OPTIMAL FILTERING

LECTURE 1
1. Formalities
2. Some background

. Least-squares estimation

3

4. Conditional mean

5. Linear least-squares estimation

6. Example with Gaussian distribution

7. Computational complexity and displacement rank
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OPTIMAL FILTERING, FORMAT AND REQUIREMENTS

Two versions of the course!

Master course EQ2800 (6cr)
e 7 weekly lectures, Mats Bengtsson, Magnus Jansson

e 7 sets of weekly homeworks. Individually formulated

solutions!

e One project assignment, written report. Groups of 2 students.

e Preliminary grading: E=60%, D=65%, C=70%, B=80%,
A=90% on the homeworks.

e Course web page: www.kth.se/social/course/EQ2800

Bjorn Ottersten, Mats Bengtsson 2 Optimal Filtering




OPTIMAL FILTERING, FORMAT AND REQUIREMENTS
PhD course FEM3200 (10cr)

e 9 weekly lectures, Mats Bengtsson, Magnus Jansson

8 sets of weekly homeworks. Individually formulated
solutions!

e One project assignment, written report. Groups of 2 students.

e Group-wise peer grading of homework

e Individual presentation on selected topic

e Take home examination (72 hours).

e Grade: Pass/Fail

e Prel. requirements: > 70% on homeworks+ > 50% on final exam.

e Webpage: www.kth.se/social/group/optimal-filtering-ph
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OPTIMAL FILTERING

BRIEF COURSE OUTLINE
Some Basic Estimation Theory and Geometric Interpretation
Wiener Filters, Continuous Time and Discrete Time

Discrete Time Kalman Filters

ol

Innovations Process

5. Stationary Kalman Filter, spectral properties
6. Smoothing (fixed-point, fixed-lag, fixed-time)

7. Non-linear filtering

8. Continuous Time Kalman Filters

9. Numerical and computational issues
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WHAT?

Linear least-squares estimation of signals with finite dimensional

state-space models

Wuay?

Filtering — Prediction —Smoothing
problems in a wide range of engineering and scientific disciplines
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WHO?

Babylonians = Galilei = Gauss ...

Kolmogorov
discrete time
Krein
stationary processes
Wold
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WHO? (CONT.)

Wiener continuous time

(Hopf) stationary processes

Kalman 1960
(Bucy, Stratonovich)
Swerling 1958

KTH Electrical Engineering

Kailath
B.D.O. Anderson
Wonham, Rissanen ...
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SWEDISH WORK

Zachrisson
Astrom
Martensson

Ljung

Lindquist
Hedelin
For a historical account see the reference:

T. Kailath "A view of three decades of linear filtering theory”,
IEEE Trans. on Information Theory 1974 page 146—.
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LEAST-SQUARES ESTIMATION

Generic Problem

Estimate x, given {yo,...,yn} so as to minimize

E{z — h(yo,u-,yN)}Q

Bjorn Ottersten, Mats Bengtsson 9 Optimal Filtering

LEAST-SQUARES ESTIMATION (CONT.)

Why Least-Squares?

e explicit in terms of conditional mean

e for Gaussian random variables, the LS estimate is a linear

function of the observations

e linear LS estimates depend only on first and second order
statistics of the random variables involved

e conditional expectation — connections with martingale theory —

useful in signal detection

Bjorn Ottersten, Mats Bengtsson 10 Optimal Filtering




LEAST-SQUARES ESTIMATION (CONT.)

Theorem:
Let X and Y be two jointly distributed random variables. The

least-squares (minimum variance) estimator X of X given Y is

X(Y) = Ex{X|Y}

B{(x — h(y))*} = / / Fxv (@, y)(@ — h(y))*dady
- / fy (v) dy / Fxiy (2ly) (@ — h(y))?da
=" . /

minimize
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/fX|Y(w|y)(a?—h(y))2dw=/xzfxw(arly)dx—%(y)/a:fX|y(xyy)dx+h2(y)

_ (h(y) B /fo|y(:E|y)de)2 +/w2fxy($|y)dx— (/IfX|Y(:B|y)dx>2

Minimum achieved when

h(y) = / iy (ely)de = Ex {X]Y} = X(Y)

Remark: Note that the minimum conditional variance estimate is

given by
T =E{X|Y =y} (not arandom variable)
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LEAST-SQUARES ESTIMATION (CONT.)

Note that the minimum conditional mean square error is

Ex{(o— )Y =y} = [ 2 fp(oly)da - ( / ast|y<sc|y>dx)2

= Ex{$2|Y = y} — i‘2

In general this is not the same as the minimum (unconditional) mean
square error.
Exy{(X - X(Y))%}

However, these are the same in the Gaussian case (show this!).
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UNBIASEDNESS

Unbiased estimate

Exy{z — 2} =Expy{z]Y =y} -2 =0

-~

xX

KTH Electrical Engineering

Unbiased estimator

Exy{X = X(Y)} = Ex{X} - Ey{Ex{X[Y} =0

Ex{x}
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LEAST-SQUARES ESTIMATION (CONT.)

Problems with this explicit solution are that

e 1 is often a complicated function of {yg,...,¥yn}

e computation of & requires knowledge of the joint probability
density function fxy(x|Y = yo,...,yn) which in general is

unknown
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LINEAR LEAST-SQUARES ESTIMATION

If our estimate of z is restricted to be a linear function of the

observations, it turns out that £ depends only on

E{y} — the mean value
E{(y — E{y})(y — E{y})T} — the covariance

Tremendous simplification in general and the major reason for
focusing on linear least-squares estimation.

Also, if {z,yo,...,yn} are jointly Gaussian, the conditional mean is
a linear function of the observations.
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LINEAR LEAST-SQUARES ESTIMATION

Let X and Y be two real-valued jointly Gaussian random variables

with
x . . Eww Ewy
mean B and covariance matrix
) Yo Dy
i.e.
T N :? | Yex Dy
Y Yy Ey:c Eyy

then the conditional pdf (probability density function) fx|y (z|y) is
Gaussian with

mean T -+ nyzy_yl (y —y) and covariance matrix Y., — zxyzy—yl Yya
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LLSE (CONT.)

— #=B{X|Y =y} =2+%,,%,,(y—y) Show this!
Note that & is a linear (affine) in the observations y.

Let us constrain X to be a linear (affine) function of V.

X=hY +¢g

and find h, g so as to minimize the mean square error (mse).

Scalar case:

E{(X —hY — ¢)®} = E{X?} + h?E{Y?} + ¢*
— 29T + 2gyh — 2RE{X Y}
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LLSE (CONT.)

Differentiate E{X?} + h?E{Y?} + g% — 297 + 2gyh — 2hE{X Y}
— g=z—-hy E{Y*’}h=E{XY} gy

— h:% and g =17 — %
Ty Ty

p=E{(X —2)(Y — )} = B{XY} — &y
oy =E{(Y = )"} = E{V?*} - ¢
Thus, the linear least-squares estimate of X given Y is
X=z+ %(Y —7)
Ty
Depends only on first and second order statistics!
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LLSE (CONT.)

Vector case is more cumbersome but straight forward (see Linear
FEstimation). We obtain

= hXyy =X g=2—hy

X =2+%,5 (Y -9
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LLSE (conT.)

Reduction to the zero mean case
Replace X and Y by the zero mean random variables X — x and
Y — 9.

The linear least-squares estimate reduces to

X =3%,,%,Y

Of course, by substituting the original random variable we retain the

original expression.

Thus, we can assume zero mean random variables without loss of

generality.
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GENERIC SOLUTION
N
If 2y = ) an,iyn—; then the coefficients Ay = [an,o - an ] are
=0

the solution of the linear equations
ANYyy = 2gy

Standard problem but

1. takes O(N3) operations (additions and multiplications) to

compute and N may be large!
2. often we want to find solutions recursively
AN — AN—H and IN — ZAUN_H

Therefore we need to impose more structure on the random variables

{y0,...,yn} to avoid these problems.
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SUMMARY OF RESULTS

Two main classes of assumptions
1. Stationarity or near-stationarity (index r)

2. Finite dimensionality (the number of states, n, of the stochastic

process is finite)

General non-stationary process O(N?3)
Stationary processes O(N?)
r-stationarity (1 <r < N) O(rN?)
General n-state model O(Nn3)
Stationary n-state model O(Nn?)
r-stationary n-state model O(rNn?)

Bjérn Ottersten, Mats Bengtsson 23 Optimal Filtering

DISPLACEMENT RANK

A measure of the non-stationarity of a stochastic process is provided
by the displacement rank, r.

Let ¥,, = E{(Y — 9)(Y — %)T} be the covariance matrix of {y} and

0

1 0
7 —

0O 1 0

The displacement rank is defined as
A
r =rank(X,, — Z3,,Z")
What is the displacement rank of a stationary process?
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APPLICATIONS

Adaptive filtering

Target tracking

GPS, navigation

Change detection
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