OPTIMAL FILTERING

LECTURE 1

- 1. Formalities
- KTH VETENSAN ON KONST
- 2. Some background
- 3. Least-squares estimation
- 4. Conditional mean
- 5. Linear least-squares estimation
- 6. Example with Gaussian distribution
- 7. Computational complexity and displacement rank

Björn Ottersten, Mats Bengtsson

1

Optimal Filtering

OPTIMAL FILTERING, FORMAT AND REQUIREMENTS

Two versions of the course!

Master course EQ2800 (6cr)

- 7 weekly lectures, Mats Bengtsson, Magnus Jansson
- 7 sets of weekly homeworks. **Individually formulated** solutions!
- One project assignment, written report. Groups of 2 students.
- Preliminary grading: E=60%, D=65%, C=70%, B=80%, A=90% on the homeworks.
- Course web page: www.kth.se/social/course/EQ2800

OPTIMAL FILTERING, FORMAT AND REQUIREMENTS PhD course FEM3200 (10cr)

- 9 weekly lectures, Mats Bengtsson, Magnus Jansson
- 8 sets of weekly homeworks. **Individually formulated** solutions!

- One project assignment, written report. Groups of 2 students.
- Group-wise peer grading of homework
- Individual presentation on selected topic
- Take home examination (72 hours).
- Grade: Pass/Fail
- Prel. requirements: $\geq 70\%$ on homeworks+ $\geq 50\%$ on final exam.
- Webpage: www.kth.se/social/group/optimal-filtering-ph

Björn Ottersten, Mats Bengtsson

3

Optimal Filtering

OPTIMAL FILTERING

BRIEF COURSE OUTLINE

- 1. Some Basic Estimation Theory and Geometric Interpretation
- 2. Wiener Filters, Continuous Time and Discrete Time
- 3. Discrete Time Kalman Filters

- 4. Innovations Process
- 5. Stationary Kalman Filter, spectral properties
- 6. Smoothing (fixed-point, fixed-lag, fixed-time)
- 7. Non-linear filtering
-
- 8. Continuous Time Kalman Filters
- 9. Numerical and computational issues

WHAT?

Linear least-squares estimation of signals with finite dimensional state-space models

WHY?

Filtering – Prediction –Smoothing problems in a wide range of engineering and scientific disciplines

Björn Ottersten, Mats Bengtsson

5

Optimal Filtering

Wно?

Babylonians \Longrightarrow Galilei \Longrightarrow Gauss ...

Kolmogorov
Krein
Wold

discrete time
stationary processes

WHO? (CONT.)

Wiener (Hopf) continuous time stationary processes

Kalman 1960 (Bucy, Stratonovich) Swerling 1958

Kailath
B.D.O. Anderson
Wonham, Rissanen ...

Björn Ottersten, Mats Bengtsson

7

Optimal Filtering

SWEDISH WORK

Zachrisson

Åström

Mårtensson

Ljung

Lindquist

Hedelin

For a historical account see the reference:

T. Kailath "A view of three decades of linear filtering theory", IEEE Trans. on Information Theory 1974 page 146—.

8

Björn Ottersten, Mats Bengtsson

Optimal Filtering

LEAST-SQUARES ESTIMATION

Generic Problem

Estimate x, given $\{y_0, \ldots, y_N\}$ so as to minimize

$$\mathbb{E}\{x - h(y_0, \dots, y_N)\}^2$$

Björn Ottersten, Mats Bengtsson

9

Optimal Filtering

LEAST-SQUARES ESTIMATION (CONT.)

Why Least-Squares?

- explicit in terms of conditional mean
- for Gaussian random variables, the LS estimate is a linear function of the observations
- linear LS estimates depend only on first and second order statistics of the random variables involved
- conditional expectation connections with martingale theory useful in signal detection

LEAST-SQUARES ESTIMATION (CONT.)

Theorem:

Let X and Y be two jointly distributed random variables. The least-squares (minimum variance) estimator \hat{X} of X given Y is

$$\hat{X}(Y) = \mathcal{E}_X\{X|Y\}$$

Proof:

$$E\{(x - h(y))^2\} = \int \int f_{XY}(x, y)(x - h(y))^2 dx dy$$
$$= \int \underbrace{f_Y(y)}_{>0} dy \underbrace{\int f_{X|Y}(x|y)(x - h(y))^2 dx}_{\text{minimize}}$$

Björn Ottersten, Mats Bengtsson

11

Optimal Filtering

$$\int f_{X|Y}(x|y)(x-h(y))^2 dx = \int x^2 f_{X|Y}(x|y) dx - 2h(y) \int x f_{X|Y}(x|y) dx + h^2(y)$$

$$= \left(h(y) - \int x f_{X|Y}(x|y) dx\right)^2 + \int x^2 f_{X|Y}(x|y) dx - \left(\int x f_{X|Y}(x|y) dx\right)^2$$

Minimum achieved when

$$h(y) = \int x f_{X|Y}(x|y) dx = E_X\{X|Y\} = \hat{X}(Y)$$

Remark: Note that the minimum *conditional* variance estimate is given by

$$\hat{x} = E\{X|Y = y\}$$
 (not a random variable)

LEAST-SQUARES ESTIMATION (CONT.)

Note that the minimum conditional mean square error is

$$E_X\{(x-\hat{x})^2|Y=y\} = \int x^2 f_{X|Y}(x|y) dx - \left(\int x f_{X|Y}(x|y) dx\right)^2$$
$$= E_X\{x^2|Y=y\} - \hat{x}^2$$

In general this is not the same as the minimum (unconditional) mean square error.

$$E_{X,Y}\{(X - \hat{X}(Y))^2\}$$

However, these are the same in the Gaussian case (show this!).

Björn Ottersten, Mats Bengtsson

13

Optimal Filtering

UNBIASEDNESS

Unbiased estimate

$$E_{X|Y}\{x - \hat{x}\} = \underbrace{E_{X|Y}\{x|Y = y\}}_{\hat{x}} - \hat{x} = 0$$

Unbiased estimator

$$E_{X,Y}{X - \hat{X}(Y)} = E_X{X} - \underbrace{E_Y{E_X{X|Y}}}_{E_X{X}} = 0$$

LEAST-SQUARES ESTIMATION (CONT.)

Problems with this explicit solution are that

- \hat{x} is often a complicated function of $\{y_0, \ldots, y_n\}$
- computation of \hat{x} requires knowledge of the *joint probability* density function $f_{X|Y}(x|Y=y_0,\ldots,y_N)$ which in general is unknown

Björn Ottersten, Mats Bengtsson

15

Optimal Filtering

LINEAR LEAST-SQUARES ESTIMATION

If our estimate of x is restricted to be a linear function of the observations, it turns out that \hat{x} depends only on

$$E{y}$$
 – the mean value

$$E\{(y - E\{y\})(y - E\{y\})^T\}$$
 – the covariance

Tremendous simplification in general and the major reason for focusing on linear least-squares estimation.

Also, if $\{x, y_0, \dots, y_N\}$ are *jointly Gaussian*, the conditional mean is a linear function of the observations.

LINEAR LEAST-SQUARES ESTIMATION

Let X and Y be two real-valued jointly Gaussian random variables with

mean
$$\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$
 and covariance matrix $\begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}$

i.e.

$$\begin{bmatrix} x \\ y \end{bmatrix} \sim N \left(\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix} \right)$$

then the conditional pdf (probability density function) $f_{X|Y}(x|y)$ is Gaussian with

mean $\bar{x} + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \bar{y})$ and covariance matrix $\Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}$

Björn Ottersten, Mats Bengtsson

17

Optimal Filtering

LLSE (CONT.)

$$\implies \hat{x} = \mathbb{E}\{X|Y=y\} = \bar{x} + \Sigma_{xy}\Sigma_{yy}^{-1}(y-\bar{y})$$
 Show this!

Note that \hat{x} is a linear (affine) in the observations y.

Let us constrain \hat{X} to be a linear (affine) function of Y.

$$\hat{X} = hY + q$$

and find h, g so as to minimize the mean square error (mse).

Scalar case:

$$E\{(X - hY - g)^{2}\} = E\{X^{2}\} + h^{2}E\{Y^{2}\} + g^{2}$$
$$-2q\bar{x} + 2q\bar{y}h - 2hE\{XY\}$$

Differentiate $E\{X^2\} + h^2 E\{Y^2\} + g^2 - 2g\bar{x} + 2g\bar{y}h - 2hE\{XY\}$ $\implies g = \bar{x} - h\bar{y} \qquad E\{Y^2\}h = E\{XY\} - g\bar{y}$ $\implies h = \frac{\rho}{\sigma_{x}^2} \text{ and } g = \bar{x} - \rho \frac{\bar{y}}{\sigma_{x}^2}$

where

$$\rho = E\{(X - \bar{x})(Y - \bar{y})\} = E\{XY\} - \bar{x}\bar{y}$$
$$\sigma_y^2 = E\{(Y - \bar{y})^2\} = E\{Y^2\} - \bar{y}^2$$

Thus, the linear least-squares estimate of X given Y is

$$\hat{X} = \bar{x} + \frac{\rho}{\sigma_y^2} (Y - \bar{y})$$

Depends only on first and second order statistics!

Björn Ottersten, Mats Bengtsson

19

Optimal Filtering

LLSE (CONT.)

Vector case is more cumbersome but straight forward (see *Linear Estimation*). We obtain

$$\implies h\Sigma_{yy} = \Sigma_{xy} \quad g = \bar{x} - h\bar{y}$$

$$\hat{X} = \bar{x} + \Sigma_{xy} \Sigma_{yy}^{-1} (Y - \bar{y})$$

LLSE (CONT.)

Reduction to the zero mean case

Replace X and Y by the zero mean random variables $X - \bar{x}$ and $Y - \bar{y}$.

The linear least-squares estimate reduces to

$$\hat{X} = \Sigma_{xy} \Sigma_{yy}^{-1} Y$$

Of course, by substituting the original random variable we retain the original expression.

Thus, we can assume zero mean random variables without loss of generality.

Björn Ottersten, Mats Bengtsson

21

Optimal Filtering

GENERIC SOLUTION

If $\hat{x}_N = \sum_{i=0}^N a_{N,i} y_{N-i}$ then the coefficients $A_N = [a_{N,0} \cdots a_{N,N}]$ are the solution of the linear equations

$$A_N \Sigma_{yy} = \Sigma_{xy}$$

Standard problem but

- 1. takes $O(N^3)$ operations (additions and multiplications) to compute and N may be large!
- 2. often we want to find solutions recursively

$$A_N \to A_{N+1}$$
 and $\hat{x}_N \to \hat{x}_{N+1}$

Therefore we need to impose *more structure* on the random variables $\{y_0, \ldots, y_N\}$ to avoid these problems.

SUMMARY OF RESULTS

Two main classes of assumptions

- 1. Stationarity or near-stationarity (index r)
- 2. Finite dimensionality (the number of states, n, of the stochastic process is finite)

General non-stationary process	$O(N^3)$
Stationary processes	$O(N^2)$
r-stationarity $(1 \le r \le N)$	$O(rN^2)$
General <i>n</i> -state model	$O(Nn^3)$
Stationary n-state model	$O(Nn^2)$
r-stationary n-state model	$O(rNn^2)$

Björn Ottersten, Mats Bengtsson

23

Optimal Filtering

DISPLACEMENT RANK

A measure of the non-stationarity of a stochastic process is provided by the $displacement\ rank,\ r.$

Let $\Sigma_{yy} = \mathbb{E}\{(Y - \bar{y})(Y - \bar{y})^T\}$ be the covariance matrix of $\{y\}$ and

$$Z = \begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ 0 & 1 & 0 & \\ & & \ddots & \ddots \end{bmatrix}$$

The displacement rank is defined as

$$r \stackrel{\triangle}{=} \operatorname{rank}(\Sigma_{yy} - Z\Sigma_{yy}Z^*)$$

What is the displacement rank of a stationary process?

APPLICATIONS

- Adaptive filtering
- Target tracking
- GPS, navigation
- Change detection
- •

Björn Ottersten, Mats Bengtsson

25

Optimal Filtering