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so what's a file

• a sequence of bytes
– does it have to be of finite length?

• associated meta-data
– size and type
– owner and permissions
– author
– created, last written
– icons, fonts, presentation....
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so what's a file system

• Procedures for:
– creating and deleting a file 
– manipulating the content of a file
– associating  a file with a name 
– organizing files
– checking authentication and 

authorization
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file names and files

file name:bar

file name:zot

file

file name:foo

soft link
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the API in UNIX

• fd = create(name, mode)
• fd = open(name, mode)
• status = close(fd)
• count = read(fd, buffer, n)
• count = write(fd, buffer, n)
• offset = lseek(fd, offset, set/cur/end)
• status = unlink(name)
• status = link(name, name)
• status = stat(name, buffer)
• ...   locking?
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programing language API

• Programing languages often provide an 
API that improves file operations. 

• Buffering of write operations to reduce 
the number of system calls.

• Sometimes you must do things by hand, 
for example flushing of buffers.

• Language API could be limited in giving 
you full access to operating system API.
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Operating systems and files

fd:0 
fd:1 
fd:2 
fd:3 

proc #14

processes i-node  

access 
location 

size 

file table 

offset:45 
ptr: 

file

open files



8
Distributed Systems ID2201

sharing files: open twice 
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processes
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proc #14

 

proc #14

file table i-node/file
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sharing files: fork 

 

proc #14

processes

 

proc #15
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file table i-node/file

 

offset: 
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one-copy semantics

• Most file systems give us a one-copy 
semantics 
– we expect operations  to be visible by everyone 

and that everyone see the same file
– if I tell you that the file has been modified the 

modification should be visible

• We might be surprised when other 
processes access the file but this does not 
violate the one-copy view.
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consistency
• How do we provide a consistent interface to 

shared files?
• What does it mean to set the offset to the 

last position in the file?
• We need atomic operations that perform 

several operations in a unbroken sequence.
– open, or if it does not exists then create
– append to the end of the file
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Distributed File System

• Challenge:
– make a file system available to 

several distributed clients
• Semantics:

– keep the one-copy view
• Performance:

– comparable to non-distributed 
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Distributed architecture

client
module

app. app.
server module

directory service 

file service

directory service: maps file names to unique file descriptors

file service: performs operations on files given file descriptors
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the directory service

• What operations do we need?
– Lookup(Dir, Name) -> FileId
– AddName(Dir, Name, FileId)
– UnName(Dir, Name)
– GetNames(Dir) -> NameSeq

• Note – the directory service only handles 
how names are mapped to file identifiers.
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the file service

• What operations should be provided
– create and delete
– read and write

• Do we need a open operation?
– What does open do in Unix?
– What do we need if we don't have 

an open operation?
– What would the benefit be?
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stateless server

• What are the benefits of a stateless 
server?
– In what sense is it stateless?

• How can we maintain a session state 
while keeping the server stateless?

• Give me examples of other systems 
where this is used.
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How to handle security?

• In Unix, permissions are checked 
when a file is opened.

• Access to the file can then be done 
without security control.

• If we do not have a open operation 
how can we perform authentication 
and authorization control? 
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Open
open(foo,r)

Lookup(foo)

FileId
Create a virtual i-node 
that keeps FileId for 
future operations.

Create a file table
entry and return a 
local fd.

fd
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Read
read(fd,buffer,n)

“HELLO WORLD”

read(FileId,i,n)

Lookup the offset i and
remote FileId.

Update the file
offset, i = i+n.“HELLO WORLD”
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Write
write(fd,buffer,n)

ok

write(FileId,i,Data)

Lookup the offset i and
remote FileId.

Update the file
offset, i = i+n.ok



21
Distributed Systems ID2201

Problems

• Network
– What happens if a write message is 

lost? 
• Authorization

– How do we know that a client has 
authorization?

• Performance
– Every read and write operation will 

now require a message round trip.
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Caching

• Keep read sections of a file in a client 
cache.

• Read and write operations can now be 
done locally if segment is in the cache.

• Consistency
– How do we know that the file has 

not been changed on the server?
– If we write to a file in cache only, no 

one will see it.
– Can we have two copies of a file?
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NFS – network file system

• Developed by Sun, 1984
• Implemented using RPC  (Open Network 

Computing)
• Public API: RFC 1094, 1813, 3530
• Originally used UDP, later versions have 

support for TCP to improve performance 
over WAN

• Mostly used with UNIX systems but client 
on all platforms available.
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NFS

virtual fs

app.

virtual fs

local
fs

NFS
server

local
fs

NFS
client
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NFS server caching

• Server will open files on request and keep 
a copy in memory.

• When are write operations performed?
– for each client write?
– when a file is closed? (is there a close?)

– write-through or commit when closed
• What happens if the server crashes?



26
Distributed Systems ID2201

NFS client caching

• In a read operation a segment (8Kbyte) 
is cached by the client.

• Read operations can read from the 
cache if the entry is still valid (more on 

this).
• Write operations are done locally and 

the segment is scheduled to be sent to 
 the server.
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NFS entry validation

• Each cache entry have two time-
stamps.
– Tc : time the entry was validated 
– Tm: time file modified by server

• An entry is valid at time T if either:
– T – Tc < some value t (3-30s)

– Tm(at server) = Tm(at client)
• If Tm is checked then Tc is set to T.
• If segment has been modified a new 

copy is read.
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NFS – caching and consistency

• How could we have an inconsistency?
• How much do we dare to gamble?
• How are write operations handled:

– When should we update the server?
– Can we loose data?
– When are we sure that our write 

operation succeeded? 
• NFS tries to provide read and write 

operations that give us a one-copy 
semantics.
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AFS – Andrew File System

• Developed by Carnegie Mellon University
• Clients for most platforms, OpenAFS (from 

IBM), Arla (a KTH implementation).
• Used mainly in WAN (Internet) where the 

overhead of NFS would be prohibitive.
• Relies on caching of whole files and 

infrequent sharing of writable files. 
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AFS

local fs

app. AFS
client

AFS
server

server fs

Venus Vice
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AFS - caching

• Opening a file will create a copy in the  
local file system.

• All read/write operations directed to the 
local copy.

• Server will notify a client if another client 
modifies the same file, a callback promise.

• A closed modified file is copied back to the 
server.

• A client can flush a file and thereby force a 
copy to the server. 
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AFS – callback promise

• Each cached copy is tagged with a local 
modified time and a valid or canceled  
promise.

• A cached file can be re-opened if the 
promise is valid.

• Promises can be canceled by the server or 
by a time out (few minutes).

• Canceled promises can be made valid after 
asking the server if the local modified time 
is the most resent copy.
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AFS -consistency

• How much is a promise worth?
– Does a promise prevent other 

clients from modifying the file?
– What happens if two clients update 

the same file?
– What if a call-back is lost?
– In which situations will AFS not 

work?
– Only close() or also fsync()?
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SMB

• Service Message Block (SMB) was originally 
developed by IBM but then modified by 
Microsoft, now also under the name Common 
Internet File System (CIFS).

• Not only file sharing but also name servers, 
printer sharing etc.

• Samba is an open source reimplementation of 
SMB by Andrew Tridgell.
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SMB semantics

• SMB uses client locks to solve the one-
copy view problem.
– A client can open a file an lock it; all read 

and write operations in client cache.
– A read only lock will allow multiple clients to 

cache and read a file.
– Locks can be revoked by the server forcing 

the client to flush any changes.

• In a unreliable or high latency network, 
locking can be dangerous and counter 
productive. 
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More distributed file systems

• Reliability
– Google File System

• Mobility
– Unison

• Web servers and proxies
– Squid

• Version control
– CVS, Subversion
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Summary

• We would like to provide a transparent file 
system 
– one-copy view
– performance

• Caching is key to performance but makes 
a one-copy view hard to maintain.

• Different usage pattern and network 
properties could require different solution.
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