then we fix another basis C for target
and domain, and we get a matrix D representing the same linear map
T : V −→ V , but with respect to the basis C in target and domain. We
are interested in the relation between these two matrices A and D.

1.11. A commutative diagram. Before, giving that relation, we should
agree on that the following diagram obviously commute

(1.11.1) V
T //

id
��

V

id
��

V
T // V

where id : V −→ V is the identity map. And commute means simply
that if start in the left upper corner V , and the following the arrows
down to the lower right corner, it does not matter which arrows we
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follow. Indeed, let ~x be a vector, then the commutativity of the diagram
reads

idT (~x) = T id(~x).

1.12. Commutative diagram and matrices. However, in the com-
mutative diagram we have that the four arrows represent a linear map.
When we fix a basis for the target and domain, the linear map is rep-
resented by a matrix, the proposition above tells us. In the upper hori-
zontal line we fix the basis C for both target and domain, and then the
linear map T : V −→ V is represented by the matrix D. In the lower
horizontal line we fix the basis B, and then the linear map T : V −→ V
is represented by the matrix A. The vertical arrow id: V −→ V is rep-
resented by the matrix P , which is the change of basis matrix from the
basis C to the basis B. Now, the commutativity above is rephrased as
the identity of matrices

PD = AP.

Remember that composition of functions is done from the right. So,
PD means that first apply the function representing D, and thereafter
P . Thus PD corresponds to the upper right arrow composed with the
rightmost vertical arrow. And AP represents the left most vertical
arrow, composed with the lower horizontal arrow.

The change of basis matrix P is invertible, and the invers is simply
the change of basis from the basis B to C. Thus, the identity PD = AP
we can also write as

D = P−1AP.

1.13. Here is a claim. Remembering the identity D = P−1AP will
not be of much help, however remembering the trivial fact that the
diagram 1.11.1 commutes will be very useful when dealing with eigen-
vectors and the diagonalization problem.


