
1
Distributed Systems ID2201

Distributed Systems
ID2201

distributed file systems
Johan Montelius

2
Distributed Systems ID2201

so what's a file

• a sequence of bytes
– does it have to be of finite length?

• associated meta-data
– size and type
– owner and permissions
– author
– created, last written
– icons, fonts, presentation....

3
Distributed Systems ID2201

so what's a file system

• Procedures for:
– creating and deleting a file
– manipulating the content of a file
– associating a file with a name
– organizing files
– checking authentication and

authorization

4
Distributed Systems ID2201

file names and files

file name:bar

file name:zot

file

file name:foo

soft link

5
Distributed Systems ID2201

the API in UNIX

• fd = create(name, mode)
• fd = open(name, mode)
• status = close(fd)
• count = read(fd, buffer, n)
• count = write(fd, buffer, n)
• offset = lseek(fd, offset, set/cur/end)
• status = unlink(name)
• status = link(name, name)
• status = stat(name, buffer)
• ... locking?

6
Distributed Systems ID2201

programing language API

• Programing languages often provide an
API that improves file operations.

• Buffering of write operations to reduce
the number of system calls.

• Sometimes you must do things by hand,
for example flushing of buffers.

• Language API could be limited in giving
you full access to operating system API.

7
Distributed Systems ID2201

Operating systems and files

fd:0
fd:1
fd:2
fd:3

proc #14

processes i-node

access
location

size

file table

offset:45
ptr:

file

open files

8
Distributed Systems ID2201

sharing files: open twice

proc #14

processes

proc #37

proc #14

proc #14

proc #14

file table i-node/file

offset:

offset:

9
Distributed Systems ID2201

sharing files: fork

proc #14

processes

proc #15

proc #14

proc #14

proc #14

file table i-node/file

offset:

10
Distributed Systems ID2201

one-copy semantics

• Most file systems give us a one-copy
semantics
– we expect operations to be visible by everyone

and that everyone see the same file
– if I tell you that the file has been modified the

modification should be visible

• We might be surprised when other
processes access the file but this does not
violate the one-copy view.

11
Distributed Systems ID2201

consistency
• How do we provide a consistent interface to

shared files?
• What does it mean to set the offset to the

last position in the file?
• We need atomic operations that perform

several operations in a unbroken sequence.
– open, or if it does not exists then create
– append to the end of the file

12
Distributed Systems ID2201

Distributed File System

• Challenge:
– make a file system available to

several distributed clients
• Semantics:

– keep the one-copy view
• Performance:

– comparable to non-distributed

13
Distributed Systems ID2201

Distributed architecture

client
module

app. app.
server module

directory service

file service

directory service: maps file names to unique file descriptors

file service: performs operations on files given file descriptors

14
Distributed Systems ID2201

the directory service

• What operations do we need?
– Lookup(Dir, Name) -> FileId
– AddName(Dir, Name, FileId)
– UnName(Dir, Name)
– GetNames(Dir) -> NameSeq

• Note – the directory service only handles
how names are mapped to file identifiers.

15
Distributed Systems ID2201

the file service

• What operations should be provided
– create and delete
– read and write

• Do we need a open operation?
– What does open do in Unix?
– What do we need if we don't have

an open operation?
– What would the benefit be?

16
Distributed Systems ID2201

stateless server

• What are the benefits of a stateless
server?
– In what sense is it stateless?

• How can we maintain a session state
while keeping the server stateless?

• Give me examples of other systems
where this is used.

17
Distributed Systems ID2201

How to handle security?

• In Unix, permissions are checked
when a file is opened.

• Access to the file can then be done
without security control.

• If we do not have a open operation
how can we perform authentication
and authorization control?

18
Distributed Systems ID2201

Open
open(foo,r)

Lookup(foo)

FileId
Create a virtual i-node
that keeps FileId for
future operations.

Create a file table
entry and return a
local fd.

fd

19
Distributed Systems ID2201

Read
read(fd,buffer,n)

“HELLO WORLD”

read(FileId,i,n)

Lookup the offset i and
remote FileId.

Update the file
offset, i = i+n.“HELLO WORLD”

20
Distributed Systems ID2201

Write
write(fd,buffer,n)

ok

write(FileId,i,Data)

Lookup the offset i and
remote FileId.

Update the file
offset, i = i+n.ok

21
Distributed Systems ID2201

Problems

• Network
– What happens if a write message is

lost?
• Authorization

– How do we know that a client has
authorization?

• Performance
– Every read and write operation will

now require a message round trip.

22
Distributed Systems ID2201

Caching

• Keep read sections of a file in a client
cache.

• Read and write operations can now be
done locally if segment is in the cache.

• Consistency
– How do we know that the file has

not been changed on the server?
– If we write to a file in cache only, no

one will see it.
– Can we have two copies of a file?

23
Distributed Systems ID2201

NFS – network file system

• Developed by Sun, 1984
• Implemented using RPC (Open Network

Computing)
• Public API: RFC 1094, 1813, 3530
• Originally used UDP, later versions have

support for TCP to improve performance
over WAN

• Mostly used with UNIX systems but client
on all platforms available.

24
Distributed Systems ID2201

NFS

virtual fs

app.

virtual fs

local
fs

NFS
server

local
fs

NFS
client

25
Distributed Systems ID2201

NFS server caching

• Server will open files on request and keep
a copy in memory.

• When are write operations performed?
– for each client write?
– when a file is closed? (is there a close?)

– write-through or commit when closed
• What happens if the server crashes?

26
Distributed Systems ID2201

NFS client caching

• In a read operation a segment (8Kbyte)
is cached by the client.

• Read operations can read from the
cache if the entry is still valid (more on

this).
• Write operations are done locally and

the segment is scheduled to be sent to
 the server.

27
Distributed Systems ID2201

NFS entry validation

• Each cache entry have two time-
stamps.
– Tc : time the entry was validated
– Tm: time file modified by server

• An entry is valid at time T if either:
– T – Tc < some value t (3-30s)

– Tm(at server) = Tm(at client)
• If Tm is checked then Tc is set to T.
• If segment has been modified a new

copy is read.

28
Distributed Systems ID2201

NFS – caching and consistency

• How could we have an inconsistency?
• How much do we dare to gamble?
• How are write operations handled:

– When should we update the server?
– Can we loose data?
– When are we sure that our write

operation succeeded?
• NFS tries to provide read and write

operations that give us a one-copy
semantics.

29
Distributed Systems ID2201

AFS – Andrew File System

• Developed by Carnegie Mellon University
• Clients for most platforms, OpenAFS (from

IBM), Arla (a KTH implementation).
• Used mainly in WAN (Internet) where the

overhead of NFS would be prohibitive.
• Relies on caching of whole files and

infrequent sharing of writable files.

30
Distributed Systems ID2201

AFS

local fs

app. AFS
client

AFS
server

server fs

Venus Vice

31
Distributed Systems ID2201

AFS - caching

• Opening a file will create a copy in the
local file system.

• All read/write operations directed to the
local copy.

• Server will notify a client if another client
modifies the same file, a callback promise.

• A closed modified file is copied back to the
server.

• A client can flush a file and thereby force a
copy to the server.

32
Distributed Systems ID2201

AFS – callback promise

• Each cached copy is tagged with a local
modified time and a valid or canceled
promise.

• A cached file can be re-opened if the
promise is valid.

• Promises can be canceled by the server or
by a time out (few minutes).

• Canceled promises can be made valid after
asking the server if the local modified time
is the most resent copy.

33
Distributed Systems ID2201

AFS -consistency

• How much is a promise worth?
– Does a promise prevent other

clients from modifying the file?
– What happens if two clients update

the same file?
– What if a call-back is lost?
– In which situations will AFS not

work?
– Only close() or also fsync()?

34
Distributed Systems ID2201

SMB

• Service Message Block (SMB) was originally
developed by IBM but then modified by
Microsoft, now also under the name Common
Internet File System (CIFS).

• Not only file sharing but also name servers,
printer sharing etc.

• Samba is an open source reimplementation of
SMB by Andrew Tridgell.

35
Distributed Systems ID2201

SMB semantics

• SMB uses client locks to solve the one-
copy view problem.
– A client can open a file an lock it; all read

and write operations in client cache.
– A read only lock will allow multiple clients to

cache and read a file.
– Locks can be revoked by the server forcing

the client to flush any changes.

• In a unreliable or high latency network,
locking can be dangerous and counter
productive.

36
Distributed Systems ID2201

More distributed file systems

• Reliability
– Google File System

• Mobility
– Unison

• Web servers and proxies
– Squid

• Version control
– CVS, Subversion

37
Distributed Systems ID2201

Summary

• We would like to provide a transparent file
system
– one-copy view
– performance

• Caching is key to performance but makes
a one-copy view hard to maintain.

• Different usage pattern and network
properties could require different solution.

	Title
	descr
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

