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Collection of Problems





Introduction

This text constitutes a collection of problems for use in the course EQ2310 Digital Communications
given at the KTH School for Electrical Engineering.

The collection is based on old exam and homework problems (partly taken from the previous
closely related courses 2E1431 Communication Theory and 2E1432 Digital Communications), and
on the collection “Exempelsamling i Moduleringsmetoder,” KTH–TTT 1994. Several problems have
been translated from Swedish, and some problems have been modified compared with the originals.

The problems are numbered and allocated to three different chapters corresponding to different
subject areas. All problems are provided with answers and hints (incomplete solutions). Most prob-
lems are provided with complete solutions.

1



2



Chapter 1

Information Sources and Source

Coding

1–1 Alice and Bob play tennis regularly. In each game the first to win three sets is declared winner.
Let V denote the winner in an arbitrary game. Alice is a better skilled player but Bob is in
better physical shape, and can therefore typically play better when the duration of a game is
long. Letting ps denote the probability that Alice wins a set s we can assume ps = 0.6 − s/50.
The winner Xs ∈ {A,B} of a set s is noted, and for each game a sequence X = X1X2 . . . is
obtained (e.g., X = ABAA or X = BABAB).

(a) When is more information obtained regarding the final winner in a game: getting to know
the total number of sets played or the winner in the first set?

(b) Assume the number of sets played S is known. How many bits (on average) are then required
to specify X?

1–2 Alice (A) and Bob (B) play tennis. The winner of a match is the one who first wins three sets.
The winner of a match is denoted by W ∈ {A,B} and the winner of set number k is denoted by
Sk ∈ {A,B}. Note that the total number of sets in a match is a stochastic variable, denoted K.
Alice has better technique than Bob, but Bob is stronger and thus plays better in long matches.
The probability that Alice wins set number k is therefore pk = 0.6 − k/50. The corresponding
probability for Bob is of course equal to 1 − pk. The outcomes of the sets in a game form a
sequence, X . Examples of possible sequences are X = ABAA and X = BABAB.

In the following, assume that a large number of matches have been played and are used in the
source coding process, i.e., the asymptotic results in information theory are applicable.

(a) Bob’s parents have promised to serve Bob and Alice dinner when the match is over. They
are therefore interested to know how many sets Bob and Alice play in the match. How many
bits are needed on the average to transfer that information via a telephone channel from the
tennis stadium to Bob’s parents?

(b) Suppose that Bob’s parents know the winner, W , of the match, but nothing else about the
game. How many bits are needed on the average to transfer the number of played sets, K,
in the match to Bob’s parents?

(c) What gives most information about the number of played sets, K, in a match, the winner
of the third set or the winner of the match?

To ease the computational burden of the problem, the following probability density functions are
given:

fKW (k, w) w
A B Sum

k 3 0.17539 0.08501 0.26040
4 0.21540 0.15618 0.37158
5 0.18401 0.18401 0.36802

Sum 0.57480 0.42520

fWS1(w, s1) w
A B Sum

s1 A 0.42420 0.15580 0.58000
B 0.15060 0.26940 0.42000

Sum 0.57480 0.42520
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fKS2(k, s2) s2
A B Sum

k 3 0.17539 0.08501 0.26040
4 0.19567 0.17591 0.37158
5 0.18894 0.17908 0.36802

Sum 0.56000 0.44000

fKS3(k, s3) s3
A B Sum

k 3 0.17539 0.08501 0.26040
4 0.18560 0.18597 0.37158
5 0.17900 0.18902 0.36802

Sum 0.54000 0.46000

1–3 Two sources, A and B, with entropies HA and HB, respectively, are connected to a switch (see
Figure 1.1). The switch randomly selects source A with probability λ and source B with prob-
ability 1 − λ. Express the entropy of S, the output of the switch, as a function of HA, HB, and
λ!

A

B

HA

HB

λ

1− λ

S

HS

Figure 1.1: The source in Problem 1–3.

1–4 Consider a memoryless information source specified by the following table.

Symbol Probability
s0 0.04
s1 0.25
s2 0.10
s3 0.21
s4 0.20
s5 0.15
s6 0.05

(a) Is it possible to devise a lossless source code resulting in a representation at 2.50 bits/symbol?

(b) The source S is quantized resulting in a new source U specified below.

Old symbols New symbol Probability
{s0, s1} u0 0.29

{s2, s3, s4} u1 0.51
{s5, s6} u2 0.20

How much information is lost in this process?

1–5 An iid binary source produces bits with probabilities Pr(0) = 0.2 and Pr(1) = 0.8. Consider
coding groups of m = 3 bits using a binary Huffman code, and denote the resulting average
codeword length L. Compute L and compare to the entropy of the source.

1–6 A source with alphabet {0, 1, 2, 3} produces independent and equally likely symbols, with prob-
abilities P (0) = 1− p, P (1) = P (2) = P (3) = p/3. The source is to be compressed using lossless
compression to a new representation with symbols from the set {0, 1, 2, 3}.

(a) Which is the lowest possible rate, in code symbols per source symbol, in lossless compression
of the source?
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(b) Assume that blocks of two source symbols are coded jointly using a Huffman code. Specify
the code and the corresponding code rate in the case when p = 1/10.

(c) Consider an encoder that looks at a sequence produced by the source and divides the se-
quence into groups of source symbols according to the 16 different possibilities

{1, 2, 3, 01, 02, 03, 001, 002, 003, 0001, 0002, 0003, 00000, 00001, 00002, 00003}.

Then these are coded using a Huffman code. Specify this code and its rate.

(d) Consider the following sequence produced by the source.

10310000000300100000002000000000010030002030000000.

Compress the sequence using the Lempel-Ziv algorithm.

(e) Determine the compression ratio obtained for the sequence above when compressed using
the two Huffman codes and the LZ algorithm.

1–7 English text can be modeled as being generated by a several different sources. A first, very
simple model, is to consider a source generating sequences of independent symbols from a symbol
alphabet of 26 letters. On average, how many bits per character are required for encoding English
text according to this model? The probability of the different characters are found in Table 1.1.
What would the result be if all characters were equiprobable?

Letter Percentage
A 7.25
B 1.25
C 3.50
D 4.25
E 12.75
F 3.00
G 2.00
H 3.50
I 7.75
J 0.25
K 0.50
L 3.75
M 2.75
N 7.75
O 7.50
P 2.75
Q 0.50
R 8.50
S 6.00
T 9.25
U 3.00
V 1.50
W 1.50
X 0.50
Y 2.25
Z 0.25

Table 1.1: The probability of the letters A through Z for English text. Note that the total probability is
larger than one due to roundoff errors (from Seberry/Pieprzyk, Cryptography).

1–8 Consider a discrete memoryless source with alphabet S = {s0, s1, s2} and corresponding statistics
{0.7, 0.15, 0.15} for its output.

(a) Apply the Huffman algorithm to this source and show that the average codeword length of
the Huffman code equals 1.3 bits/symbol.
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(b) Let the source be extended to order two i.e., the outputs from the extended source are blocks
consisting of 2 successive source symbols belonging to S. Apply the Huffman algorithm to
the resulting extended source and calculate the average codeword length of the new code.

(c) Compare and comment the average codeword length calculated in part (b) with the entropy
of the original source.

1–9 The binary sequence
x24
1 = 000110011111110110111111

was generated by a binary discrete memoryless source with output Xn and probabilities Pr[Xn =
0] = 0.25, Pr[Xn = 1] = 0.75.

(a) Encode the sequence using a Huffman code for 2-bit symbols. Compute the average codeword
length and the entropy of the source and compare these with each other and with the length
of your encoded sequence. Conclusions?

(b) Repeat a) but use instead 3-bit symbols. Discuss the advantages/disadvantages of increasing
the symbol length!

(c) Use the Lempel-Ziv algorithm to encode the sequence. Compare with the entropy of the
source and the results of a) and b).

1–10 Consider a stationary and memoryless discrete source {Xn}. Each Xn can take on 8 different
values, with probabilities

1

2
,
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,
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,
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16
,
1

64
,
1

64
,
1

64
,
1

64

(a) Specify an instantaneous code that takes one source symbol Xn and maps this symbol into
a binary codeword c(Xn) and is optimal in the sense of minimizing the expected length of
the code.

(b) To code sequences of source outputs one can employ the code from (a) on each consecutive
output symbol. An alternative to this procedure would be to code length-N blocks of source
symbols, XN

1 , into binary codewords c(XN
1 ). Is it possible to obtain a lower expected length

(expressed in bits per source symbol) using this latter approach?

(c) Again consider coding isolated source symbols Xn into binary codewords. Specify an instan-
taneous code that is optimal in the sense of minimizing the length of the longest codeword.

(d) Finally, and still considering binary coding of isolated symbols, specify an instantaneous
code optimal in the sense of minimizing the expected length subject to the constraint that
no codeword is allowed to be longer than 4 bits.

1–11 Consider the random variables X , Y ∈ {1, 2, 3, 4} with the joint probability mass function

Pr(X = x, Y = y) =

{

0 x = y
K otherwise

(a) Calculate numerical values for the entities H(X), H(Y ), H(X,Y ) and I(X ;Y ).

(b) Construct a Huffman code for outcomes of X , given that Y = 1 (and assuming that Y = 1
is known to both encoder and decoder).

(c) Is it possible to construct a uniquely decodable code with lower rate? Why?

1–12 So-called run-length coding is used e.g. in the JPEG image compression standard. This lossless
source coding method is very simple, and works well when the source is skewed toward one of
its outcomes. Consider for example a binary source {Xn} producing i.i.d symbols 0 and 1, with
probablity p for symbol 1; p = Pr(Xn = 1). Then run-length coding of a string simply counts the
number of consequtive 1’s that are produced before the next symbol 0 occurs. For example, the
string

111011110

is coded as 3, 4, that is “3 ones followed by a zero” and then “4 ones followed by a zero.” The
string 0 (one zero) is coded as 0 (“no ones”), so 011001110 gives 0, 2, 0, 3, and so on. Since the
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indices used to count ones need to be stored with finite precision, assume they are stored using
b bits and hence are limited to the integers 0, 1, . . . , 2b − 1, letting the last index 2b − 1 mean
“2b − 1 ones have appeared and the next symbol may be another one; encoding needs to restart
at next symbol.” That is, with b = 2 the string 111110 is encoded as 3, 2.

Let p = 0.95 and b = 3.

(a) What is the minimum possible average output rate (in code-bits per source-bit) for the
i.i.d binary source with p = 0.95?

(b) How close to maximum possible compression is the resulting average rate of run-length
coding for the given source?

1–13 A random variable uniformly distributed over the interval [−1,+1] is quantized using a 4-bits
uniform scalar quantizer. What is the resulting average quantization distortion?

1–14 A variable X with pdf according to Figure 1.2 is quantized using three bits per sample.

11/21/4

1/11

4/11

16/11

x

fX(x)

Figure 1.2: The probability density function of X.

Companding is employed in order to reduce quantization distortion. The compressor is illustrated
in Figure 1.3. Compute the resulting distortion and compare the performance using companding
with that obtained using linear quantization.

1–15 Samples from a speech signal are to be quantized using an 8-bit linear quantizer. The output
range of the quantizer is −V to V . The statistics of the speech samples can be modeled using
the pdf

f(x) =
1

σ
√
2
exp(−

√
2 |x|/σ)

Since the signal samples can take on values outside the interval [−V, V ], with non-zero probability,
the total distortion D introduced by the quantization can be written as

D = Dg +Do

where Dg is the granular distortion and Do is the overload distortion. The granular distortion
stems from samples inside the interval [−V, V ], and the quantization errors in this interval, and
the overload distortion is introduced when the input signal lies outside the interval [−V, V ]. For
a fixed quantization rate (in our case, 8 bits per sample) Dg is reduced and Do is increased when
V is decreased, and vice versa. The choice of V is therefore a tradeoff between granular and
overload distortion.

Assume that V is chosen as V = 4σ. Which one of the distortions Dg and Do will dominate?

1–16 A variable X with pdf

fX(x) =

{

2(1− |x|)3, |x| ≤ 1

0, |x| > 1
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Figure 1.3: Compressor characteristics.

is to be quantized using a large number of quantization levels. Let Dlin be the distortion obtained
using linear quantization andDopt the distortion obtained with optimal companding. The optimal
compressor function in this case is

g(x) = 1− (1− x)2, x ≥ 0

and g(x) = −g(−x) for x < 0. Determine the ratio Dopt/Dlin.

1–17 A variable with a uniform distribution in the interval [−V, V ] is quantized using linear quanti-
zation with b bits per sample. Determine the required number of bits, b, to obtain a signal-to-
quantization-noise ratio (SQNR) greater than 40 dB.

1–18 A PCM system works with sampling frequency 8 kHz and uses linear quantization. The indices
of the quantization regions are transmitted using binary antipodal baseband transmission based
on the pulse

p(t) =

{

A, 0 ≤ t ≤ 1/R

0, otherwise

where the bitrate is R = 64 kbit/s. The transmission is subject to AWGN with spectral density
N0/2 = 10−5 V2/Hz. Maximum likelihood detection is employed at the receiver.

The system is used for transmitting a sinusoidal input signal of frequency 800 Hz and amplitude
corresponding to fully loaded quantization. Let Pe be the probability that one or several of the
transmitted bits corresponding to one source sample is detected erroneously. The resulting overall
distortion can then be written

D = (1− Pe)Dq + Pe De

where Dq is the quantization distortion in absence of transmission errors and De is the distortion
obtained when transmission errors have occurred. A simple model to specify De is that when a
transmission error has occurred, the reconstructed source sample is uniformly distributed over
the range of the quantization and independent of the original source sample.

Determine the required pulse amplitude A to make the contribution from transmission errors to
D less than the contribution from quantization errors.

1–19 A PCM system with linear quantization and transmission based on binary PAM is employed in
transmitting a 3 kHz bandwidth speech signal, amplitude-limited to 1 V, over a system with 20
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repeaters. The PAM signal is detected and reproduced in each repeater. The transmission be-
tween repeaters is subjected to AWGN of spectral density 10−10 W/Hz. The maximum allowable
transmission power results in a received signal power of 10−4 W. Assume that the probability
that a speech sample is reconstructed erroneously due to transmission errors must be kept below
10−4. Which is then the lowest possible obtainable quantization distortion (distortion due to
quantization errors alone, in the absence of transmission errors).

1–20 A conventional system (System 1) and an adaptive delta modulation system (System 2) are to
be compared. The conventional system has step-size d, and the adaptive uses step-size 2d when
the two latest binary symbols are equal to the present one and d otherwise. Both systems use
the same updating frequency fd.

(a) The binary sequence
0101011011011110100001000011100101

is received. Decode this sequence using both of the described methods.

(b) Compare the two systems when coding a sinusoid of frequency fm with regard to the max-
imum input power that can be used without slope-overload distortion and the minimum
input power that results in a signal that differs from the signal obtained with no input.

1–21 Consider a source producing independent symbols uniformly distributed on the interval (−a,+a).
The source output is quantized to four levels. Let X be a source sample and let X̂ be the
corresponding quantized version of X . The mapping of the quantizer is then defined according
to

X̂ =











− 3
4a X ≤ −γa

− 1
4a −γa < X ≤ 0

1
4a 0 < X ≤ γa
3
4a γa < X

, 0 ≤ γ ≤ 1 .

The four possible output levels of the quantizer can be coded “directly” using two bits per symbol.
However, in grouping blocks of output symbols together a lower rate, in terms of average number
of bits per symbols, can be achieved.

For which γ will it be impossible to code X̂ at an average rate below 1.5 bits per symbol without
loss?

1–22 Consider quantizing a zero-mean Gaussian variable X with variance E[X2] = σ2 using four-level
linear quantization. Let X̂ be the quantized version of X . Then the quantizer is defined according
to

X̂ =











−3σ/2 X ≤ −σ
−σ/2 −σ < X ≤ 0
σ/2 0 < X ≤ σ
3σ/2 X > σ

(a) Determine the average distortion E[(X − X̂)2].

(b) Determine the entropy H(X̂).

(c) Assume that the thresholds defining the quantizer are changed to ±aσ (where we had a = 1
earlier). Which a > 0 maximizes the resulting entropy H(X̂)?

(d) Assume, finally, that the four possible values of X̂ are coded according to −3σ/2 ↔ 00,
−σ/2 ↔ 01, σ/2 ↔ 10 and 3σ/2 ↔ 11, and then transmitted over a binary symmetric
channel with crossover probability q = 0.01. Letting Ŷ denote the corresponding output
levels produced at the receiver, determine the mutual information I(X̂, Ŷ ).

1–23 A random variable X with pdf

fX(x) =
1

2
e−|x|
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is quantized using a 3-level quantizer with output X̂ specified according to

X̂ =









−b, X < −a

0, −a ≤ X ≤ a

b, X > a

where 0 ≤ a ≤ b.

(a) Derive an expression for the resulting mean squared-error distortion D = E[(X − X̂)2] as a
function of the parameters a and b.

(b) Derive the optimal values for a and b, minimizing the distortion D, and specify the resulting
minimum value for D.

1–24 Consider a zero-mean Gaussian variable X with variance E[X2] = 1.

(a) The variable X is quantized using a 4-level uniform quantizer with step-size ∆, according to

X̂ =













−3∆/2, X < −∆

−∆/2, −∆ ≤ X < 0

∆/2, 0 ≤ X < ∆

3∆/2, X ≥ ∆

Let ∆∗ be the value of ∆ that minimizes the distortion D(∆) = E[(X − X̂)2]. Determine
∆∗ and the resulting distortion D(∆∗).

Hint : You can verify your results in Table 6.2 of the second edition of the textbook (Table 4.2
in the first edition).

(b) Let ∆∗ be the optimal step-size from (a), and consider the quantizer

X̂ =













−x̂1, X < −∆∗

−x̂2, −∆∗ ≤ X < 0

x̂3, 0 ≤ X < ∆∗

x̂4, X ≥ ∆∗

That is, a quantizer with arbitrary reproduction points, x̂1, . . . , x̂4, but with uniform en-
coding defined by the step-size ∆∗ from (a). How much can the distortion be decreased,
compared with (a), by choosing the reproduction points optimally?

(c) The quantizer in (a) is uniform in both encoding and decoding. The one in (b) has a
uniform encoder. By allowing both the encoding and decoding to be non-uniform, further
improvements on performance are possible. Optimal non-uniform quantizers for a zero-
mean Gaussian variable X with E[X2] = 1 are specified in Table 6.3 (in the second edition;
Table 4.3 in the first edition). Consider the quantizer corresponding to N = 4 levels in the
table. Verify that the specified quantizer fulfills the necessary conditions for optimality and
compare the distortion it gives (as specified in the table) with the results from (a) and (b).

Some of the calculations involved in solving this problem will be quite messy. To get numerical
results and to solve non-linear equations numerically, you may use mathematical software, like
Matlab. Note that in parts of the problem it is possible to get closed-form results in terms of the
Q-, erf-, or erfc-functions, where

Q(x) !
1√
2π

∫ ∞

x
e−t2/2 dt, erf(x) !

2√
π

∫ x

0
e−t2dt, erfc(x) ! 1− erf(x) =

2√
π

∫ ∞

x
e−t2dt

The Q-function will be used frequently throughout the course. Unfortunately it is not imple-
mented in Matlab. However, the erf- and erfc-functions are (as ’erf(x)’ and ’erfc(x)’). Noting
that

Q(x) =
1

2
erfc

(
x√
2

)

, erfc(x) = 2Q(
√
2x)
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it is hence quite straightforward to get numerical values also for Q(x) using Matlab.

Finally, as an additional hint regarding the calculations involved in this problem it is useful to
note that ∫ ∞

x
te−t2/2dt = e−x2/2,

∫ ∞

x
t2e−t2/2dt = xe−x2/2 +

√
2πQ(x)

1–25 Consider the discrete memoryless channel depicted below.

X Y

00

11

22

33

ε
1− ε

As illustrated, any realization of the input variable X can either be correctly received, with
probability 1−ε, or incorrectly received, with probability ε, as one of the other Y -values. (Assume
0 ≤ ε ≤ 1.)

(a) Consider a random variable Z that is uniformly distributed over the interval [−1, 1]. Assume
that Z is quantized using a uniform/linear quantizer with step-size ∆ = 0.5, and that the
index generated by the quantizer encoder is transmitted as a realization of X and received
as Y over the discrete channel (that is, −1 ≤ Z < −0.5 =⇒ X = 0 is transmitted and
received as Y = 0 or Y = 1, and so on.) Assume that the quantizer decoder uses the received
value of Y to produce an output Ẑ (that is, Y = 0 =⇒ Ẑ = −0.75, Y = 1 =⇒ Ẑ = −0.25,
and so on). Compute the distortion

D = E[(Z − Ẑ)2] (1.1)

(b) Still assuming uniform encoding, but that you are allowed to change the reproduction points
(the Ẑ’s). Which values for the different reproduction points would you choose to minimize
D in the special case ε = 0.5

1–26 Consider the DPCM system depicted below.

YnXn X̂n

X̂n

Ŷn

X̂n−1

X̂n−1
z−1z−1

Q

Assume that the system is “started” at time n = 1, with initial value X̂0 = 0 for the output
signal. Furthermore, assume that the Xn’s, for n = 1, 2, 3, . . . , are independent and identically
distributed Gaussian random variables with E[Xn] = 0 and E[X2

n] = 1, and that Q is a 2-level
uniform quantizer with stepsize ∆ = 2 (i.e., Q[X ] = sign of X , and the DPCM system is in fact
a delta-modulation system). Let

Dn = E[(Xn − X̂n)
2]

be the distortion of the DPCM system at time-instant n.

(a) Assume that
X1 = 0.9, X2 = 0.3, X3 = 1.2, X4 = −0.2, X5 = −0.8

Which are the corresponding values for X̂n, for n = 1, 2, 3, 4, 5?

(b) Compute Dn for n = 1

(c) Compute Dn for n = 2

(d) Compare the results in (b) and (c). Is D2 lower or higher than D1? Is the result what you
had expected? Explain!
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1–27 A random variable X with pdf

fX(x) =
1

2
e−|x|

is quantized using a 4-level quantizer to produce the output variable Y ∈ {y1, y2, y3, y4}, with
symmetric encoding specified as

Y =













y1, X < −a

y2, −a ≤ X < 0

y3, 0 ≤ X < a

y4, X ≥ a

where a > 0. The resulting distortion is

D = E[(X − Y )2]

Let H(Y ) be the entropy of Y . Compute the minimum possible D under the simultaneous
constraint that H(Y ) is maximized.

1–28 Let W1 and W2 be two independent random variables with uniform probability density functions
(pdf’s),

fW1 =

{
1
2 , |W1| ≤ 1
0, elsewhere

fW2 =

{
1
4 , |W2| ≤ 2
0, elsewhere

Consider the random variable X = W1 +W2

(a) Compute the differential entropy h(X) of X

(b) Consider using a scalar quantizer of rate R = 2 bits per source symbol to code samples of
the random variable X . The quantizer has the form

Q(X) =











a1, X ∈ (−∞,−1]
a2, X ∈ (−1, 0]
a3, X ∈ (0, 1]
a4, X ∈ (1,∞)

Find a1, a2, a3 and a4 that minimize the distortion

D = E[(X −Q(X))2]

and evaluate the corresponding minimum value for D.

1–29 Consider quantizing a Gaussian zero-mean random variable X with variance 1. Before quanti-
zation, the variable X is clipped by a compressor C. The compressed value Z = C(X) is given
by:

C(x) =
{

x, |x| ≤ A
A, otherwise

where A is a constant 0 < A < ∞.

The variable Z is then quantized using a 2-bit symmetric quantizer, producing the output

Y =











−a, −∞ < Z ≤ −c
−b, −c < Z ≤ 0
+b, 0 < Z ≤ c
+a, c < Z < ∞

where a > b and c are positive real numbers.

Consider optimizing the quantizer to minimize the mean square error between the quantized
variable Y and the variable Z.
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(a) Determine the pdf of Z.

(b) Derive a system of equations that describe the optimal solution for a, b and c in terms of
the variable A. Simplify the equations as far as possible. (But you need not to solve them.)

1–30 A source {Xn} produces independent and equally distributed samples Xn. The marginal distri-
bution fX(x) of the source is illustrated below.

fX(x)

x

b−b

At time-instant n the sample X = Xn is quantized using a 4-level quantizer with output X̂,
specified as follows

X̂ =












y1, X ≤ −a

y2, −a < X ≤ 0

y3, 0 < X ≤ a

y4, X > a

where 0 ≤ a ≤ b. Now consider observing a long source sequence, quantizing each sample and
then storing the corresponding sequence of quantizer outputs. Since there are 4 quantization
levels, the variable X̂ can be straightforwardly encoded using 2 bits per symbol. However, aiming
for a more efficient representation we know that grouping long blocks of subsequent quantization
outputs together and coding these blocks using, for example, a Huffman code generally results in
a lower storage requirement (below 2 bits per symbol, on the average).

Determine the variables a and y1, . . . , y4 as functions of the constant b so that the quantization
distortionD = E[(X−X̂)2] is minimized under the constraint that it must be possible to losslessly
store a sequence of quantizer output values X̂ at rates above, but at no rates below, the value of
1.5 bits per symbol on the average.

1–31 (a) Consider a discrete memoryless source that can produce 8 different symbols with probabili-
ties:

0.04, 0.07, 0.09, 0.1, 0.1, 0.15, 0.2, 0.25

For this source, design a binary Huffman code and compare its expected codeword-length
with the entropy rate of the source.

(b) A random variable X with pdf

fX(x) =
1

2
e−|x|

is quantized using a 4-level quantizer with output X̂ . The operation of the quantizer can be
described as

X̂ =











−3∆/2, X < −∆

−∆/2, −∆ ≤ X < 0

∆/2, 0 ≤ X < ∆

3∆/2, X ≥ ∆

Let ∆∗ be the value of ∆ that minimizes the expected distortion D = E[(X − X̂)2]. Show
that 1.50 < ∆∗ < 1.55.

1–32 A variable X with pdf according to the figure below is quantized into eight reconstruction levels
x̂i, i = 0, . . . , 7, using uniform encoding with step-size ∆ = 1/4.
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Denoting the resulting output X̂ ∈ {x̂0, x̂1, . . . , x̂7}, the operation of the quantizer can be de-
scribed as

(i− 4)∆ ≤ X < (i− 3)∆ ⇒ X̂ = x̂i, i = 0, 1, . . . , 7

(a) Determine the entropy H(X̂) of the discrete output variable X̂.

(b) Design a Huffman code for the variable X̂ and compute the resulting expected codeword
length L. Answer, in addition, the following question: Why can a student who gets L <
H(X̂) be certain to have made an error in part (a), when designing the Huffman code or in
computing L?

(c) Compute the resulting quantization distortion D = E[(X − X̂)2] when the output-levels x̂i

are set to be uniformly spaced according to x̂i = (i − 7/2)∆, i = 0, . . . , 7.

(d) Compute the resulting distortion D = E[(X − X̂)2] when the output-levels x̂i are optimized
to minimize D (for fixed uniform encoding with ∆ = 1/4 as before).

1–33 Consider the random variable X having a symmetric and piece-wise constant pdf, according to

f(x) =
128

255
2−m, m− 1 < |x| ≤ m

for m = 1, 2, . . . , 8, and f(x) = 0 for |x| > 8. The variable is quantized using a uniform quantizer
(i.e., uniform, or linear, encoding and decoding) with step-size ∆ = 16/K and with K = 2k levels.
The output-index of the quantizer is then coded using a binary Huffman code, according to the
figure below.

X
Quantizer Huffman

The output of the Huffman code is transmitted without errors, decoded at the receiver and then
used to reconstruct an estimate X̂ of X . Let L be the expected length of the Huffman code in
bits per symbol and let L̄ be L rounded off to the nearest integer (e.g L = 7.3 ⇒ L̄ = 7).

Compare the average distortion E[(X − X̂)2] of the system described above, with k = 4 bits
and a resulting L̄, with that of of a system that spends L̄ bits on quantization and does not
use Huffman coding (and instead transmits the L̄ output bits of the quantizer directly). Notice
that these two schemes give approximately the same transmission rate. That is, the task of the
problem is to examine the performance gain in the quantization due to the fact that the resolution
of the quantizer can be increased when using Huffman coding without increase in the resulting
transmission rate.

1–34 The i.i.d continuous random variables Xn with pdf fX(x), as illustrated below, are quantized to
generate the random variables Yn (n = −∞ . . .∞).

Xn Yn

14



fX(x)

xV−V

The quantizer is linear with quantization regions [−∞,−V/2), [−V/2, 0), [ 0, V/2) and [V/2,∞]
and respective quantization points y0 = −3V/4, y1 = −V/4, y2 = V/4 and y3 = 3V/4.

(a) The approximation of the granular quantization noise Dg ≈ ∆2/12, where ∆ is the size
of the quantization regions, generally assumes many levels, a small ∆ and a nice input
distribution. Compute the approximation error when using this formula compared with the
exact expression for the situation described.

(b) Construct a Huffman code for Yn.

(c) Give an example of a typical sequence of Yn of length 8.

1–35 The i.i.d. continuous random variables Xn are quantized, Huffman encoded, transmitted over a
channel with negligible errors, Huffman decoded and reconstructed.

Xn In ∈ {0, 1, 2, 3} X̂nÎn ∈ {0, 1, 2, 3}bitsbits

Quantization encoder Huffman encoder Lossless channel Huffman decoder Quantization decoder

The probability density function of Xn is

fX(x) =
1

2
e−|x|

The quantization regions in the quantizer are A0 = [−∞,−1], A1 = (−1, 0], A2 = (0, 1], A3 =
(1,∞] and the corresponding reconstruction points are x̂0 = − 3

2 , x̂1 = − 1
2 , x̂2 = 1

2 , x̂3 = 3
2 .

(a) Compute the signal power to quantization noise power ratio SQNR =
E[X2

n]
E
[

(Xn−X̂n)2
] .

(b) Compute H(In), H(X̂n), H(X̂n|In), H(In|X̂n), H(X̂n|Xn) and h(Xn).

(c) Design a Huffman code for In. What is the rate of this code?

(d) Design a Huffman code for (In−1, In), i.e. blocks of two quantizer outputs are encoded
(N = 2). What is the rate of this code?

(e) What would happen to the rate of the code if the block-length of the code would increase
(N → ∞)?

1–36 Consider Gaussian random variables Xn being generated according to1

Xn = aXn−1 +Wn

where the Wn’s are independent zero-mean Gaussian variables with variance E[W 2
n ] = 1, and

where 0 ≤ a < 1.

(a) Compute the differential entropies h(Xn) and h(Xn, Xn−1).

(b) Assume that each Xn is fed through a 3-level quantizer with output Yn, such that

Yn =









−b, Xn < −1

0, −1 ≤ Xn < +1

+b, Xn ≥ +1

where b > 0. Which value of b minimizes the distortion D = E[(Xn − Yn)2]?

1Assume that the equation Xn = aXn−1 + Wn was “started” at n = −∞, so that {Xn} is a stationary random
process.
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(c) Set a = 0. Construct a binary Huffman code for the 2-dimensional random variable
(Yn, Yn−1), and compare the resulting rate of the code with the minimum possible rate.
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Chapter 2

Modulation and Detection

2–1 Express the four signals in Figure 2.1 as two-dimensional vectors and plot them in a vector
diagram against orthonormal base-vectors.

−C−C

C C

T
T T

T

t t tt

s0(t) s1(t) s2(t) s3(t)

Figure 2.1: The signals in Problem 2–1.

2–2 Two antipodal and equally probable signal vectors, s1 = −s2 = (2, 1), are employed in transmis-
sion over a vector channel with additive noise w = (w1, w2). Determine the optimal (minimum
symbol error probability) decision regions, if the pdf of the noise is

(a) f(w1, w1) = (2πσ2)−1 exp
(

− (2σ2)−1(w2
1 + w2

2)
)

(b) f(w1, w2) = 4−1 exp(−|w1|− |w2|)

2–3 Let S be a binary random variable S ∈ {±1} with p0 = Pr(S = −1) = 3/4 and p1 = Pr(S =
+1) = 1/4, and consider the variable r formed as

r = S + w

where w is independent of S and with pdf

(a) f(w) = (2π)−1/2 exp(−w2/2)

(b) f(w) = 2−1 exp(−|w|)

Determine and sketch the conditional pdfs f(r|s0) and f(r|s1) and determine the optimal (mini-
mum symbol error probability) decision regions for a decision about S based on r.

2–4 Consider the received scalar signal
r = aS + w

where a is a (possibly random) amplitude, S ∈ {±5} is an equiprobable binary information
symbol and w is zero-mean Gaussian noise with E[w2] = 1. The variables a, S and w are
mutually independent.

Describe the optimal (minimum error probability) detector for the symbol S based on the value
of r when

(a) a = 1 (constant)

(b) a is Gaussian with E[a] = 1 and Var[a] = 0.2
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Which case, (a) or (b), gives the lowest error probability?

2–5 Consider a communication system employing two equiprobable signal alternatives, s0 = 0 and
s1 =

√
E, for non-repetitive signaling. The symbol si is transmitted over an AWGN channel,

which adds zero-mean white Gaussian noise n to the signal, resulting in the received signal
r = si + n. Due to various effects in the channel, the variance of the noise depends on the
transmitted signal according to

E{n2} =

{

σ2
0 s0 transmitted

σ2
1 = 2σ2

0 s1 transmitted

A similar behavior is found in optical communication systems. For which values of r does an
optimal receiver (i.e., a receiver minimizing the probability of error) decide s0 and s1, respectively?

Hint: an optimal receiver does not necessarily use the simple decision rule r
s0
≶
s1
γ, where γ is a

scalar.

2–6 A binary source symbol A can take on the values a0 and a1 with probabilities p = Pr(A = a0) and
1−p = Pr(A = a1). The symbol A is transmitted over a discrete channel that can be modeled as
in Figure 2.2, with received symbol B ∈ {b0, b1}. That is, given A = a0 the received symbol can
take on the values b0 and b1 with probabilities 3/4 and 1/4, respectively. Similarly, given A = a1
the received symbol takes on the values b0 and b1 with probabilities 1/8 and 7/8.

A B

3/4

1/8

7/8

1/4

a0

a1

b0

b1

Figure 2.2: The channel in Problem 2–6.

Given the value of the received symbol, a detector produces an estimate Â ∈ {a0, a1} of the
transmitted symbol. Consider the following decision rules for the detector

1. Â = a0 always

2. Â = a0 when B = b0 and Â = a1 when B = b1

3. Â = a1 when B = b0 and Â = a0 when B = b1

4. Â = a1 always

(a) Let pi, i = 1, 2, 3, 4, be the probability of error when decision rule i is used. Determine how
pi depends on the a priori probability p in the four cases.

(b) Which is the optimal (minimum error probability) decision strategy?

(c) Which rule i is the maximum likelihood strategy?

(d) Which rule i is the “minimax” rule (i.e., gives minimum error probability given that p takes
on the “worst possible” value)?

2–7 For lunch during a hike in the mountains, the two friends A and B have brought warm soup,
chocolate bars and cold stewed fruit. They are planning to pass one summit each day and want
to take a break and eat something on each peak. Only three types of peaks appear in the area,
high (1100 m, 20% of the peaks), medium (1000 m, 60% of the peaks) and low (900 m, 20% of the
peaks). On high peaks it is cold and they prefer warm soup, on moderately high peaks chocolate,
and on low peaks fruit. Before climbing a peak, they pack today’s lunch easily accessible in
the backpack, while leaving the rest of the food in the tent at the base of the mountain. They
therefore try to find out the height of the peak in order to bring the right kind of food (soup,
chocolate or fruit). B, who is responsible for the lunch, thinks maps are for wimps and tries
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−100 m +200 m

error

Figure 2.3: Pdf of estimation error.

to estimate the height visually. Each time, his estimated height deviates from the true height
according to the pdf shown in Figure 2.3.

A, who trusts that B packs the right type of lunch each time, gets very angry if he does not get
the right type of lunch.

(a) Given his height estimate, which type of food should B pack in order to keep A as happy as
possible during the hike?

(b) Give the probability that B does not pack the right type of food for the peak they are about
to climb!

2–8 Consider the communication system depicted in Figure 2.4,

I

I

Q

QTx Rx

nI nQ

Figure 2.4: Communication system.

where I and Q denote the in-phase and quadrature phase channels, respectively. The white
Gaussian noise added to I and Q by the channel is denoted by nI and nQ, respectively, both
having the variance σ2. The transmitter, Tx, uses QPSK modulation as illustrated in the figure,
and the receiver, Rx, makes decisions by observing the decision region in which signal is received.
Two equiprobable independent bits are transmitted for each symbol.

(a) Assume that the two noise components nI and nQ are uncorrelated. Find the mapping of the
bits to the symbols in the transmitter that gives the lowest bit error probability. Illustrate
the decision boundaries used by an optimum receiver and compute the average bit error
probability as a function of the bit energy and σ2.

(b) Assume that the two noise components are fully correlated. Find the answer to the three
previous questions in this case (i.e., find the mapping, illustrate the decision boundaries and
find the average bit error probability).

2–9 Consider a channel, taking an input x ∈ {±1}, with equally likely alternatives, and adding
two independent noise components, n1 and n2, resulting in the two outputs y1 = x + n1 and
y2 = x+ n2. The density function for the noise is given by

pn1(n) = pn2(n) =
1

2
e−|n| .

Derive and plot the decision regions for an optimal (minimum symbol error probability) receiver!
Be careful so you do not miss any decision boundary.
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Figure 2.5: Signal alternatives.

2–10 Consider the two signal alternatives shown in Figure 2.5.

Assume that these signals are to be used in the transmission of binary data, from a source
producing independent symbols, X ∈ {0, 1}, such that “0” is transmitted as s1(t) and “1” as
s2(t). Assume, furthermore, that Pr(X = 1) = p, where p is known, that the transmitted signals
are subject to AWGN of power spectral density N0/2, and that the received signal is r(t).

(a) Assume that 10 log(2A2T/N0) = 8.0 [dB], and that p = 0.15. Describe how to implement
the optimal detector that minimizes the average probability of error. What error probability
does this detector give?

(b) Assume that instead of optimal detection, the rule: “Say 1 if
∫ T
0 r(t)s2(t)dt >

∫ T
0 r(t)s1(t)dt

otherwise say 0” is used. Which average error probability is obtained using this rule (for
10 log(2A2T/N0) = 8.0, and p = 0.15)?

2–11 One common way of error control in packet data systems are so-called ARQ systems, where an
error detection code is used. If the receiver detects an error, it simply requests retransmission
of the erroneous data packet by sending a NAK (negative acknowledgment) to the transmitter.
Otherwise, an ACK (acknowledgment) is sent back, indicating the successful transfer of the
packet.

Of course the ACK/NAK signal sent on the feedback link is subject to noise and other impair-
ments, so there is a risk of misinterpreting the feedback signal in the transmitter. Mistaking
an ACK as a NAK only causes an unnecessary retransmission of an already correctly received
packet, which is not catastrophic. However, mistaking a NAK for an ACK is catastrophic, as the
faulty packet never will be retransmitted and hence is lost.

Consider the ARQ scheme in Figure 2.6. The feedback link uses on-off-keying for sending back
one bit of ACK/NAK information, where presence of a signal denotes an ACK and absence a
NAK. The ACK feedback bit has the energy Eb and the noise spectral density on the feedback
link is N0/2. In this particular implementation, the risk of loosing a packet must be no higher
than 10−4, while the probability of unnecessary retransmissions can be at maximum 10−1.

(a) To what value should the threshold in the ACK/NAK detector be set?

(b) What is the lowest possible value of Eb/N0 on the feedback link fulfilling all the requirements
above?

2–12 Consider the two dimensional vector channel

r =

[

r1
r2

]

=

[

s1
s2

]

+

[

n1

n2

]

= si + n ,

where r represents the received (demodulated) vector, si represents the transmitted symbol and n

is correlated Gaussian noise such that E[n1] = E[n2] = 0, E[n2
1] = E[n2

2] = 0.1 and E[n1n2] = 0.05.
Suppose that the rotated BPSK signal constellation shown in Figure 2.7 is used with equally
probable symbol alternatives.
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Transmitter Receiver
Data Packets

Feedback (ACK/NAK)

AWGN

Figure 2.6: An ARQ system.

θ
r1

r2

s1 = −
[

cos(θ) sin(θ)
]T

s2 =
[

cos(θ) sin(θ)
]T

Figure 2.7: Signal constellation.

(a) Derive the probability of a symbol error, Pe1, as a function of θ when a suboptimal maximum
likelihood (ML) detector designed for uncorrelated noise is used. Also, find the two θ:s which
minimize Pe1 and compute the corresponding Pe1. Give an intuitive explanation for why the
θ:s you obtained are optimal.

Hint: Project the noise components onto a certain line (do not forget to motivate why this
makes sense)!

(b) Find the probability of a symbol error, Pe2, as a function of θ when an optimum detector is
used (which takes the correlation of the noise into account).
Hint: The noise in the received vector can be made uncorrelated by multiplying it by the
correct matrix.

(c) The performance of the suboptimal detector and the performance of the optimal detector is
the same for only four values of θ - the values obtained in (a) and two other angles. Find
these other angles and explain in an intuitive manner why the performance of the detectors
are equal!

2–13 Consider a digital communication system in which the received signal, after matched filtering and
sampling, can be written on the form

r =

[

rI
rQ

]

=

[

sI(b0, b1)
sQ(b0, b1)

]

+

[

wI

wQ

]

= s(b0, b1) +w ,

where the in-phase and quadrature components are denoted by ’I’ and ’Q’, respectively and
where a pair of independent and uniformly distributed bits b0, b1 are mapped into a symbol
s(b0, b1), taken from the signal constellation {s(0, 0), s(0, 1), s(1, 0), s(1, 1)}. The system suffers
from additive white Gaussian noise so the noise term w is assumed to be zero-mean Gaussian
distributed with statistically independent components wI and wQ, each of variance σ2. The above
model arises for example in a system using QPSK modulation to transmit a sequence of bits. In
this problem, we will consider two different ways of detecting the transmitted message – optimal
bit-detection and optimal symbol detection.
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(a) In the first detection method, two optimal bit-detectors are used in parallel to recover the
transmitted message (b0, b1). Each bit-detector is designed so that the probability of a bit-
error in the kth bit, i.e., Pr[b̂k += bk], where k ∈ {0, 1}, is minimized. Derive such an optimal
bit-detector and express it in terms of the quantities r, s(b0, b1) and σ2.

(b) Another detection approach is of course to first detect the symbol s by means of an optimal
symbol detector, which minimizes the symbol error probability Pr[s̃ += s], and then to
map the detected symbol s̃ into its corresponding bits (b̃0, b̃1). Generally, this detection
method is not equivalent to optimal bit-detection, i.e., (b̃0, b̃1) is not necessarily equal to
(b̂0, b̂1). However, the two methods become more and more similar as the signal to noise
ratio increases. Demonstrate this fact by showing that in the limit σ2 → 0, optimal bit-
detection and optimal symbol detection are equivalent in the sense that (b̂0, b̂1) = (b̃0, b̃1)
with probability one.

Hint: In your proof, you may assume that expressions on the form
∑K

k=1 exp(−zkλ), where
zk > 0 and λ → ∞, can be replaced with maxk{exp(−zkλ)}Kk=1. This is motivated by
the fact that for a sufficiently large λ, the largest term in the sum dominates and we have
∑

k exp(−zkλ) ≈ maxk{exp(−zkλ)}Kk=1 (just as when the worst pairwise error probability
dominates the union bound).

2–14 A particular binary disc storage channel can be approximated as a discrete-time additive Gaussian
noise channel with input xn ∈ {0, 1} and output

yn = xn + wn

where yn is the decision variable in the disc-reading device, at time n. The noise variance depends
on the value of xn in the sense that wn has the Gaussian conditional pdf

fw(w|x) =











1√
2πσ2

0

e
− w2

2σ2
0 x = 0

1√
2πσ2

1

e
− w2

2σ2
1 x = 1

with σ2
1 > σ2

0 . For any n it holds that Pr(xn = 0) = Pr(xn = 1) = 1/2.

(a) Find a detection rule to decide x̂n ∈ {0, 1} based on the value of yn, and formulated in terms
of σ2

0 and σ2
1 . The detection should be optimal in the sense of minimum Pb = Pr(x̂n += xn).

(b) Find the corresponding bit error probability Pb.

(c) What happens to the detector and Pb derived in (a) and (b) if σ2
0 → 0 and σ2

1 remains
constant?

2–15 Consider the signals depicted in Figure 2.8. Determine a causal matched filter with minimum
possible delay to the signal

(a) s0(t)

(b) s1(t)

and sketch the resulting output signal when the input to the filter is the signal to which it is
matched, and finally

(c) sketch the output signal from the filter in (b) when the input signal is s0(t).

2–16 A binary system uses the equally probable antipodal signal alternatives

s1(t) =

{√

E/T, 0 ≤ t ≤ T

0, otherwise

and s0(t) = −s1(t) over an AWGN channel, with noise spectral density N0/2, resulting in the
received (time-continuous) signal r(t). Let y(t) be the output of a filter matched to s1(t) at the
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Figure 2.8: The signals s0(t) and s1(t).

receiver, and let y be the value of y(t) sampled at the time-instant Ts, that is y = y(Ts). Symbol
detection is based on the decision rule

y
s1
≷
s0

0

(That is, decide that s1(t) was sent if y > 0 and decide s0(t) if y < 0.)

(a) Sketch the two possible forms for the signal y(t) in absence of noise (i.e., for r(t) = s0(t)
and r(t) = s1(t)).

(b) The optimal sampling instance is Ts = T . In practice it is impossible to sample completely
without error in the sampling instance. This can be modeled as Ts = T +∆ where ∆ is a
(small) error. Determine the probability of symbol error as a function of the sampling error
∆ (assuming |∆| < T ).

2–17 A PAM system uses the three equally likely signal alternatives shown in Figure 2.9.

s1(t)

ttt

T

−A

s2(t)

T

s3(t)

T

A

Figure 2.9: Signal alternatives.

s3(t) = −s1(t) =

{

A 0 ≤ t ≤ T
0 otherwise

s2(t) = 0

One-shot signalling over an AWGN channel with noise spectral density N0/2 is studied. The
receiver shown in Figure 2.10 is used. An ML receiver uses a filter matched to the pulse m(t) =
gT (t), defined in Figure 2.11.
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Detector

r(t)

m(t)

z(T )

t = T

Decision

Figure 2.10: Receiver.

gT (t)

t
T

B

Figure 2.11: Pulse.

Decisions are made according to






s1(t) : z(T ) ≤ −γ
s2(t) : −γ ≤ z(T ) ≤ γ
s3(t) : z(T ) ≥ γ

,

where the threshold γ is chosen so that optimal decisions are obtained with m(t) = gT (t).

Consider now the situation obtained when instead m(t) = KgT (t) where K is an unknown
constant, 0.5 ≤ K ≤ 1.5. Determine an exact expression for the probability of symbol error as a
function of K.

2–18 A fire alarm system works as follows: each K T second, where K is a large positive integer, a
pulse +s(t) or −s(t), of duration T seconds, is transmitted, carrying the information

+s(t): “no fire”

−s(t): “fire”

The signal s(t) has energy E and is subjected to AWGN of spectral density N0/2 in the trans-
mission. The received signal is detected using a matched filter followed by a threshold detector,
and fire is declared to be present or non-present.

The system is designed such that the “miss probability” (the probability that the system declares
“no fire” in the case of fire) is 10−7 when 2E/N0 = 12 dB. Determine the false alarm probability!

2–19 Consider the baseband PAM system in Figure 2.12, using a correlation-type demodulator. n(t) is
AWGN with spectral density N0/2 and Ψ(t) is the unit energy basis function. The receiver uses
ML detection.

The transmitter maps each source symbol I onto one of the equiprobable waveforms sm(t), m =

I
Transmitter

sm(t)
n(t) Ψ(t)

∫ T

0 dt Detector
Î

Figure 2.12: PAM system
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1 . . . 4.

s1(t) =
3

2
gT (t)

s2(t) =
1

2
gT (t)

s3(t) = −s2(t)

s4(t) = −s1(t)

where gT (t) is a rectangular pulse of amplitude A.

gT (t)

T t

A

However, due to manufacturing problems, the amplitude of the used basis function is corrupted by
a factor b > 1. I.e. the used basis function is Ψ̄(t) = bΨ(t). Note that the detector is unchanged.

Compute the symbol-error probability (Pr(Î += I)).

2–20 The information variable I ∈ {0, 1} is mapped onto the signals s0(t) and s1(t).

s0(t) s1(t)

AA

0 T
2

T
2 T tt

The probabilities of the outcomes of I are given as

Pr(I = 0) = Pr(s0(t) is transmitted) = p

Pr(I = 1) = Pr(s1(t) is transmitted) = 1− p

The signal is transmitted over a channel with additive white Gaussian noise, W (t), with power
spectral density N0/2.

I ∈ {0, 1}

Modulator

sI(t)

w(t)

Receiver

Îy(t)

(a) Find the receiver (demodulator and detector) that minimizes Pr(Î += I).

(b) Find the range of different p’s for which y(t) = s1(t) ⇒ Î = 0.

2–21 Consider binary antipodal signaling with equally probable waveforms

s1(t) = 0, 0 ≤ t ≤ T

s2(t) =

√

E

T
, 0 ≤ t ≤ T

in AWGN with spectral density N0/2.
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The optimal receiver can be implemented using a matched filter with impulse reponse

hopt(t) =

√

1

T
, 0 ≤ t ≤ T

sampled at t = T . However in this problem we consider using the (suboptimal) filter

h(t) = e−t/T , t ≥ 0

(h(t) = 0 for t < 0) instead of the macthed filter. More precicely, letting yT denote the value of
the output of this filter sampled at t = T , when fed by the received signal in AWGN, the decision
is

yT < b =⇒ choose s1

yT ≥ b =⇒ choose s2

where b > 0 is a decision threshold.

(a) Determine the resulting error probability Pe, as a function of b, E, T and N0.

(b) Which value for the threshold b minimizes Pe?

2–22 In the IS-95 standard, a CDMA based second generation cellular system, so-called Walsh modu-
lation is used on the uplink (from the mobile phone to the base station). Groups of six bits are
used to select one of 64 Walsh sequences. The base station determines which of the 64 Walsh
sequences that were transmitted and can thus decode the six information bits. The set of L Walsh
sequences of length L are characterized by being mutual orthogonal sequences consisting of +1
and −1. Assume that the sequences used in the transmitter are normalized such that the energy
of one length L sequence equals unity.

Determine the bit error probability and the block (group of six bits) error probability for the
simplified IS-95 system illustrated in Figure 2.13 when it operates over an AWGN channel with
Eb/N0 = 4 dB!

Bit estimates
Select 1 of 64

Walsh sequences

AWGN

Coherent
receiver

Groups of 6 bits

Figure 2.13: Communication system.

Example: the set of L = 4 Walsh sequences (NB! L = 64 in the problem above).

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

2–23 Four signal points are located on the corners of a square with side length a, as shown in the figure
below.

a

ψ1

ψ2

26



These points are used over an AWGN channel with noise spectral density N0/2 to signal equally
probable alternatives and with an optimum (minimum symbol error probability) receiver.

Derive an exact expression for the symbol error probability (in terms of the Q-function, and the
variables a and N0).

2–24 Two different signal constellations, depicted in Figure 2.14, are considered for a communication
system. Compute the average bit error probability expressed as a function of d and N0/2 for the
two cases, assuming equiprobable and independent bits, an AWGN channel with power spectral
density of N0/2, and a detector that is optimal in the sense of minimum symbol error probability.

00

0001 0110

1011 11

b1b2

Ψ1 Ψ1

Ψ2 Ψ2

d

d

d

d

Figure 2.14: Signal constellations.

2–25 Consider a digital communication system with the signal constellation shown in Figure 2.15. The

Ψ1

Ψ2

1

1−1

−1

a

a

−a

−a

Figure 2.15: The signal constellation in Problem 2–25.

signal is transmitted over an AWGN channel with noise variance σ2
n = 0.025 and an ML receiver

is used to detect the symbols. The symbols are equally probable and independent. Determine a
value of 0 < a < 1 such that the error rate is less than 10−2.

Hint : Guess a good value for a. Describe the eight decision regions. Use these regions to bound
the error probability.
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2–26 Consider a communication system operating over an AWGN channel with noise power spectral
density N0/2. Groups of two bits are used to select one out of four possible transmitted signal
alternatives, given by

si(t) =

{√

2Es
T cos(2πft+ iπ/2 + π/4) 0 ≤ t < T, i ∈ {0, . . . , 3}

0 otherwise,

where f is a multiple of 1/T . The receiver, illustrated in Figure 2.16, uses a correlator-based
front-end with the two basis functions

Ψ1(t) =

√

2

T
cos(2πft) 0 ≤ t < T

Ψ2(t) =

√

2

T
cos(2πft+ π/4) 0 ≤ t < T ,

followed by an optimal detection device.

From the MAP criterion, derive the decision rule used in the receiver expressed in y1 and y2.
Determine the corresponding symbol error probability expressed in Eb and N0 using the Q-
function.

Hint: Carefully examine the basis functions used in the receiver. Does the choice of basis functions
matter?

r(t) = si(t) + n(t) Ψ1(t)

Ψ2(t)

∫

∫

D
ec
is
io
n

Bits

y1

y2

Figure 2.16: The receiver in Problem 2–26.

2–27 In the figure below a uniformly distributed random variable Xn, with E[Xn] = 0 and E[X2
n] = 1,

is quantized using a uniform quantizer with 28 = 256 levels. The dynamic range of the quantizer
is fully utilized and not overloaded.

Quantizer Modulator Receiver

AWGN

Xn X̂n

The 8 output bits b1, . . . , b8 from the quantizer are mapped onto 4 uses of the signals in the figure
below.

1

1

1

1

1

2222 tttt

−1

s0(t) s1(t) s2(t) s3(t)
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001

010

011

100

101

110

111

2A

Figure 2.17: The signals in Problem 2–28.

The resulting signals are transmitted over a channel with AWGN of spectral density N0/2. The
receiver is optimal in the sense that it minimizes the symbol error probability. Es/N0 = 16 at
the receiver, where Es = ‖si(t)‖2 is the transmitted signal energy.

The expected total distortion D = E[(Xn − X̂n)2] due to quantization noise and transmission
errors can be divided as

D = Dc Pr( all 8 bits correct ) +De

(

1− Pr( all 8 bits correct )
)

where Dc is the distortion conditioned that no transmission errors occurred in the transmission
of the 8 bits, and De is the distortion conditioned that at least one bit was in error.

Take on the (crude) assumption that X̂n is uniformly distributed over the whole dynamic range
of the quantizer and independent of Xn when a transmission error occurs.

Compute D.

2–28 Consider transmitting 3 equally likely and independent bits (b1, b2, b3) using 8-PAM/ASK, and
the two different bit-labelings illustrated in Figure 2.17. The left labeling is the natural labeling
(NL) and the right is the Gray labeling (GL). Assume that the PAM/ASK signal is transmitted
over an AWGN channel, with noise spectral densityN0/2, and using an optimal (minimum symbol
error probability) receiver, producing decisions (b̂1, b̂2, b̂3) on the bits. Define

Pb,i = Pr(b̂i += bi), i = 1, 2, 3

and the average bit-error probability

Pb =
1

3

3
∑

i=1

Pb,i

(a) Compute Pb for the NL, in terms of the parameters A and N0.

(b) Compute Pb for the GL, in terms of the parameters A and N0.

(c) Which mapping gives the lowest value for Pb as A2/N0 → ∞ (high SNR’s)?

2–29 Consider a digital communication system where two i.i.d. source bits (b1b0) are mapped onto one of
four signals according to table below. The probability mass function of the bits is Pr(bi = 0) = 2/3
and Pr(bi = 1) = 1/3.

Source bits b1b0 Transmitted signal
00 s0(t)
01 s1(t)
11 s2(t)
10 s3(t)
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The signals are given by

s0(t) =

{

3A 0 ≤ t < T
0 otherwise

s1(t) =

{

A 0 ≤ t < T
0 otherwise

s2(t) =

{

−A 0 ≤ t < T
0 otherwise

s3(t) =

{

−3A 0 ≤ t < T
0 otherwise

In the communication channel, additive white Gaussian noise with p.s.d. N0/2 is added to the
transmitted signal. The received signal is passed through a demodulator and detector to find
which signal and which bits were transmitted.

(a) Find the demodulator and detector that minimize the probability that the wrong signal is
detected at the receiver.

(b) Determine the probability that the wrong signal is detected at the receiver.

(c) Determine the bit error probability

Pb =
1

2

(

Pr(b̂1 += b1) + Pr(b̂0 += b0)
)

where b̂1 and b̂0 are the detected bits. Assume that N0 - A2T .

2–30 Use the union bound to upper bound the symbol error probability for the constellation shown
below.

45

2
√
E

√
E

Symbols are equally likely and the transmission is subjected to AWGN with spectral density
N0/2. An optimal receiver is used.

2–31 Consider transmitting the equally probable decimal numbers i ∈ {0, . . . , 9} based on the signal
alternatives si(t), with

si(t) = A
(

sin(2πnit/T ) + sin(2πmit/T )
)

0 ≤ t ≤ T

where the integers ni,mi are chosen according to the following table:

i ni mi

0 1 2
1 3 1
2 1 4
3 5 1
4 2 3
5 4 2
6 2 5
7 3 4
8 5 3
9 4 5

The signals are transmitted over an AWGN channel with noise spectral density N0/2. Use
the Union Bound technique to establish an upper bound to the error probability obtained with
maximum likelihood detection.
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Figure 2.18: Signal alternatives.

2–32 Consider transmitting 13 equiprobable signal alternatives, as displayed in Figure 2.18, over an
AWGN channel with noise spectral density N0/2 and with maximum likelihood detection at the
receiver.

For high values of the “signal-to-noise ratio” d2/N0 the symbol error probability Pe for this scheme
can be tightly estimated as

Pe ≈ KQ

(
d√
2N0

)

Determine the constant K in this expression.

2–33 Consider the signal set {s0(t), . . . , sL−1(t)}, with

si(t) =

{√

2E/T cos(πKt/T + 2πi/L) 0 < t < T

0 otherwise

where K is a (large) integer. The signals are employed in transmitting equally likely information
symbols over an AWGN channel with noise spectral density N0/2.

Show, based on a geometrical treatment of the signals, that the resulting symbol error probability
Pe can be bounded as

Q(β) < Pe < 2Q(β),

where β =
√

2E/N0 sin(π/L).

2–34 A communication system with eight equiprobable signal alternatives uses the signal constellation
depicted in Figure 2.19. The energies are E1 = 1 and E2 = 3, and a decision rule resulting in
minimal symbol error probability is employed at the receiver. A memoryless AWGN channel is
assumed. Derive upper and lower bounds on the symbol error probability as a function of the
average signal to noise ratio, SNR = 2Emean/N0. Keeping the same average symbol energy, can
the symbol error probability be improved by changing E1 and/or E2? How and to which values
of E1 and E2?

2–35 A communication system utilizes the three different signal alternatives

s1(t) =

{ √

2E
T cos

(

4π t
T

)

0 ≤ t < T

0 otherwise

s2(t) =

{ √

2E
T cos

(

4π t
T − π

2

)

0 ≤ t < T

0 otherwise

s3(t) =

{ √

E
T sin

(

4π t
T + π

4

)

0 ≤ t < T

0 otherwise
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Figure 2.19: The signal constellation in Problem 2–34.

The signals are used over an AWGN channel, with noise spectral density N0/2. An optimal
(minimum symbol error probability) receiver is used.

Derive an expression for the resulting symbol error probability and compare with the Union
Bound.

2–36 Consider the communication system illustrated below. Two independent and equally likely sym-
bols d0 ∈ {±1} and d1 ∈ {±1} are transmitted in immediate succession. At all other times, a
symbol value of zero is transmitted. The symbol period is T = 1 and the pulse is p(t) = 1 for
0 ≤ t ≤ 2 and zero otherwise. Additive white Gaussian noise w(t) with power spectral density
N0/2 disturbs the transmitted signal. The receiver detects the sequence {d0, d1} such that the
probability of a sequence error is as low as possible, i.e. the receiver is implemented such that
Pr[d̂0 += d0 ∪ d̂1 += d1] is minimized.

Find an upper bound on Pr[d̂0 += d0 ∪ d̂1 += d1] that is as tight as possible at high signal-to-noise
ratios!

PAM

p(t)

w(t)

Receiverdn d̂n
s(t)

2–37 Consider the four different signals in Figure 2.20.

These are used, together with an optimal receiver, in signaling four equally probable symbol
alternatives over an AWGN channel with noise spectral density N0/2.

(a) Use the Gram–Schmidt procedure to find orthonormal basis waveforms that can be used to
represent the four signal alternatives and plot the resulting signal space.

(b) With 1/N0 = 0dB show that the symbol error probability Pe lies in the interval

0.029 < Pe < 0.031
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Figure 2.20: Signals

2–38 In a wireless link the main obstacle is generally not additive white noise (thermal noise in the
receiver) but a phenomenon referred to as signal fading. That is, time-varying fluctuations in the
received signal energy. Fading can be classified as large-scale or small-scale. Large-scale fading
is due to large objects (e.g. buildings) that are “shadowing” the transmitted radio signal. If the
receiver is moving, this will result in relatively slow amplitude variation as the receiver passes
by shadowing objects. Small-scale fading, on the other hand, is due to destructive interference
between signal components that reach the receiver having traveled different paths from the trans-
mitter. This can result in relatively fast time-variation as the receiver moves. In this problem we
study a simplified scenario taking into account small-scale fading only, and AWGN (as usual).

Consider signalling based on the constellation depicted below, denoting the different equiprobable
signal alternatives s0, . . . , s7.

d

ψ1

ψ2

The signals are used over a channel with small-scale fading and AWGN. The received signal can
be modeled as

r = a s+w

where w = (w1, w2)T is 2-dimensional AWGN, with E[w2
1 ] = E[w2

2 ] = N0/2 and E[w1w2] = 0.
The scalar variable a models an amplitude attenuation due to fading. A common assumption
about the statistics of the amplitude attenuation is that a is a Rayleigh variable, with a pdf
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according to

f(a) =

{
a
σ2 exp

(

− a2

2σ2

)

, a ≥ 0

0, a < 0

where σ2 is a fixed parameter. It holds that E[a2] = 2σ2. At the receiver, a detector is used that
is optimal (minimum symbol error probability) under the assumption that the receiver knows the
amplitude, a, perfectly. (In practice the amplitude cannot be estimated perfectly at the receiver.)

Your task is to study the average symbol error probability Pe of the signalling described above
(averaged over the noise and the amplitude variation). Use the Union Bound technique to deter-
mine an upper bound to Pe as a function of the parameters d, N0 and σ2. The bound should be
as tight as possible (i.e., do not include “unnecessary” terms).

Hint : Note that

Pr(error) =

∫ ∞

0
Pr(error|a)f(a)da

and that
∫ ∞

0
Q(αx)xe−βx2

dx =
1

4β

[

1−
α

√

α2 + 2β

]

2–39 Consider the following three signal waveforms

s1(t) = 2A , s2(t) =

{

+(
√
3− 1)A, 0 ≤ t < 1

−(
√
3 + 1)A, 1 ≤ t ≤ 2

, s3(t) =

{

−(
√
3 + 1)A, 0 ≤ t < 1

+(
√
3− 1)A, 1 ≤ t ≤ 2

with A = (2
√
2)−1 and si(t) = 0, i = 1, 2, 3, for t < 0 and t > 2. These are used in signaling

equiprobable and independent symbol alternatives over the channel depicted below,

c(t)

w(t)

where c(t) = δ(t) + a δ(t − τ) and w(t) is AWGN with spectral density N0/2. One signal is
transmitted each T = 2 seconds. A receiver optimal in the sense of minimum symbol error
probability in the case a = 0 is employed. Derive an upper bound to the resulting symbol error
probability Pe when a = 1/4 and

(a) τ = 2.

(b) τ = 1.

The bounds should be non-trivial (i.e., Pe ≤ 1 is naturally not an accepted bound), however they
need not to be tight for high SNR’s.

2–40 Consider the four signals in Figure 2.21.

These are used, together with an optimal receiver, in signaling four equally probable symbol
alternatives over an AWGN channel with noise spectral density N0/2. Let Pe be the resulting
symbol error probability and let γ = 1/N0.

(a) Determine an analytical upper bound to Pe as a function of γ.

(b) Determine an analytical lower bound to Pe as a function of γ.

The analytical bounds in (a) and (b) should be as “tight” as possible, in the sense that they
should lie as close to the true Pe-curve as possible.

2–41 Consider the waveforms s0(t), s1(t) and s2(t).
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Figure 2.21: Signals

s0(t) s1(t) s2(t)
√
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√

3
2T

√

3
2T

−
√

3
2T

T
4

T
4

T
2

T
2

T
2

3T
4

3T
4

T

Tt tt

They are used to transmit symbols in a communication system with n repeaters. Each repeater
estimates the transmitted symbol from the previous transmitter and retransmits it. Assume ML
detection in all receivers.

Transmitter Repeater 1 Repeater n Receiver

AWGNAWGN

. . .s ŝ

Assume that Pr {s0(t) transmitted} = Pr {s1(t) transmitted} = 1
2 Pr {s2(t) transmitted} = 1

4
and that each link is disturbed by additive white Gaussian noise with spectral density N0/2.
Derive an upper bound to the total probability of error, Pr(ŝ += s).

2–42 Let three orthonormal waveforms be defined as

ψ1(t) =

{√

3
T , 0 ≤ t < T

3

0, otherwise
ψ2(t) =

{√

3
T ,

T
3 ≤ t < 2T

3

0, otherwise
ψ3(t) =

{√

3
T ,

2T
3 ≤ t < T

0, otherwise

and consider the three signal waveforms

s1(t) = A

(

ψ1(t) +
3

4
ψ2(t) +

√
3

4
ψ3(t)

)

s2(t) = A

(

−ψ1(t) +
3

4
ψ2(t) +

√
3

4
ψ3(t)

)

s3(t) = A

(

−
3

4
ψ2(t)−

√
3

4
ψ3(t)

)
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Assume that these signals are used to transmit equally likely symbol alternatives over an AWGN
channel with noise spectral density N0/2.

(a) Show that optimal decisions (minimum probability of symbol error) can be obtained via the
outputs of two correlators (or sampled matched filters) and specify the waveforms used in
these correlators (or the impulse responses of the filters).

(b) Assume that Pe is the resulting probability of symbol error when optimal demodulation and
detection is employed. Show that

Q





√

2A2

N0



 < Pe < 2Q





√

2A2

N0





(c) Use the bounds in (b) to upper-bound the symbol-rate (symbols/s) that can be transmitted,
under the constraint that Pe < 10−4, and that the average transmitted power is less than
or equal to P . Express the bound in terms of P and N0

2–43 Pulse duration modulation (PDM) is commonly used, with some modifications, in read-only
optical storage, e.g. compact discs. In optical data storage, data is recorded by the length of a
hole or “pit” burned into the storage medium. Figure 2.22 below depicts the three waveforms
that are used in a particular optical storage system.

AAA

tttT 2T 3T

x0(t) x1(t) x2(t)

Figure 2.22: PDM Signal waveforms

The write and read process can be approximated by an AWGN channel as described in Figure 2.23.
The ternary information variable I ∈ {0, 1, 2} with equiprobable outcomes is directly mapped to
the waveform x(t) = xi(t). In the reading device, additive white Gaussian noise with spectral
density N0/2 is added to the waveform. The received signal r(t) is demodulated into the vector of
decision variables r. The decision variable vector is used to detect the transmitted information.

I
Mod

x(t)

AWGN

r(t)
Demod

r

Detect
Î

Figure 2.23: PDM system

(a) Find an optimal demodulator of r(t).

(b) Find the detector that minimizes Pr
(

Î += I
)

, given the demodulator in (a).

(c) Find tight lower and upper bounds on Pr
(

Î += I
)

if the demodulator in (a) and the detector

in (b) are used.

2–44 The two-dimensional constellation illustrated in Figure 2.24 is used over an AWGN channel, with
spectral density N0/2, to convey equally probable symbols and with an optimal (minimum symbol
error probability) receiver. The radius of the inner circle is a and the radius of the outer 2a.
Assume a2/N0 = 10, and let Pe be the resulting average symbol error probability. Show that
0.0085 < Pe < 0.011.
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Figure 2.24: QAM constellation

(Compute the upper and lower bounds in terms of the Q-function, if you are not able to compute
its numerical values.)

2–45 Consider the six signal alternatives s1(t), . . . , s6(t), where s1(t), s2(t), s3(t) are shown in Fig-
ure 2.25, and with

s4(t) = −s1(t), s5(t) = −s2(t), s6(t) = −s3(t)

These signals are employed in transmitting equally probable symbols over an AWGN channel,

s1(t) s2(t) s3(t)

111 ttt

11

1+
√

3
2

1+
√

3
2

1−
√

3
2

1−
√

3
2

− 1+
√

3
2

√
3−1
2

Figure 2.25: Signals

with noise spectral density N0/2 and using an optimal (minimum symbol error probability)
receiver.

With Pe = Pr(symbol error), show that

Q

(
1√
2N0

)

< Pe < 2Q

(
1√
2N0

)

2–46 Show that sin(2πft) and cos(2πft), that are defined for t ∈ [0 T ), are approximately orthogonal
if f / 1/T .

2–47 In this problem, BPSK signaling is considered. The two equally probable signal alternatives are
{

±
√

2E
T cos(2πfct) 0 ≤ t ≤ T

0 otherwise
fc /

1

T
.

The system operates over an AWGN channel with power spectral density N0/2 and the coherent
receiver shown in Figure 2.26 is used.
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r(t) cos(2π(fc +∆f)t)
∫ t
0 ()dt

r0
t = T

D
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Figure 2.26: Receiver.

It is often impossible to design a receiver that operates at exactly the same carrier frequency as
the transmitter. This small frequency offset between the oscillators is modeled by ∆f .

The detector is designed so that the receiver is optimal when ∆f = 0. Determine an exact
expression for the average symbol error probability as a function of ∆f . The approximation
fc / 1

T can of course be used. Can the receiver be worse than guessing (e.g. by flipping a coin)
the transmitted symbol?

2–48 Before the advent of optical fibre, microwave links were the preferred method for long distance
land telephoney. Consider transmitting a voice signal occupying 3 KHz over a microwave repeater
system. Figure 2.27 illustrates the physical situation while Figure 2.28 shows the equivalent
circuit. Each amplifier has automatic gain control with a fixed output power P . The noise is
Gaussian white noise with a noise spectral density of 5 dB higher than kT . k is the Bolzmann
constant and T is the temperature, use 290 Kelvin. For analogue voice the minimum acceptable
received signal to noise ratio is 10 dB as measured in 3 KHz passband channel.

Figure 2.27: Repeater System Diagram

It is proposed that the system is converted to digital. The voice is simply passed through an
analogue to digital converter creating a 64 kbit/s stream, 8 bit quantisation at 8000 samples per
second. The digital voice is sent using BPSK and then passed through a digital to analogue
converter at the other end. It was found that the maximum allowable error rate was 10−3. The
digital version uses more bandwidth but you can assume that the bandwidth is available and that
the regenerative repeaters are used as shown in Figure 2.29.

Bolzman constant k = 1.38× 10−23JK−1.

(a) What is the minimum output power P required at each repeater by the analogue system?
You may need to use approximation(s) to simplify the problem. Remember to explain all
approximations used. Hint: Work out the gain of each amplifier if the signal to noise ratio
is high.

(b) What is the minimum output power required P at each repeater by the digital system?
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Attenuator (130 dB) Amplifier (output power = P )

Figure 2.28: Repeater System Schematic

(c) Make atleast 2 suggestions as to how the power efficiency of the digital system could be
improved.

2–49 Suppose that BPSK modulation is used to transmit binary data at the rate 105 bits per second,
over an AWGN channel with noise power spectral density N0/2 = 10−10 W/Hz.

The transmitted signals can be written as

s1(t) = g(t) cos(2πfct)

s2(t) = −g(t) cos(2πfct)

where g(t) is a rectangular pulse of amplitude 2× 10−2 V.

The receiver implements coherent demodulation, however with a carrier phase estimation error,
∆φ = 1

7π. That is, the receiver “believes” the transmitted signal is

±g(t) cos(2πfct+∆φ)

(a) Derive a general expression for the resulting bit error probability, Pe, in terms of Eg =
‖g(t)‖2, N0 and ∆φ.

(b) Calculate the resulting numerical value for Pe, and compare it to the case with no phase-
error, ∆φ = 0.

2–50 Two equiprobable bits are Gray encoded onto a QPSK modulated signal. The signal is transmit-
ted over a channel with AWGN with power spectral density N0/2. The transmitted energy per bit
is Eb. The receiver is designed to minimize the symbol error probability. What is approximately
the required SNR (2Eb

N0
) in dB to achieve a bit error probability of 10%?

2–51 Parts of the receiver in a QPSK modulated communication system are illustrated in Figure 2.30.
The system uses rectangular pulses and operates over an AWGN channel with infinite bandwidth.

(a) The local oscillator (i.e., the cos and sin in the figure) in the receiver must of course have
the same frequency fc as the transmitter for the system to work properly. However, in a
wireless system, if the receiver is moving towards the transmitter the transmitter frequency
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Figure 2.29: Regenerative Repeater System Schematic
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Figure 2.30: The receiver in Problem 2–51.
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Figure 2.31: Channel model.
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will appear as a higher frequency, fc + fD, than the frequency in the receiver due to the
Doppler effect. How will this affect the signal constellation seen by the receiver if the carrier
frequency fc = 1 GHz, the Doppler frequency fD = 100 Hz and the symbol time T = 100 µs?

(b) The communication system operates over the channel depicted in Figure 2.31. Sketch the
signal intI(t) in the interval [0, 2T ] for all possible bit sequences (assume perfect phase
estimates). Explain in words what this is called and what can be deducted from the sketch.

(c) Suggest at least one way of alleviating the reduced performance caused by the channel in
the previous question and where in the block diagram your technique should be applied to
the QPSK system considered.

(d) If you are asked to modify the system from QPSK to 8-PSK, which boxes in the block
diagram do you need to change (or add) and how?

(e) Assume that the channel is band-limited instead of having infinite bandwidth. If you were
allowed to redesign both the transmitter and the receiver for highest possible data rate,
would you choose PAM or orthogonal modulation?

2–52 A modulation technique, of which a modification is used in the Japanese PDC system, is π/4-
QPSK. In π/4-QPSK, the transmitter adds a phase offset to every transmitted symbol. The
phase offset is increased by π/4 between every transmitted symbol. In contrast, ordinary QPSK
does not add a phase offset to the transmitted symbols. Given knowledge of the phase offset, the
receiver can demodulate the transmitted symbols.

(a) Assuming an AWGN channel and Gray coding of the transmitted bits, derive exact expres-
sions for the bit and symbol error probabilities as functions of Eb and N0!

(b) What are some of the advantages of π/4-QPSK compared to conventional QPSK? Hint: look
at the phase of the transmitted signal.

2–53 Consider a QPSK system with a conventional transmitter using basis functions cos and sin,
operating over an AWGN channel with noise spectral density N0/2. The receiver, depicted in
Figure 2.32, has a correlator-type front-end using the two functions

Ψ1(t) =

√

2

T
cos(2πft)

Ψ2(t) =

√

2

T
cos(2πft+ π/4)

How should the box marked decision in the figure be designed for an ML type receiver?

Ψ1(t)

Ψ2(t)

∫

T

∫

T

D
ec
is
io
n

Bits

Figure 2.32: The front-end of the demodulator in Problem 2–53.
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2–54 Parts of the receiver in a QPSK modulated communication system are illustrated in Figure 2.33.
The system uses rectangular pulses and operates over an AWGN channel with infinite bandwidth.

r(t)
BP

rBP(t)
φ̂ SYNC

multI

multQ

cos(2πf̂ct+ φ̂)

− sin(2πf̂ct+ φ̂)

∫ t
t−T (·) dt

∫ t
t−T (·) dt

intI(t)

intQ(t)

dI(n)

dQ(n)

Figure 2.33: The receiver in Problem 2–54

(a) Sketch the signal intI(t) in the interval [0, 2T ] for all possible bit sequences (assume perfect
phase estimates). Explain in words what this is called and what can be deducted from the
sketch.

(b) When would you choose a coherent vs non-coherent (e.g., differential demodulation) receiver
and why?

(c) In a QPSK system, the transmitter uses four different signal alternatives. Plot the QPSK
signal constellation in the receiver (i.e., dI and dQ using the basis functions cos(2πf̂ct+ φ̂)

and− sin(2πf̂ct+φ̂)) when the phase estimate in the receiver, φ̂, has an error of 30◦ compared
to the transmitter phase.

(d) The phase estimator typically has problems with the noise. To improve this, the bandwidth
of the existing bandpass filter (BP) can be reduced. If the bandwidth is reduced signifi-
cantly, what happens then with dI(n) and dQ(n)? Assume that the phase estimation and
synchronization provides reliable estimates of the phase and timing, respectively.

(e) If the pulse shape is to be changed from the rectangular pulse [0, T ] to the pulse h(t), limited
to [0, T ], which block or blocks in Figure 2.33 should be modified for decent performance
and how? Assume that reliable estimates of phase and timing are available.

2–55 In some applications, for example the uplink in the newWCDMA 3rd generation cellular standard,
there is a need to dynamically change the data rate. In this problem, you will study one possible
way of achieving this. Suppose we have two bit streams to transmit, one control channel with a
constant bit rate and one information channel with varying bit rate, that are transmitted using (a
form of) QPSK. The control bits are transmitted on the Q channel (Quadrature phase channel, the
basis function ∼ sin(2πft+ ϕ)), while the information is transmitted on the I channel (In-phase
channel, the basis function ∼ cos(2πft + ϕ)). Antipodal modulation is used on both channels.
The required average bit error probability of all transmitted bits, both control and information,
is 10−3.

Which average power is needed in the transmitter for the I and Q channels, respectively, assuming
the signal power is attenuated by 10 dB in the channel and additive white Gaussian noise is present
at the receiver input?

Q (control) 4 kbit/s
I (information) 0 kbit/s, 30% of the time

8 kbit/s, 70% of the time
Channel power attenuation 10 dB
Noise PSD at receiver R0 = 10−9 WHz
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2–56 In this problem, QPSK signaling is considered. The four equally probable possible signal alter-
natives are given by

{

±a
√

2E
T cos(2πfct)± b

√

2E
T sin(2πfct) 0 ≤ t ≤ T

0 otherwise
fc /

1

T
,

The system operates over an AWGN channel with power spectral density N0/2 and the coherent
ML-receiver shown in Figure 2.34 is used.

r(t)

A cos(2πfct)

−B sin(2πfct)
∫ t
0 ()dt

∫ t
0 ()dt

r0

r1

t = T

D
et
ec
to
r Decision

Figure 2.34: The receiver in Problem 2–56.

The detector is designed so that the receiver is optimum in the sense that the average symbol
error probability is minimized for the case

a = b = A = B = 1 .

The manufacturer cannot guarantee that A = B = 1 in the receiver. Suppose, however, that the
transmitter is balanced, that is a = b = 1. Determine an exact expression for the average symbol
error probability as a function of A > 0 and B > 0.

2–57 A communication engineer has collected field data from a wireless linear digital communication
system. The receiver structure during the field trial is given in Figure 2.35. Thus, as usual,
the receiver consists of bandpass filtering, down-conversion, integration and sampling. The true
carrier frequency in the transmitter is fc and the true phase in the transmitter is φ. The receiver
estimates the phase of the carrier, φ̂, and also the carrier frequency, f̂c. All the other quantities
needed in the receiver can be assumed to be known exactly. The channel from the transmitter to
the receiver may introduce inter symbol interference (ISI). The outputs from the receiver, dI(n)
and dQ(n), are the in-phase and quadrature-phase components, respectively. Unfortunately, the
engineer has not a very good memory, so back in his office after the field trial he needs to figure
out several things.

(a) He measured the spectra for r(t), rBP(t) and multQ(t). The channel between the transmitter
and receiver can in this case be approximated with an additive white Gaussian noise channel
(AWGN) without ISI. The spectra are shown in Figure 2.36 (next page). Determine which
signal is which and, in addition, estimate the carrier frequency! Motivate your estimate of
the carrier frequency.

(b) In the field trial they of course also measured the outputs dI(n) and dQ(n) under different
conditions. The different conditions were:

i. An offset in the carrier frequencies between the transmitter and the receiver. That is,
fc += f̂c, φ = φ̂ and no inter symbol interference (ISI).

ii. Inter symbol interference (ISI) in the channel from the transmitter to the receiver.
Otherwise, fc = f̂c and the phase estimate is irrelevant when ISI is present.

iii. A combination of a frequency offset and some ISI in the channel. The phase estimate is
irrelevant when ISI is present.

iv. A phase offset in the receiver. Otherwise, no ISI and fc = f̂c.
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dI(n)intI(t)

multQ(t)

Q-channel

Figure 2.35: The receiver structure during the field trial.

These four cases are shown in Figure 2.37. Determine what type of signaling scheme they
used in the field trial and also determine which condition in the above list is what constel-
lation. (That is, does Condition 1 and Constellation A match, etc.)

2–58 In this problem we study the impact of phase estimation errors on the performance of a QPSK
system. Consider one shot signalling with the following four possible signal alternatives.

sm(t) =

{ √

2E
T cos(2πfct+

2π
4 m− π

4 + φ) 0 ≤ t ≤ T

0 otherwise
, fc /

1

T
, m = 1, 2, 3, 4 ,

where φ represents the phase shift introduced by the channel. The system operates over an AWGN
channel with noise spectral density N0/2 and the coherent ML receiver shown in Figure 2.38 is
used.

The detector is designed for optimal detection in the case when φ = φ̂. However, in practice the
phase cannot in general be estimated without errors and therefore we typically have φ̂ += φ.

Derive an exact expression for the resulting symbol error probability, assuming |φ− φ̂| ≤ π/4.

2–59 The company Nilsson, with a background in producing rubber boots, is about to enter the com-
munication market. For a future product, they are comparing two alternatives: a single carrier
QAM system and a multicarrier QPSK system. Both systems have identical bit rates, R, use
rectangular pulse shaping, and operate at identical average transmitted powers, P . In the mul-
ticarrier system, the data stream, consisting of independent equiprobable bits, is split into four
streams of lower rate. Each such low-rate stream is used to QPSK modulate carriers centered
around fi, i = 1, . . . , 4. The carrier phases are different and independent of each other. In the
256-QAM system, eight bits at a time are used for selecting the symbol to be transmitted.

(a) How should the subcarriers be spaced to avoid inter-carrier interference and in order not to
consume unnecessary bandwidth?

(b) Derive and plot expressions for the symbol error probability for coherent detection in the
two cases as a function of average SNR = 2Eb/N0.

(c) Sketch the spectra for the two systems as a function of the normalized frequency fT , where
T = 8/R is the symbol duration. Normalize each spectrum, i.e., let the highest peak be at
0 dB.

(d) Which system would you prefer if the channel has an unknown (time-varying) gain? Moti-
vate!

2–60 A common technique to counteract signal fading (time-varying amplitude and phase variations)
in radio communications is based on utilizing several receiver antennas. The received signals in
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Figure 2.36: Frequency representations of the three signals r(t), rBP(t) and multQ(t) in the communication
system (not necessarily in that order!).
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Figure 2.37: Signal constellations for each of the four conditions in Problem 2–57.
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Figure 2.38: Receiver.

the different receiver antennas are demodulated and combined into one signal that is then fed to
a detector. This technique, of using several antennas, is called space diversity and the process of
combining the contributions from the different antennas is called diversity combining.

To study a very simple system utilizing space diversity we consider the figure below, using one
transmitter and two receiver antennas.

Rx

Tx

a1

a2

Assume that the transmitted signal is a QPSK signal, chosen from the set {si(t)} with

si(t) =

√

2E

T
cos(2πfct+ iπ/4), 0 ≤ t ≤ T, i = 1, . . . , 4

where fc = (large integer)·1/T is the carrier frequency, and where the transmitted signal al-
ternatives are equally likely and independent. The received signal in the mth receiver antenna
(m = 1, 2) can be modeled as

rm(t) = amsi(t) + wm(t)

where am is the propagation attenuation (0 < am < 1) corresponding to the path from the
transmitter antenna to receiver antenna m, and where wm(t) is AWGN with spectral density
N0/2. Assume that the noise contributions wm(t), m = 1, 2, are independent of each-other, and
that the attenuations am, m = 1, 2, are real-valued constants that are known to the receiver1.

The signal rm(t), m = 1, 2, is demodulated into the discrete variables

rcm =

√

2

T

∫ T

0
rm(t) cos(2πfct)dt, rsm = −

√

2

T

∫ T

0
rm(t) sin(2πfct)

Letting rm = (rcm, rsm), m = 1, 2, the contributions from the two antennas are then combined
into one vector u according to

u = b1r1 + b2r2,

where b1 and b2 are real-valued constants. The vector u is then fed to an ML-detector deciding
on the transmitted signal based on the observed value of u.

How should the parameters b1 and b2 be chosen to minimize the resulting symbol error probability
and which is the corresponding minimum value of the error probability?

1A more reasonable assumption, in practice, would be that the amplitudes are modeled as Rayleigh distributed
random variables that are estimated, and hence not perfectly known. We also notice that the model for the received
signal does not take into account potential propagation delays and/or phase distortion.
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2–61 An example of a receiver in a QPSK communication system using rectangular pulse shaping is
shown in Figure 2.39. The system operates over an AWGN channel with an unknown phase
offset and uses a 10 bit training sequence for phase estimation and synchronization followed by
1000 information bits. A number of different signals has been measured in the receiver at various
points, denoted with numbers in gray circles, and the results are shown in Figure 2.40. Eight
samples were taken for each symbol, i.e., the oversampling factor is eight, and all time axes
refer to the sample number (and not the symbol number). The Eb/N0 were 10 dB when the
measurements were taken unless otherwise noted.

(a) Pair the plots A–D in Figure 2.40 with the corresponding measurement points in Figure 2.39!
Carefully explain you answer.

(b) Studying the plots in Figure 2.40, what do you think is the main reason for the degraded
performance compared to the theoretical curve? Why? Which box in Figure 2.39 would you
start improving?

(c) Explain how the plot E was obtained and what can be concluded from it. Which, one or
several, of the measurement points in Figure 2.39 was used and how?
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Figure 2.39: A QPSK receiver.

2–62 Two different data transmission systems A and B are based on size-L signal sets (with L a large
integer). Transmitted symbols are equally likely. System A uses equidistant PAM, with signals
at distance dA, and system B uses PSK with signals evenly distributed over a circle (in signal
space) and at distance dB .

(a) The two systems will have approximately the same error rate performance when dA = dB.
Determine the ratio between the peak signal powers of the systems when dA = dB .

(b) Determine the ratio between average signal powers when dA = dB .

2–63 Consider an 8-PSK constellation with symbol energy E used over an AWGN channel with spectral
density N0/2 and with an optimum (minimum symbol-error probability) receiver. The constella-
tion is employed in mapping three equally likely and independent bits to each of the eight PSK
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symbols. Assuming a large ratio E/N0 show that some mappings of the three bits yield a different
bit-error probability for different bits. This effect is a kind of “unequal error protection” and is
useful when the bits are of different “importance.” Specify the mappings that yield equal error
probabilities for the bits and in addition the mappings that yield the largest ratio between the
maximum and minimum error probability.

2–64 Consider carrier-modulated M-PSK, on the form

u(t) = Re

{

∑

n

xng(t− nT )ej2πfct
}

with equally likely and independent (in n) symbols

xn ∈ {eφ0 , eφ1 , . . . , ejφM−1}

where φm = 2πm/M,m = 0, . . . ,M − 1, and with the pulse

g(t) =

√

2

T
sin(πt/T ), 0 ≤ t ≤ T

(with g(t) = 0 for t < 0 and t > T ).

Consider now a receiver that first converts the received bandpass signal (the signal u(t) in AWGN)
to a complex baseband signal

y(t) =
∑

n

xng(t− τ − nT ) + n(t)

where τ < T/2 models an unknown propagation delay, and where n(t) is complex-valued AWGN,
that is

n(t) = nc(t) + jns(t)

where nc(t) and ns(t) are independent real-valued AWGN processes, both with spectral density
N0/2. (Since the conversion from bandpass to complex baseband involves filtering, the noise n(t)
will not be exactly white, however we model it as being perfectly white.)

Correlation demodulation is then implemented in the complex domain on the signal y(t), more
precisely the receiver forms the decision variables

yn =

∫ (n+1)T

nT
g(t− nT )y(t)dt

Note that the receiver does not compensate for the unknown delay τ .

Based on yn a decision x̂n is then computed as

x̂n = argmin
x

|yn − x|

over all x ∈ {ejφ0 , ejφ1 , . . . , ejφM−1} (the possible values for xn).

Assume M = 8 (8-PSK), and τ = T/4. Compute an expression for the symbol error probability
Pe = Pr(x̂n += xn). You may use approximations based on the assumption 1/N0 / 1.

2–65 Consider a coherent binary FSK modulator and demodulator. Themth transmitted bit is denoted
dm ∈ {0, 1} and the two alternatives are equally probable. The transmitted signal as a function
of time t is x(t),

x(t) =
∑

∀m

xm(t)

xm(t) =

{

2(1000t−m)ej2π500t if dm = 0

2(1000t−m)ej2π1500t if dm = 1,
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where the rectangular function 2(·) is defined as

2(α) =

{

1 if − 1
2 < α < 1

2

0 otherwise.

The communications channel adds complex AWGN n(t) with auto correlation

E[n(t)n∗(t− τ)] = N0 δ(t− τ)

as well as carrier wave interference ej2π2000t to the signal and the received signal is

r(t) = x(t) + n(t) + ej2π2000t .

The precise phase and frequency of the interference is known.

The FSK demodulator has perfect timing, phase and frequency synchronization. The first step
of the demodulation process is to generate 2 decision variables, v0,m and v1,m,

v0,m =

∫ m+1/2
1000

m−1/2
1000

r(t)e−j2π500t dt

v1,m =

∫ m+1/2
1000

m−1/2
1000

r(t)e−j2π1500t dt .

(a) Find an expression for v0,m and v1,m in terms of dm and m!

(b) Find the optimum decision rule for estimating dm using v0,m and v1,m! The optimum decision
rule is the one that minimizes the probability of bit error.

2–66 Consider a binary FSK system over an AWGN channel with noise variance N0/2. Equally prob-
able symbols are transmitted with the two signal alternatives

s1(t) =

{ √

2E
T sin 2πt

T , 0 ≤ t < T

0, otherwise

s2(t) =

{ √

2E
T sin 4πt

T , 0 ≤ t < T

0, otherwise

A coherent receiver is used that is optimized for the signals above. Using this receiver, the
transmitted signals are changed to

u1(t) =

{ √

2E
T sin 2πt

T , 0 ≤ t < ρT

0, otherwise

u2(t) =

{ √

2E
T sin 4πt

T , 0 ≤ t < ρT

0, otherwise

where 0 ≤ ρ ≤ 1. Thus, the signals are zero during part of the symbol interval.

(a) Determine the Euclidean distance in the vector model between the signal alternatives u1(t)
and u2(t).

(b) Is the receiver constructed for s1(t) and s2(t) also optimal when u1(t) and u2(t) are trans-
mitted?

2–67 In this problem we compare coherent and non-coherent detection of binary FSK. A coherent
receiver must know the signal phase. In situations where the phase is badly estimated or unknown
a non-coherent receiver typically gives better performance.
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Consider one-shot signalling using the following two signal alternatives.

sm(t) =

{ √

2Eb
T cos (2πfct+ 2πm3ft) 0 ≤ t ≤ T

0 otherwise
m = 0, 1

3f =
1

T
- fc .

The signals are equally likely, and transmission takes place over an AWGN channel. Figure 2.41
illustrates a coherent receiver. The detector decides that s0(t) was transmitted if r0 ≥ r1.

r(t)
√

2
T cos

(

2πfct + φ̂0

)

√

2
T cos

(

2πfct + 2π#ft + φ̂1

)

∫ t
0 ()dt

∫ t
0 ()dt

r0

r1

t = T

D
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to
r

Figure 2.41: Coherent receiver.

Furthermore, a non-coherent receiver is shown in Figure 2.42. In this case the receiver decides
s0(t) if d = (r20c + r20s) − (r21c + r21s) ≥ 0 Now assume that s0(t) was transmitted. The received

r(t)

√

2
T cos (2πfct)

√

2
T sin (2πfct)

√

2
T cos (2πfct + 2π#ft)

√

2
T sin (2πfct + 2π#ft)

D
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0 ()dt

∫ t
0 ()dt

∫ t
0 ()dt

∫ t
0 ()dt

r0c

r0s

r1c

r1s

t = T

t = T

Figure 2.42: Non-coherent receiver.

signal is then obtained as

r(t) =

√

2Eb

T
cos (2πfct+ φ0) + n(t)

for 0 ≤ t ≤ T , where the AWGN n(t) has spectral density N0/2. Assume that 10 log10(2Eb/N0) =
10 dB. How large an estimation error |φ0 − φ̂0| can at maximum be tolerated by the coherent
receiver to maintain better performance than the non-coherent receiver?

2–68 Your future employer has heard that you have taken a class in Digital Communications. She tells
you that she considers the design of a new communication system to transmit and receive carrier
modulated digital information over a channel where AWGN with power spectral density N0/2
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Figure 2.43: Signal constellation.

is added. She wants to be able to transmit log2(M) bits every T seconds, so she considers two
different M-ary carrier modulated signal sets that are to be used every T seconds. She mentions
that a phase-coherent receiver will be used that minimizes the probability that the wrong signal
is detected.

The signal sets under consideration are

s1i (t) =

√

2Es

T
cos(2πfct+ 2πi/M)

s2i (t) =

√

2Es

T
cos(2πfct+ 2πi∆f t)

for 0 ≤ t < T , where

i ∈ {0, . . . ,M − 1}

∆f =
1

2T
Es/N0 = 16

fc /
1

T

The value of M is still open.

(a) Your employer’s task for you is to find which of the signal sets 1 and 2 that is preferable
from a symbol error probability perspective for different values of M .

(b) Discuss the feasibility of the two signal sets for different values of M .

2–69 Consider the signal constellation depicted in Figure 2.43. The signals are used over an AWGN
channel. An optimal receiver is employed. Assume that the SNR in the transmission is high and
that all signals are used with equal probability. Assume also that 0 < a < b.

(a) Assume a fixed b. How should a be chosen to minimize the symbol error probability?

(b) How much higher/lower average transmit energy is needed in order for the system to give
the same error rate performance as an 8PSK system (at high SNRs)? Assume b = 3a.

2–70 Consider the 16-PSK, and 16-Star signal constellations as shown in Figure 2.44.

(a) Find an optimal ratio R1/R2 for the 16-Star constellation. Here “optimal” means the ratio
resulting in the lowest probability of symbol error.

(b) Derive an equation for the bit error probability versus Eb/N0 for both constellations. It
is very difficult to get an exact solution to this problem. Approximations are acceptable
however the approximations used must be stated. Use the optimum R1/R2 as determined
in Part a.
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Figure 2.44: Constellations.

2–71 Consider the 16-QAM signal constellation depicted in Figure 2.45. With this constellation, where
the mapping is Gray-coded, different bits will have different error probabilities.

(a) Find an asymptotic relation (high Eb/N0, AWGN channel) between the error probabilities
for the four bits carried by each transmitted symbol! Note that you don’t need to explic-
itly compute the values of the bit error probabilities, i.e. a solution where the bit error
probabilities are compared relative to each other is fine.

(b) Consider a scenario where the 16QAM system of above is used for conveying information
from four different users. As illustrated in Figure 2.46, the data bits of the four users are
first multiplexed into one bit stream which, in turn, is mapped into 16QAM symbols and
then transmitted (i.e., each user transmits on every fourth bit). At the receiver, the 16QAM
symbols are decoded and demultiplexed into the bit sequences for the different users.

If all the users are to transmit a large number of bits, how can the system be modified to
give the users approximately the same bit error probability, averaged over time?

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0000

0001

0010

0011

01000101

01100111

1000 1001

1010 1011

1100

1101

1110

1111

Figure 2.45: 16QAM signal constellation.

2–72 In a multicarrier system, the high-rate bitstream is split into several low-rate streams and each
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Figure 2.46: A four user 16QAM system.

low-rate stream is transmitted on a separate carrier. These systems can be designed so that
the inter carrier interference is negligible. Consider two systems, a single-carrier system using
64-QAM and a multicarrier system using 3 separate QPSK carriers. Both systems have a bitrate
of R, a total average transmit power of P and operate over an AWGN channel with two-sided
noise spectral density of N0/2.

Which system is to prefer from a symbol error probability point of view and how large is the gain
in dB at an error probability of 10−2? For the multicarrier QPSK (and the 64-QAM) system a
symbol is considered to contain 6 bits.

2–73 Equally likely and independent information bits arrive at a constant rate of 1000 bits per second.
These bits are divided into blocks of L bits and each L-bit block is transmitted based on linear
memoryless carrier modulation at carrier frequency fc = 109 Hz. The transmitted signal is hence
of the form

u(t) = Re

{

∑

n

g(t− nT )xne
j2πfct

}

where g(t) is a rectangular pulse

g(t) =

{

A, 0 ≤ t ≤ T

0, otherwise

and {xn} are complex information symbols, each carrying L bits of information. (The signaling
rate 1/T thus depends on L.) The signal u(t) is transmitted over an AWGN channel, producing
a received signal

r(t) = u(t) + w(t)

where w(t) is AWGN of spectral density N0/2, with N0 = 0.004 V2/Hz. The receiver implements
optimal ML demodulation/detection, producing symbol estimates x̂n. Find one modulation
format out of the following nine formats

• Uniform 4-ASK, 8-ASK or 16-ASK

• Uniform 4-PSK, 8-PSK or 16-PSK

• Rectangular 4-QAM, 16-QAM or 64-QAM

that will result in a transmission that fulfills all of the following criteria

• Symbol error probability Pe = Pr(x̂n += xn) < 0.01

• Average transmitted power < 100 V2

• At least 90% of the transmitted power within the frequency range |±fc±B| with B = 250 Hz

Useful result : The value of

f(x) =

∫ x

0

[
sinπτ

πτ

]2

dτ

in the range 0.2 < x < 3 is plotted below
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and it holds that f(0.5) ≈ 0.387, f(1) ≈ 0.451, f(2) ≈ 0.475, f(3) ≈ 0.483, f(∞) = 0.5.

2–74 Consider the carrier-modulated signal, on the form

u(t) = Re

{

∑

n

xng(t− nT )ej2πfct
}

with equally likely and independent (in n) symbols

xn ∈ {−3a,−a, a, 3a,−j3a,−ja, ja, j3a}

and with the pulse

g(t) =

√

2

T
sin(πt/T ), 0 ≤ t ≤ T

(with g(t) = 0 for t < 0 and t > T ).

Consider now a receiver that first converts the received bandpass signal (the signal u(t) in AWGN)
to a complex baseband signal

y(t) =
∑

n

xne
jφg(t− nT ) + n(t)

where φ models an unknown phase shift, and where n(t) is complex-valued AWGN, that is

n(t) = nc(t) + jns(t)

where nc(t) and ns(t) are independent real-valued AWGN processes, both with spectral density
N0/2. (Since the conversion from bandpass to complex baseband involves filtering, the noise n(t)
will not be exactly white, however we model it as being perfectly white.)

Correlation demodulation is then implemented in the complex domain on the signal y(t), more
precisely the receiver forms the decision variables

yn =

∫ (n+1)T

nT
g(t− nT )y(t)dt

Note that the receiver does not compensate for the phase-shift φ.

Based on yn a decision x̂n is then computed as

x̂n = argmin
x

|yn − x|

over all x (the possible values for xn).

(a) Compute the spectral density of the transmitted signal.

(b) Compute an expression for the symbol error probability Pe = Pr(x̂n += xn) in the case that
the phase-shift is φ = π/8. You may use approximations based on the assumption 1/N0 / 1.
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Figure 2.47: Carrier modulation system.

2–75 Consider the communication system depicted in Figure 2.47.

The independent and equiprobable information symbols xn = ejφn , where φn ∈ {π
4 ,

3π
4 , 5π4 , 7π

4 },
are transmitted on a carrier with frequency fc. The resulting signal is transmitted over a channel
with AWGN n(t) with power spectral density N0/2. In the receiver, the received signal is im-
perfectly down-converted to baseband, due to a frequency error fe and phase error φe. Assume
fe < 1

2T - fc.

The impulse responses of the transmitter and receiver filters are

gT (t) =
sin(πt/T )

πt

gR(t) =
sin(2πt/T )

πt

for −∞ < t < ∞.

(a) Derive and plot the power spectral density of the transmitted signal v(t).

(b) Derive an expression for y(nT ) as a function of fe, φe, φn and n(t).

(c) Find the autocorrelation function for the noise in y(t). Is this noise additive, white and
Gaussian?

(d) The transmitted information symbols xn are estimated from the sampled complex baseband
signal y(nT ) using a symbol-by-symbol detector. The detector is optimal when fe = φe = 0,
in terms of symbol error probability. Derive the symbol error probability assuming fe = 0
and 0 < |φe| < π

4 .
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Chapter 3

Channel Capacity and Coding

3–1 Consider the binary memoryless channel illustrated below.

00

11
X Yε

With Pr(X = 1) = Pr(X = 0) = 1/2 and ε = 0.05. Compute the mutual information I(X ;Y ).

3–2 Consider the binary memoryless channel

00

1 1

ε0

ε1

1− ε0

1− ε1

(a) Assume p0 = Pr{0 is transmitted} = 1
4 and ε0 = 3ε1. Find the average error probability

Pr( output += input ).

(b) Apply a negative decision rule, that is, interpret a received 0 as 1 and a received 1 as 0.
Find the error probability as a function of ε0. When will this error probability be less than
the one in (a)?

3–3 Consider the binary OOK communication system depicted in Figure 3.1, where a pulse represents
a binary “1” and no pulse represents a “0”. The two independent transmitters share the same
bandwidth for transmitting equiprobable binary symbols over the AWGN channel. Of course
the two transmitters will interfere with each other. However, a multiuser decoder can, to some
extent, separate the two users and reliably detect the information coming from each user.

The detector, which only has access to hard decisions, 0 or 1, is characterized by three probabil-
ities:

Pd,1 the detection failure when one transmitter is transmitting “1”.

Pd,2 the detection failure when two transmitters are transmitting “1”.

Pf the false alarm probability.

A false alarm is when the output of the threshold device indicates that at least one pulse was
transmitted when no pulse was transmitted. A detection failure is when the output of the thresh-
old device indicates that no pulse was present on the channel despite that one or both were
transmitters were ON. The scrambler in the figure is only used to make it possible for the re-
ceiver to separate the two users and is not important for the problem posed.
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Figure 3.1: Binary OOK system.

(a) Determine the amount of information (bits/channel use) that is possible to transmit from
the two transmitters to the receiver as a function of Pd,1, Pd,2, and Pf !

(b) The best possible detector of course has Pd, 1 = Pd,2 = Pf = 0. Which capacity in terms of
bits/channel use will this result in?

3–4 A space probe, called Moonraker, is planned by Drax Companies. It is to be launched for
investigating Jupiter, 6.28 · 108 km away from the earth. The probe is to be controlled by digital
BPSK modulated data, transmitted from the earth at 10 GHz and 100 W EIRP. The receiving
antenna at the space probe has an antenna gain of 5 dB and the bit rate required for controlling
the space probe is 1 kbit/s.

Based on these (simplistic) assumptions, is it possible to succeed with the mission?

3–5 Consider the channel depicted in Figure 3.2 where the input and output variables are denoted

fX(x1)

fX(x2)

fX(x3)

fY (y1)

fY (y2)

fY (y3)

1− ε

ε

δ

δ

δ

γ

1− γ

Figure 3.2: Channel.

with X and Y , respectively. The transition probabilities are given by ε = δ = γ = 1/3. Determine
the following properties for this channel:

(a) the maximal entropy of the output variable Y . Show that this is achieved when

fX(x1) = fX(x3) =
1− fX(x2)

2
.

(b) the entropy of the output variable given the input variable, that is, H(Y |X). Express your
answer in terms of the input probabilities of the channel and the binary entropy function

Hb(u) = −u log2 u− (1 − u) log2(1− u)
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(c) the channel capacity. Hint : The channel capacity is by definition given by

C = max
fX (x)

I(X ;Y ) = max
fX (x)

(H(Y )−H(Y |X))

An upper bound on the channel capacity is

C ≤ max
fX (x)

H(Y )− min
fX (x)

H(Y |X).

Find the capacity by showing that this upper bound is actually attainable!

3–6 Figure 3.3 below illustrates two discrete channels

000

111

1/2

1/2 1/3

2/3

Channel 1 Channel 2

Figure 3.3: Two discrete channels.

(a) Determine the capacity of channel 1.

(b) Channel 1 and channel 2 are concatenated. Determine the capacity of the resulting overall
channel.

3–7 Samples from a memoryless random process, having a marginal probability density function
according to Figure 3.4, are quantized using 4-level scalar quantization.

The thresholds of the quantizer are −b, 0, b, where 0 < b < 1. The 4 levels of the quantizer
output are represented using 2 bits. The stream of quantizer output bits are then coded using a
source code that converts the bitstream into a more efficient representation. Before transmission
the output bits of the source code are subsequently coded using a block channel code, and the
coded bits are then transmitted over a memoryless binary symmetric channel having crossover
probability 0.02. What values for b can be allowed if the combination of the source code and the
channel code is to be able to provide errorfree transmission of the quantizer output bits in the
limit as the block lengths of the codes go to infinity?

1

f(x)

x

A

Figure 3.4: A pdf.
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3–8 A binary memoryless source, with output Xn ∈ {0, 1} and with p = Pr(Xn = 1), generates
one symbol Xn every Ts seconds. The symbols from the source are to be conveyed over a time-
and amplitude-continuous AWGN channel with noise spectral density N0/2 [W/Hz], via separate
source and channel coding. The channel is a baseband channel with bandwidth W [Hz], and the
maximum allowed transmit power is P [W]. Assume that Ts = 0.001, W = 1000 and P/N0 = 700.
Then, for which values of p is it impossible to reconstruct Xn at the receiver without errors?

3–9 Consider the discrete memoryless channel depicted below.

X Y

00

11

22

33

ε
1− ε

As illustrated, any realization of the input variable X can either be correctly received, with
probability 1−ε, or incorrectly received, with probability ε, as one of the other Y -values. (Assume
0 ≤ ε ≤ 1.) What is the capacity of the channel in bits per channel use?

3–10 The discrete memoryless binary channel illustrated below is know as the asymmetric binary
channel.

00

11

α

1− α

β

1− β

Compute the capacity of this channel in the case β = 2α.

3–11 Consider the block code with the following parity check matrix:

H =





1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1





(a) Write down the generator matrix G and explain how you derived it.

(b) Write down the complete distance profile of the above code. What is its minimum Hamming
distance?

(c) How many errors can this code detect?

(d) Can it be used in correction and detection modes simultaneously. If so how many errors can
it correct while also detecting errors? Explain your answer.

(e) Write down the syndrome table for this code explaining how you derived it. The syndrome
table shows the error vector associated with all possible syndromes.

3–12 Determine the minimum distance of the binary linear block code defined by the generator matrix

G =





1 0 1 1 0 0
0 1 0 1 1 0
0 0 1 0 1 1





3–13 Consider the (n, k) binary cyclic block code specified by the following generator matrix

G =





1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1




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(a) List the codewords of the code, and specify the parameters n (block-length), k (number of
information bits), R (rate), and dmin (minimum distance).

(b) Specify the generator polynomial g(p) and parity check polynomial h(p) of the code.

(c) Derive generator and parity check matrices in systematic form.

(d) The code obtained when using the parity check matrix of the code specified above as genera-
tor matrix is called the dual code. Assume that the dual code is used over a binary symmetric
channel with cross-over probability ε = 0.01, and with hard decision decoding based on the
standard array. Derive an exact expression for the resulting block error probability pe, and
evaluate it numerically.

3–14 Three friends A, B and C agree to play a game. The game is done using 16 different species of
flowers that happen to grow in abundance in the neighborhood. First, C picks four flowers in
any combination and puts them in a row. Then, A is allowed to add three flowers of his choice.
The third step in the game is to let C replace any of the seven flowers with a new flower of any
of the 16 species. Finally, A claims that B always can tell the original sequence of seven flowers
by looking at the new sequence (B had his eyes closed while C and A did their previous steps)!
C thinks this is impossible and the three friends therefore bet a chocolate bar each. With this at
stake, A and B simply cannot afford to loose!

Of course A and B have done this trick several times before, agreeing on a common technique
based on their profound knowledge of communication theory. Winning the chocolate bars is
therefore easy for them. Describe at least one technique A and B could have used!

4 flowers chosen by C 3 flowers chosen by A

Figure 3.5: Flowers.

3–15 Consider the concatenated coding scheme depicted below.

Outer enc. Inner enc. Outer dec.Inner dec.Interleaver DeinterleaverChannel

The outer encoder is a (7, 4) Hamming code and the interleaver is ideal (i.e., no correlation
between the bits coming out of the interleaver). The inner encoder is a linear (3, 2) block encoder
with generator matrix

G =

[

1 0 1
0 1 1

]

.

The coded bits are transmitted using antipodal signaling over an AWGN channel with the signal
to noise ratio 2Ec/N0 = 10 dB, where Ec is the energy per bit on the channel (these are of
course the coded bits, not the information bits). In the receiver, the inner code is decoded using
soft decision decoding. The decoded bits (2 for each 3 channel bits) out from the inner decoder
(note, these bits are either 0 or 1) are passed through the deinterleaver and decoded in the outer
decoder.

(a) Compute the word error probability for the inner decoder that uses soft decision decoding
as a function of 2Ec/N0.

(b) Express the bit error probability of the decoded bits out from the inner decoder as a function
of 2Ec/N0.
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(c) Derive an expression of the word error probability for the outer decoder as a function of
2Ec/N0.

Reasonable approximation are allowed as long as they are clearly motivated.

Hint: Study the code words for the inner encoder and the decision rule used.

3–16 Consider the memoryless discrete channel depicted in Figure 3.6.

1− ε

1− γ

00

11

ε

γ

Figure 3.6: Discrete channel.

A linear code with generator matrix

G =

[

1 0 1
0 1 1

]

is used in coding independent and equally likely information bits over the given channel. A
receiver fully utilizes the ability of the code to detect errors. Determine the probability that an
error pattern is not detected.

3–17 Consider a cyclic binary (7, 4) block channel code having the generator polynomial

g(z) = 1 + z + z3. (3.1)

The code is to be used for error correction in transmission over a non-symmetric binary memory-
less channel, with crossover probabilities P (1|0) = ε and P (0|1) = δ, as illustrated in Figure 3.7.

X Y

00

11

ε

δ

Figure 3.7: The channel in Problem 3–17.

(a) For the code, determine the generator matrix G and the parity check matrix H. Both are
to be given in systematic form.

(b) Assume that Pr(X = 0) = p. Express the mutual information, I(Y ;X), as a function of p,
ε, δ and the function h defined by

h(u) = −u log(u)− (1− u) log(1− u). (3.2)

State the definition of the capacity of the channel in terms of the derived expression for the
mutual information. (You do not need to compute the capacity).

(c) Suppose that δ = ε (that is, that the channel is symmetric). Determine the maximal ε that
can be allowed if the probability of block-error employing maximum likelihood decoding for
the described code, is to be less than 0.1 %. (Hint : the given code is a, so called, Hamming
code. It has the special property that it can correct exactly (dmin − 1)/2 errors, where dmin

is the minimum distance of the code, irrespectively of which codeword is transmitted.)
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3–18 (a) Consider the 4-AM constellation with Gray coding as shown in Figure 3.8. The probability
of the bit1 being in error is different from the error probability of bit2. Write down the
expressions for the probability of error for bit1 (Pb1) and bit2 (Pb2) versus energy per symbol
over noise spectral density Es/N0. Of-course coherent detection is used.

(b) An (n, k, t) block encoder encodes k information bits into n channel bits and has the ability
to correct t errors per block. Write down an expression for the bit error probability Pd

after decoding given a pre-decoder bit error probability Pcb. Assume that the block coder
is systematic and that whenever the number of channel bits in error exceeds t then the
systematic bits are passed straight through the decoder. i.e. the output error probability
equals the input error probability for that block.

00 01 1011

bit1:bit2

Figure 3.8: 4-AM constellation

3–19 Codes can be used either for error correction, error detection or combinations thereof. A set
of commonly used error detection codes are the so-called CRC codes (cyclic redundancy check).
CRC codes are popular as they offer near-optimum performance and are very easy to generate
and decode.

Consider a system employing a (n, k) CRC code for error detection. Hard decision decoding is
employed and the code length n = 128 is fixed. Find the maximum value of k that guarantees a
probability of false detection Pfd of less than 10−10. False detection occurs when the codeword
received is different from the codeword transmitted yet the error detector accepts it as correct.

(Hint : Consider the worst case, where all word errors are equally likely)

3–20 Consider the communication system depicted below.

kk nn
encoder AWGN

demod +
detect

decoder

Independent and equally likely information bits are blocked into k-bit blocks and coded into
n-bit blocks (where n > k) by a channel encoder. The output bits from the channel encoder
are transmitted over an AWGN channel, with noise spectral density N0/2, using QPSK. The
codeword bits are mapped onto the QPSK constellation using Gray labeling, and the energy
per transmitted QPSK symbol is denoted Es. It holds that Es/N0 = 7 dB. The received signal
is demodulated optimally and the transmitted symbols are detected using ML detection. The
resulting detected symbols are mapped back into bits and then fed to a channel decoder that
decodes the received n-bit blocks into k-bit information blocks.

(a) Let pe denote the probability that the output k-bit block from the decoder is not equal to
the input k-bit block of information bits. At what rates Rc = k/n do there exist channel
codes that are able to achieve pe → 0 as n → ∞?

(b) Assume that the channel code is a linear block code specified by the generator matrix

G =







1 1 1 1 1 1 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 0 1 1







Derive an exact expression for the corresponding error probability pe, when this code is
used for error correction in the system depicted in the figure, and evaluate it numerically
for Es/N0 = 7 dB. Assume that the decoding is based on the standard array of the code.
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(c) When using the code as in part (b) the energy Es is employed to transmit one QPSK symbol,
and one such symbols corresponds to two coded bits. Hence the energy spent per information
bit is higher than Es/2. With Es/N0 = 7 dB, as before, for the coded system make a fair
comparison with a system that transmits information bits using QPSK with Gray labeling
without coding (and spends as much energy per information bit as the coded system does)
in terms of the corresponding probabilities of conveying k information bits without error. Is
the coded system better than the uncoded (is there any coding gain)?

3–21 Consider a cyclic code of length n = 15 and with generator polynomial

g(x) = 1 + x4 + x6 + x7 + x8

For this code, derive

(a) the generator matrix in systematic form.

(b) the parity check matrix in systematic form and the minimum distance dmin.

Assume that the code is used over a binary symmetric channel with bit-error probability ε = 0.05
and with hard-decision decoding based on the standard array at the receiver.

(c) Compute an upper bound to the resulting block error probability.

Now assume instead that the code is used over a binary erasure channel. That is, a binary
memoryless channel with input symbols {0, 1} and output symbols {0, 1, e} where the symbol e
means “bit was lost.” Such erasure information is often available, e.g. when transmitting over
the Internet. Letting P (y|x) denote Pr(output = y| input = x ) the statistics of the transmission
are further specified as

P (0|0) = P (1|1) = 1− α, P (e|0) = P (e|1) = α, P (1|0) = P (0|1) = 0

That is, if the receiver sees 0 or 1 it knows that the received bit is correct.

(d) Assuming maximum likelihood decoding over the erasure channel as specified, and with
α = 0.05, derive an upper bound to the block error probabilty.

3–22 Consider the communication system depicted Figure 3.9.

ân b̂n

an bn cn
BSCenc 1 enc 2

dec 1 dec 2

Figure 3.9: Communication system

Independent and equally likely bits an ∈ {0, 1}, n = 1, . . . , 4, are blocked into length-4 blocks
a = (a1, . . . , a4) and are encoded by the encoder of a (7, 4) binary cyclic block code with generator
matrix

G =







1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1







The output-bits bn ∈ {0, 1}, n = 1, . . . , 7, are then blocked into a length-7 block b = (b1, . . . , b7)
and encoded by the encoder of a (15, 7) binary cyclic code with generator polynomial

g(p) = x8 + x7 + x6 + x4 + 1,

producing the transmitted bits cn, n = 1, . . . , 15, in a block c = (c1, . . . , c15). Assume that both
encoders are systematic (corresponding to the systematic forms of the generator matrices).

64



The output bits cn ∈ {0, 1} are transmitted over a BSC with bit-error probability 0.1. The
recieved bits are first decoded by a decoder for the (15, 7) code and then by a decoder for the
(7, 4) code. Both these decoders implement maximum likelihood decoding (“choose the nearest
codeword”).

(a) The four information bits a = (0, 0, 1, 1) are encoded as described. Specify the corresponding
output codeword c from the second encoder.

(b) Assume that the binary block
000101110111100

is received at the output of the BSC. Specify the resulting estimates ân ∈ {0, 1}, n = 1, . . . , 4,
of the corresponding transmitted information bits.

(c) Notice that the concatenation described above results in an equivalent block code, with 4
information bits and 15 codeword bits. Since both the (7, 4) and the (15, 7) codes are cyclic,
the overall code will also be cyclic. Specify the generator polynomial and the generator
matrix of the equivalent concatenated code.

3–23 Consider a (7,3) cyclic block code with generator polynomial g(p) = p4 + p2 + p+ 1.

(a) Find the generator matrix in systematic form.

(b) Find the minimum distance of the code.

(c) Suppose the generator matrix in (a) is used for encoding 9 independent and equiprobable bits
of information x for transmission over a BSC with ε < 0.5. Find the maximum likelihood
sequence estimate of x if the output from the BSC is

y = (101111011011011111010) (3.3)

3–24 Consider a (10, 5) binary block code with parity check matrix

H =









1 0 0 1 1 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0
1 1 1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 0 1 0
0 0 1 1 1 0 0 0 0 1









(a) Find the generator matrix G.

(b) What is the coset leader of the syndrome [00010]?

(c) Give one received vector of weight 5 and one received vector of weight 7 that both correspond
to the same syndrome [00010].

(d) Compute the syndrome of the received word y = [0011111100] and the corresponding coset
leader.

(e) Is there a syndrome for which the weight of the corresponding coset leader is 3? If so, find
such a syndrome.

3–25 A binary Hamming code has length n = 2m − 1 and number of information bits k = 2m −m− 1,
for m = 2, 3, 4, . . ., and a parity check matrix can be obtained by using as columns all the
2m − 1 different m-bit words except the all-zero word. For example a parity check matrix for the
m = 3, n = 7, k = 4 Hamming code is

H =





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1





A Hamming code of any size always has minimum distance dmin = 3.
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An extended Hamming is obtained by taking the parity check matrix of any Hamming code and
adding one new row containing only 1’s, and also the new column [0 0 · · · 0 1]T . That is, in the
case of the (7, 4) Hamming code, the resulting new parity check matrix of the extended code is

Hext =







1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
1 1 1 1 1 1 1 1







corresponding to an (8, 4) code.

(a) What is the minimum distance of the (8, 4) extended Hamming code?

(b) Show that an extended Hamming code has the same minimum distance regardless of its size,
that is the same dmin as for the (8, 4) code.

3–26 Consider a (5,2) block code with the generator matrix given by

G =

[

1 0 1 0 1
0 1 1 1 1

]

The information x ∈ {0, 1}k is encoded using the above code and the elements of the resulting
code word c ∈ {0, 1}n are BPSK modulated and transmitted over an AWGN channel. The BPSK
modulator is designed such that a 0 input results in the transmission of

√
E and 1 results in −

√
E

(for simplicity, E can be normalized to 1). The received codeword (sequence) is denoted r.

As you know, soft decoding is superior to hard decoding on an AWGN channel. Despite this, block
codes are commonly decoded using hard decoding due to simplicity, especially for long blocks.
However, there has lately been progress within the coding community on soft decoding using the
Viterbi algorithm on block codes as well. The key problem is to find a good trellis representation
of the block code. For the code considered here, a trellis representation of the code before BPSK
modulation is given in Figure 3.10 where a path through the trellis represents a code word.

0

0

0

00000

1

1

1

1

1

1

1

1

Figure 3.10: Trellis representation of block code.

Compared to a trellis corresponding to a convolutional code, the “states” in the trellis do not
carry any specific meaning. Decoding is done in a similar fashion to decoding of convolutional
codes, i.e., finding the best way through the trellis and the corresponding information sequence.

Decode the received sequence

r =
√
E
(

− 0.9,+1.1,−1.2,+0.6,+0.2
)

using

(a) hard decisions and syndrome decoding
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x c r x̂
Encoder Channel ML Decoder

Figure 3.11: Communication system with block coding.

(b) soft decision decoding and the trellis in Figure 3.10.

3–27 Consider the communication system depicted in Figure 3.11.

The system utilizes a linear (7, 3) block code with generator matrix

G =





1 1 0 0 0 1 1
0 0 1 0 1 1 1
0 1 0 1 1 0 1



 .

Three information bits x = [x1, x2, x3] are hence coded into 7 codeword bits c = [c1, c2, . . . c7],
according to

c = [c1, c2, . . . c7] = xG .

The codeword is transmitted over the memoryless channel illustrated in Figure 3.12. That is,

0

0

1

1

3

0.6

0.6

0.3
0.3

0.1

0.1

Figure 3.12: Discrete channel model.

Pr(ri = 0|ci = 0) = 0.6 Pr(ri = 3|ci = 0) = 0.3 Pr(ri = 1|ci = 0) = 0.1

Pr(ri = 1|ci = 1) = 0.6 Pr(ri = 3|ci = 1) = 0.3 Pr(ri = 0|ci = 1) = 0.1

Assume the following block is received

r = [r1, r2, . . . , r7] = [1, 0, 1,3,3, 1, 0]

and decode this received block based on the ML criterion.

3–28 Consider a length n = 9 cyclic binary block code with generator matrix

G =





1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1





For this code:

(a) Determine the generator polynomial g(p) and the parity check polynomial h(p).

(b) Determine the parity check matrix H and the minimum distance dmin.

Assume that the code is used to code a block of equally likely and independent information bits
into a codeword c = (c1, . . . , cn) and that the coded bits are then transmitted over a time-discrete
AWGN channel with received signal rn, so that

rn = (2cn − 1)
√
E + wn

where wn is white and zero-mean Gaussian with variance N0/2. The decoder uses soft ML
decoding, meaning that based on r = (r1, . . . , rn) it decides that ĉ is the transmitted codeword
if ĉ minimizes ‖r− c‖2 over all c in the code. Let pe = Pr(ĉ += c).
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(c) An upper bound to pe can be obtained as

pe ≤ N1 Q

(√

2M1E

N0

)

+N2Q

(√

2M2E

N0

)

+N3 Q

(√

2M3E

N0

)

.

Specify the integer parameters Mi, i = 1, 2, 3, and Ni, i = 1, 2, 3.

3–29 Figure 3.13 shows the encoder of a convolutional code. Each information symbol x ∈ {0, 1} gives

+

+

x

c1
c2

c3

c1c2c3

Figure 3.13: Encoder.

rise to three code symbols c1c2c3. BPSK is utilized as modulation format to transmit the binary
data over an AWGN channel. The noise power spectral density is N0/2 and optimal matched-
filter demodulation is employed. The sampled output of the matched filter can be described by
a discrete-time model

r(n) = b(n) + w(n), (3.4)

where w(n) is white and Gaussian(0,N0/2) and where the transmission of “0” corresponds to
b(n) = +1 and the transmission of “1” corresponds to b(n) = −1. Assume that the observed
sequence is (corresponding to c1, c2, c3, c1, c2, c3, . . .):

1.51, 0.63, −0.04, 1.14, 0.56, −0.57, −0.07, 1.53, −0.9,

−1.68, 0.9, 0.98, −1.99, −0.04, −0.76

Assume, furthermore, that the encoder starts with zeroed registers and that the data is ended with
a “tail” of two bits that zeroes the registers again. That is, the received sequence corresponds to
3 information bits and 2 tail-bits. At the receiver hard decisions are taken according to the sign of
the received symbols. Use hard decision decoding to determine the maximum likelihood estimate
of the transmitted information bits, based on the hard decisions on the received sequence.

3–30 Determine whether the convolutional encoder illustrated in Figure 3.14 is catastrophic or not.

x(k)

y(0)(k)

y(1)(k)

Figure 3.14: Encoder.

3–31 In this problem we consider a communication system which uses a 1/k rate convolutional code for
error control coding over the channel. The channel is assumed to be a binary symmetric channel
with cross over probability γ. Denote with r a vector with the hard inputs to the decoder in the
receiver.

r =
[

r(0), r(1), . . . , r(N)
]
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A code word in the convolutional code is denoted with c:

c =
[

c(0), c(1), . . . , c(N)
]

The path metric for code word ci is with these notations

log p(r|ci)

Show that, independent of γ, the ML estimate of the information sequence is simply the path
corresponding to the code word ci that minimizes the Hamming distance between c and r.

3–32 Consider the encoder shown in Figure 3.15.

+

+

x

c1

c2

c3

c1 c2 c3

Figure 3.15: Encoder.

The encoder corresponds to a convolutional code of rate 1/3. Each information bit x(n) ∈ {0, 1}
is coded into three codeword bits c1, c2 and c3, where c1 is transmitted first. The system operates
over a BSC with crossover probability 0.01.

(a) Determine the free distance of the code.

(b) The code starts and ends in the zero state. Determine the ML estimate of the transmitted
information bits when the received sequence is

0 0 1 1 1 0 1 0 1 1 1 1 .

3–33 Figure 3.16 illustrates the encoder of a convolutional code.

x

c1

c2

Figure 3.16: Encoder.

(a) Determine the free distance dfree of the code.

(b) Assume that the encoder starts in state 00 and consider coding input sequences of the form

x = (x1, x2, x3, 0, 0)

That is, three information bits and two 0’s that garantee that the encoder returns to state
00. (Assume time goes “from left to right,” i.e. x1 comes before x2.) This will produce
output sequences

c = (c11, c12, c21, c22, c31, c32, c41, c42, c51, c52)

where ci1 and ci2 correspond to c1 and c2 produced by the ith input bit. Letting x̃ =
(x1, x2, x3) (skip the two 0’s in x), the mapping from x̃ to c describes a (10, 3) linear binary
block code. For this code: Determine a generator matrix G and the corresponding parity
check matrix H.
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x

c1

c2

c3

Figure 3.17: Encoder.

3–34 Consider the rate R = 1/3 convolutional code defined by the linear encoder shown in Figure 3.17.

For each information bit x the three coded bits c1, c2, c3 are produced. Note that c3 = c2. For
this code:

(a) Determine the free distance dfree.

(b) Compute the transfer function in terms of the variable “D” that represents output distance
(use N = J = 1 in the general N, J,D form discussed in class).

(c) Based on the result in (b), determine the number of different sequences of output weight 14
that can be produced by leaving state zero and returning to state zero at some point later
in time.

3–35 Puncturing is a simple technique to change the rate of an error correcting code. In the communi-
cation system depicted below, binary data symbols are fed to a convolutional encoder with rate
1/3. The output bits from the encoder is parallel-to-serial (P/S) converted and punctured by
removing every sixth bit from the output bit stream. For example, if the P/S device output data
is . . . abcdefghijklmn . . ., the output from the puncture device is . . . abcdeghijkmn . . .. After
being punctured, the bit stream is BPSK modulated and sent over an AWGN channel prior to
being received.

D D
PAM

0 => −1, 1 => +1

1

2

3

P/S
Converter

Encoder

Puncturing

Modulator

Noise

channel
AWGN

xi yi

(a) What is the rate of the punctured code?

(b) Assuming that sequence detection based on the observed data yi, using the Viterbi algorithm,
is considered to recover the sent data, draw the trellis diagram of the decoder. In addition,
indicate in your graph what observed data yi that is used in each time step of the trellis.
Also, state what distance measure that the Viterbi algorithm should use.

(c) The concatenation of the convolutional rate 1/3 encoder and the puncturing device con-
sidered previously can be viewed as a conventional convolutional encoder with constraint
length L = 4. Note, for this to be true, the new encoder must for each set of output bits
clock 2 input bits into its shift register. Show this by drawing the block diagram of this new
conventional encoder. Neglect any problems with how to initially load the different memory
elements. Also, draw the associated trellis diagram of the new encoder.

(d) Which trellis representation, the one in (b) or the one in (c), is more advantageous to consider
in order to recover the source data. Motivate!
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3–36 One way of changing the code rate of an error correcting code is so-called puncturing. In the sys-
tem depicted in Figure 3.18, a simple convolutional code is punctured by removing every fourth
output bit (illustrated by the puncturing pattern 1110 in the figure below) before transmis-
sion. For example, if the output from the convolutional encoder is abcdefgh . . ., the bit sequence

0
1

+1
-1bits

PUNCTURE
1110D D

AWGN

BPSK mod.abcdefgh abcefg
INSERT TAIL Received

sequence
Information

Figure 3.18: Puncturing.

abcefg . . . is transmitted, while bits d,h, . . . have been punctured. In the receiver, the punctured
bits are treated as “lost” on the channel, i.e., nothing is known about the punctured bits in the
receiver. This depuncturing process can be accomplished by inserting a suitable value before
conventional decoding at the positions where the punctured bit should have appeared in absence
of puncturing. For example, if abcefg . . . is received, the decoder operates on abcxefgx . . ., where x
is a value representing “no knowledge” (i.e., neither logical “1”, nor logical “0”) to the decoder.

(a) What is the resulting code rate of the convolutional encoder followed by the puncturer?

(b) Assume the received sequence is 1.1, 0.7,−0.8, 0.7, 0.1, 0.8, 0.8,−0.2,−0.3, which is the most
likely information sequence?

3–37 After successfully completing your Master and PhD degrees at KTH, specializing in communi-
cations, you have been appointed assistant professor at the Department of Signals, Sensors and
Systems. Your current task is to grade the exam in communication theory. The problem is given
as:

Problem:

Consider the convolutional encoder and the Binary Symmetric Channel (BSC)
below. The information bits are independent with probabilities p0 = Pr{s =
0} = 0.3 and p1 = Pr{s = 1} = 0.7, respectively. Due to the coder, the encoded
bits are independent as well, and from this the probabilities for the code bits
can be derived. The error probability of the channel is ε = 0.1. Determine
the coded sequence and the information sequence in an optimal way (lowest
probability of sequence error) given the received sequence r = 10 01 11 00! The
encoder starts, and by transmitting the appropriate tail, terminates in state
zero.

s

c1

c2

00

11
1− ε

1− ε

ε

ε

ci ri

Two students, Alice and Bob, solve the problem in two different ways. Grade (0–5 points) and, if
necessary, correct their answers. (Explain what is correct and incorrect in each of the answers.)
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Alice’s answer:

Use Viterbi. Decoded information: s = 1010

0

1
1

1

2

1 3 2

1

ri = (ri,1, ri,2) =

si =

000110 11

00 11

Bob’s answer:

MAP decoding. Maximize
Pr{r|c}Pr{c} =

∏4
i=1 p(ri,1|ci,1)p(ci,1)p(ri,2|ci,2)p(ci,2)

⇒
max

∑

(log p(ci,1)p(ci,2) + log p(ri,1|ci,1)p(ri,2|ci,2))

0

1
-2.76

-4.53

-7.58

-3.61 -11.55 -9.06

-6.30

ri = (ri,1, ri,2) =

si =

000110 11

001 1

3–38 Consider the combination of a convolutional encoder and a PAM modulator shown in Figure 3.19.

+

x(n)

c1(n)
c1(n)

c2(n)

c2(n)

s(n)

s(n)−3

−1

+1

+3

0

0

0

0

1

1

1

1

4PAM

Figure 3.19: Combined encoding and modulation.

The information bits x(n) ∈ {0, 1} are coded at the rate 1/2. Each output pair, c1(n), c2(n), then
determines which modulation symbol is to be fed to the channel. The encoder starts and ends in
the zero state.

The system is used over an AWGN with noise spectral density N0/2. The demodulated received
signal is

r(n) = s(n) + e(n) ,
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where {e(n)} is a white Gaussian process.

The following sequence is received

−2.0, 2.5, −4.0, −0.5, 1.5, 0.0
︸ ︷︷ ︸

“tail”

.

Determine an ML-estimate of the transmitted sequence based on the received data.

3–39 Figure 3.20 shows the encoder of a convolutional code.

+

+

x

c1

c2

c3

c1c2c3

Figure 3.20: Convolutional encoder.

Each information symbol x ∈ {0, 1} gives rise to three code symbols c1c2c3. BPSK is utilized as
modulation format to transmit the binary data over an AWGN channel. The noise power spectral
density is N0/2 and optimal matched-filter demodulation is employed. The sampled output of
the matched filter can be described by a discrete-time model

r(n) = b(n) + r(n), (3.5)

where w(n) is white and zero-mean Gaussian with variance N0/2, and where the transmission of
“0” corresponds to b(n) = +1 and the transmission of “1” corresponds to b(n) = −1. Assume
that the observed sequence is (corresponding to c1, c2, c3, c1, c2, c3, . . .):

1.5, 0.5, 0, 1, 0.5, −0.5, 0, 1.5, −1, −1.5, 0.5, 1, −1.5, −1, −1

Assume, furthermore, that the encoder starts with zeroed registers and that the data is ended with
a “tail” of two bits that zeroes the registers again. That is, the received sequence corresponds to 3
information bits and 2 tail-bits. Use soft decision decoding to determine the maximum likelihood
estimate of the transmitted information bits, based on the received sequence.

3–40 Consider the simple rate 1/2 convolutional encoder depicted in Figure 3.21 (the encoder is not
necessarily a good one). The resulting encoded stream, ci1 followed by ci2, are transmitted using

di

ci1

ci2

α = 0.5

ri

Figure 3.21: Encoder (left) and channel (right).

on-off keying with unit symbol energy over the ISI channel shown in the figure. Assuming that
the receiver has perfect knowledge of the channel as well as of the encoder, ML sequence decoding
using the Viterbi is possible. Find the ML estimate of the received sequence

r = (r1, . . . , r10) = (1, 1.5, .5, 1, 1.5, 1.5, .5, 1, 0.5, 0) .
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The channel is silent before transmission and the transmission is ended by transmitting a tail of
zeros (which are included in the sequence above).

Hint: write ri as a function of di and view the encoder followed by the channel as a composite
encoder. Note that the adder in the encoder operates modulo 2. Remember that two symbols
(ri1 and ri2) must be received for each information bit and that the transmitted symbol stream
is (. . . ci−1,1, ci−1,2, ci,1, ci,2).

3–41 Figure 3.22 shows the encoder of a convolutional code. Each information bit x produces three
coded bits c1, c2, c3. The coded bits are transmitted based on antipodal signalling, where the
symbol “0” is mapped to “−1” and “1” to “+1.” The transmission takes place over an AWGN
channel. The encoder can be assumed to start and end in the zero state.

+

+

x

c1

c2

c3

c1c2c3

Figure 3.22: Encoder.

Consider a received sequence (ended by a “tail”):

−1.5, 0.5, 0, 1, 0.5, −0.5, 0, 1.5, −1, −1, 0.5, 1, 1, 1.5, 0, −1, 0, 0.5

Decode the sequence using soft ML decoding.

3–42 Consider the communication system model shown below

b̄ x̄ s̄ s(t)

w(t)

r(t) y(t) ȳ ˆ̄b

t = m
T

Conv.
Enc..

0 → −
√
Ec

1 → +
√
Ec

PAM
p(t)

MF
q(t)

Viterbi
Det.

The binary convolutional encoder is described by the generator sequences:

g1 = [1 0 0], g2 = [1 0 1], g3 = [1 1 1],

and the impulse responses of the pulse amplitude modulator and the matched filter are given by,

p(t) = q(t) =

{ 1√
T

−T
2 ≤ t < T

2

0 otherwise

where T denotes the channel symbol period.

(a) Draw the encoder. What is the rate and the free distance of the code?

(b) Let x̄ = [. . . , xi, . . .] and ȳ = [. . . , yi, . . .] denote sequences of binary symbols in {0, 1} to
be sent and real valued received symbol samples respectively. If w(t) is assumed Gaussian
distributed with zero mean and spectral density Rw(f) =

N0
2 , then we may relate yi and xi

via the transformation:

yi = α(2xi − 1) + ei

where ei is zero-mean Gaussian with variance β. Calculate α and β. Is ei a temporally
white sequence?
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(c) Assume that the message b̄ consists of 7 binary symbols out of which the two last are
known at the receiver. For reasonable SNR values we may approximate the sequence error

probability i.e., the probability that ˆ̄b += b̄, as

Pseq. error ≤
∑

i∈I

Pr{b̄i detected | b̄0 sent}

where I = {i : dH(x̄i, x̄0) = dfree}, b̄0 is an arbitrary message sequence and x̄i is the output
sequence from the convolutional encoder corresponding to the input sequence b̄i.

i. What is the size of the set I for the given message length?

ii. Relate the sequence error probability to the error probability of the encoded symbols
passing the AWGN channel.
Hint : The bound Q(x) ≤ e−x2/2 may be useful.

3–43 Consider a rate 1/2 convolutional code with generator sequences g1 = (111) and g2 = (110).
Assume that BPSK modulation is used to transmit the coded bits.

(a) Draw a shift register for the encoder. Draw also the state diagram for this code.

(b) Viterbi hard decoding: The decoder always starts at all-zero state and ends up at all-zero
state. Draw a trellis for a code terminated to a length of 10 bits. By inspection of the trellis,
what could you say about the free distance dfree.

(c) Viterbi soft decoding: The decoder still starts from and ends up at all-zero state. The
received sequence r is first fed to a 3 bits uniform quantizer. The maximum reconstruction
value of this quantizer is 1.75, while the minimum reconstruction value is −1.75. The
quantized sequence is then fed into a Viterbi soft decoder, which employs the minimum
Euclidean distance algorithm. Suppose that the received vector r is given by:

r = {1.38 0.68 0.05 1.04 − 0.33 − 0.81 0.12 − 0.41 − 0.93 0.21}

Estimate the information bits corresponding to r.

3–44 Consider the communication system shown in Figure 3.23.

s c x

z

r
ĉ

ŝs

ŝh

Enc. Map

Dec. Hard

Soft

Figure 3.23: System

The i.i.d. information bits in the vector s = [s1s2s3] are encoded into the codewords c = [c1 . . . c8]
using the half-rate convolutional encoder depicted in Figure 3.24. The encoded bits are antipodal-
modulated into x = [x1 . . . x8] via the mapping: ci = 0 ⇒ xi = −1 and ci = 1 ⇒ xi = 1. The
signal vector x is transmitted over an AWGN channel with noise vector z = [z1 . . . z8]. The
received vector is r = x+ z.

The receiver is equipped with both hard and soft decoding units. Preceding the hard decoding
is a decision unit that minimizes the decision error probability. Both the hard and soft decoding
units perform maximum likelihood decoding.

The encoder starts in an all-zero state and returns to the all-zero state after the encoding of s.
The codeword c is constructed as c = [a1b1 . . . a4b4]. The output bits aibi correspond to the input
bit si and s4 = 0 is the bit that resets the encoder.

(a) Determine the free distance of the code.

(b) Assume that s = [101] and r = [1.1 1.3 − 0.7 0.7 − 0.1 1.8 − 1.4 − 0.2].
Find ŝh and ŝs.
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s

a

b

Figure 3.24: Encoder

(c) Is it possible that the hard decoding unit corrects an error that the soft decision unit does
not correct? Motivate thoroughly, for instance by providing an s and a z where it happens.

3–45 The fancy IT company “MultiMediaFusion” has promised to deliver a packet data communica-
tion system. As the company had a background in producing fireworks and not communication
equipment (which is not supposed to blow up), they have acquired two supposedly competent
engineers, Larry and Irwin. Of course the company is running in the red, so the engineers are
paid in stock options.

The communication system is supposed to transfer blocks of 100 information bits with BPSK
modulation and coherent detection as fast as possible over an AWGN channel to the receiver
with a block error probability less than 10%. Of course more information bits can be transmitted
in a given time without coding, but at the price of a higher bit error probability. Hence, there
is no reason for using more coding than necessary. Error-free feedback of any parameters from
the receiver to the transmitter is available and the transmitter power is fixed. The Eb/N0 of the
AWGN channel has a distribution according to the pdf in Figure 3.25.
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Figure 3.25: Pdf and error probabilities.

Larry proposed a system where the receiver measures the current signal-to-noise ratio, Eb/N0,
and feeds back this information to the transmitter. Depending on the measured Eb/N0, the trans-
mitter chooses either no coding or rate 1/2 convolutional coding for transmitting the information
block. The receiver knows which coding scheme that is used and decodes it using soft decoding.
The block error probability for both uncoded and coded transmission is found in the right plot
in Figure 3.25.

Irwin takes another approach. In his scheme, coding is never used. Instead, he has a genie in
the receiver, informing the transmitter if the block was correctly received or not. In case of
an incorrectly received block, the transmitter retransmits the incorrect block. The receiver has
stored the soft values from the previous transmission (one sample per transmitted symbol) and
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add these stored values to the corresponding soft values received during the retransmission. Only
one retransmission is allowed, i.e., a maximum of two transmissions in total for a single block.
The channel is unchanged between the transmission and a possible retransmission. Again, the
block error probability is found in the right plot.

(a) Which coding scheme should Larry’s system use for different values of Eb/N0?

(b) On average, how many blocks of 100 bits each on the channel are transmitted per 100-bit
information block for the two schemes?

(c) What is the resulting block error probability for the two schemes?

3–46 Consider the communication system depicted below.

ân b̂n

an bn cn
BSCblock enc conv enc

block dec conv dec

The independent and equally likely bits an ∈ {0, 1} are encoded by the encoder of a (5, 2) linear
binary block code with generator matrix

G =

[

1 0 1 0 0
0 1 1 1 1

]

The output-bits bn ∈ {0, 1} from the block code are then encoded by the encoder of a convolutional
code. The convolutional code has parameters k = 1, n = 2, constraint-length 2 and generator
sequences

g1 = (11), g2 = (10)

The 5 output bits per codeword from the block code and one additional zero are fed to the
convolutional encoder. The extra zero (tail bit) is added in order to force the state of the encoder
back to the zero state.

The output bits cn ∈ {0, 1} from the convolutional encoder are transmitted over a BSC with bit-
error probability 0.1, and the received bits are then decoded by the decoders of the convolutional
code and block code, respectively. Both decoders implement maximum likelihood decoding.

(a) The four information bits 0011 are encoded by the block encoder and then fed to the convo-
lutional encoder. Specify the corresponding output bits cn from the convolutional encoder.

(b) Assume that the sequence
101101110111

is received at the output of the BSC. Specify the resulting estimates ân ∈ {0, 1} of the
corresponding transmitted information bits.

(c) Notice that the concatenation described above of the block and convolutional encoders spec-
ifies the encoder of an equivalent block code, with 2 information bits and 12 codeword bits.

i. Specify the generator matrix of the equivalent concatenated code.

ii. Show that the minimum distance of the concatenated code is equal to the product of
the minimum distance of the (5, 2) code and the free distance of the convolutional code.
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Answers, Hints and Solutions

Answers and hints (or incomplete solutions) are provided to all problems. Most problems are provided
with full solutions.

1 Information Sources and Source Coding

1–1 The possible outcomes of a game are

V X S Prob. V X S Prob.
A AAA 3 0.1754 A BAABA 5 0.0305
B BBB 3 0.0850 A ABBAA 5 0.0305
A BAAA 4 0.0660 A ABABA 5 0.0331
A ABAA 4 0.0717 A AABBA 5 0.0359
A AABA 4 0.0777 B AABBB 5 0.0359
B ABBB 4 0.0563 B ABABB 5 0.0331
B BABB 4 0.0519 B ABBAB 5 0.0305
B BBAB 4 0.0479 B BAABB 5 0.0305
A BBAAA 5 0.0259 B BABAB 5 0.0281
A BABAA 5 0.0281 B BBAAB 5 0.0259

Based on the table above we conclude the following probabilities

Winner V
Alice Bob Sum

1st set Alice (x1 = A) 0.4242 0.1558 0.58
1st set Bob (x1 = B) 0.1506 0.2694 0.42
Sum 0.5748 0.4252

Winner V
Alice Bob Sum

s = 3 set 0.1754 0.0850 0.2604
s = 4 set 0.2154 0.1562 0.3716
s = 5 set 0.1840 0.1840 0.3680

(a) We need to determine if I(V,X1) is greater or less than I(V, S). It holds that I(V,X1) =
H(V )−H(V |X1) and I(V, S) = H(V )−H(V |S). From the table above we conclude

H(V ) = −
∑

v

pV (v) log2 pV (v) ≈ 0.9838 bit

We also see that

H(V |X1) =−
∑

pVX1(v, x1) log2 pV |X1
(v|x1) = −

∑

pVX1(v, x1) log2
pVX1(v, x1)

pX1(x1)
≈ 0.8823 bit.

H(V |S) =−
∑

pV S(v, s) log2 pV |S(v|s) = −
∑

pV S(v, s) log2
pV S(v, s)

pS(s)
≈ 0.9701 bit.

Finally we get I(V,X1) = H(V )−H(V |X1) ≈ 0.1015 bit and I(V, S) = H(V )−H(V |S) ≈
0.0137 bit. Knowing the winner of the first set hence gives more information.

(b) The number of bits required (on average) is H(X |S) = H(X,S)−H(S) ≈ 4.0732−1.5669≈
2.5 bits.
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1–2 (a) The average number of bits is (if we assume that we transmit the results from many matches
in one transmission) equal to the entropy of K:

H(K) = −
3
∑

k=1

fK(k) log2(fK(k))

= 0.26040 log2(0.26040) + 0.37158 log2(0.37158) + 0.36802 log2(0.36802)

= 1.5669 ≈ 1.567

(b) To answer the question, the conditional entropy of K given W is needed. The formula for
this quantity is

H(K|W ) = −
3
∑

k=1

B
∑

w=A

fKW (k, w) log2 fK|W (k|w)

The values for fKW (k, w) are given in one of the tables to the problem and with fW (A) =
0.57480 and fW (B) = 0.42520, the conditional probabilities are easily calculated to

fK|W (k|w) W
A B

k 3 0.30513 0.19993
4 0.37474 0.36731
5 0.32013 0.43276

The conditioned entropy is thus given by

H(K|W ) =−
[

0.17539 log2(0.30513) + 0.21540 log2(0.37474) + 0.18401 log2(0.32013)

+ 0.08501 log2(0.19993) + 0.15618 log2(0.36731) + 0.18401 log2(0.43276)
]

=1.5532 ≈ 1.553

(c) First, the mutual information of K and W is computed via the formula

I(K;W ) = H(K)−H(K|W ) = 1.5669− 1.5532 ≈ 0.01370

Now, the mutual information of K and S3 is determined. If the same approach as in b is
used (fS3(A) = 0.54, fS3(B) = 0.46) the conditional probabilities

fK|S3
(k|s3) s3

A B
k 3 0.32479 0.18480

4 0.34370 0.40428
5 0.33148 0.41091

are useful. Thus, the conditional entropy is

H(K|S3) = −
3
∑

k=1

B
∑

s3=A

fKS3(k, s3) log2 fK|S3
(k|s3)

= −
[

0.17539 log2(0.32479) + 0.18560 log2(0.34370) + 0.17900 log2(0.33148)

+ 0.08501 log2(0.18480) + 0.18597 log2(0.40428) + 0.18902 log2(0.41091)
]

=1.5483

Thus, the mutual information of K and S3 is

I(K;S3) = H(K)−H(K|S3) = 1.5669− 1.5483 = 0.01860 ≈ 0.0186

The winner of the third set thus gives most information of the number of sets in a match.

An alternative (simpler?) is to use the relation I(K;W ) = H(W ) +H(K)−H(W,K) and
the upper left table.
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1–3 Let pi,A denote the probability of the ith symbol for source A and nA the number of possible
outcomes for a source symbol. For the source B the notation pi,B and nB is used, and similarly
pi,S, and nS = nA + nB for the resulting source S. Using the definition of entropy

H(S) =−
nS∑

i=1

pi,S log pi,S

=−
nA∑

i=1

λpi,A logλpi,A −
nB∑

i=1

(1− λ)pi,B log(1 − λ)pi,B

=− λ
nA∑

i=1

pi,A(log pi,A + logλ)− (1− λ)
nB∑

i=1

pi,B(log pi,B + log(1− λ))

=λHA + (1− λ)HB − λ log λ− (1 − λ) log(1− λ)

=λHA + (1− λ)HB +Hλ

Hence, the entropy of the resulting source S is the weighted average of the two entropies plus
some extra uncertainty as to which source was chosen.

1–4 (a) The entropy of the source is

H(S) = −0.04 log2 0.04− 0.25 log2 0.25 . . .− 0.05 log2 0.05 = 2.58 bits/symbol

Hence, it is not possible to compress the source (lossless compression) at a rate below 2.58
bits per source symbol.

(b) We need to calculate H(S)− I(S;U).

I(S;U) = H(U)−H(U |S) = {H(U |S) = 0} = H(U)

since U is uniquely determined by S. Hence

I(S;U) = H(U) = −
2
∑

i=0

fU (ui) log2(fU (ui)) = . . . = 1.47 bits/symbol

Compare this with H(S) = 2.58. Hence 1.11 bits/symbol are lost.

1–5 The entropy

H = −
∑

pi log pi

= −0.2 log 0.2− 0.8 log 0.8

= 0.722bits

For m = 3, the probabilities:

0.2× 0.2× 0.2 0.008
0.2× 0.2× 0.8 0.032
0.2× 0.8× 0.2 0.032
0.2× 0.8× 0.8 0.128
0.8× 0.2× 0.2 0.032
0.8× 0.2× 0.8 0.128
0.8× 0.8× 0.2 0.128
0.8× 0.8× 0.8 0.512

The corresponding codeword lengths are {5, 5, 5, 5, 3, 3, 3, 1}.

L =
1

3

∑

pili

= 0.728 bits

> Hp
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1–6 (a) The lowest possible number of coded symbols per source symbol is

H(x) = −(1− p) log4(1− p)− 3
p

3
log4

p

3
,

(b) The Huffman code is shown below.

00

01

02

03

10

20

30

11

331

12

13

21

22

23

31

32

33

0.81

0.03

0.03

0.03

0.03

0.03

0.03

0.01/9

0.01/9

0.01/9

0.01/9

0.01/9

0.01/9

0.01/9

0.01/9

0.01/9

0

1

20

21

22

23

30

31

320

321

322

323

330

332

333

0.04/9

0.04/9 0.04

0.12

.

The rate is 0.584 symbols/source symbol.

(c) The code is shown below.

00000

1

2

3

01

02

03

001

002

003

0001

0002

0003

00001

00002

00003

10

11

12

133

132

131

130

33

32

31

30

23

22

21

20

0
0.5905

0.1899 1

0.1170

0.1026

0.0899

.

The corresponding rate is 0.544 symbols/source symbol.

(d) The sequence is divided according to 1, 0, 3, 10, 00, 000, 03 , 001, 0000, 0002, 00000 ,
000001, 003, 00020, 30, 000000. The code (x, y), where x is the row in the table and y the
new symbol, is (0,1), (0,0), (0,3), (1,0), (2,0), (5,0), (2,3), (5,1), (6,0), (6,2), (9,0), (11,1),
(5,3), (10,0), (3,0), (11,0). The corresponding dictionary is shown below
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Row Content Row Content

0 – 8 001
1 1 9 0000
2 0 10 0002
3 3 11 00000
4 10 12 000001
5 00 13 003
6 000 14 00020
7 03 15 30

Note that it is given that the code shall use symbols from the set {0, 1, 2, 3}. The “new
symbols” are from this set while the dictionary indices are from {0, . . . , 15} but these can
be coded using two symbols from {0, 1, 2, 3}.

(e) The LZ algorithm requires 16 · (2 + 1) = 48 symbols (from {0, 1, 2, 3}) to code the given
string. This gives a compression ratio 48/50, corresponding to a minor improvement in
terms of compression. The Huffman codes, on the other hand, give the ratios 0.68, 0.52,
respectively.

1–7 The smallest number of bits required on average is given by the entropy,

H(X) = −
Z∑

i=A

pi log2 pi ≈ 4.3 bits/character

1–8 (a) Applying the Huffman algorithm to the given source is a standard procedure described in
the textbook yielding the code tree shown below (a to the left).

(s0,s0)

(s0,s1)

(s0,s2)

(s1,s1)

(s1,s0)

(s1,s2)

(s2,s0)

(s2,s1)

(s2,s2)

0.49

0.105

0.105

0.105

0.0225

0.0225

0.105

0.0225

0.0225
0.045

0.045

0.09
0.195

0.3

0.21

0.51

1.0

1

0

0
0

0

0

0
0

0

1

1
1

1
1

1

1

0.15

0.15

0.7

0.3

1
1

1

0
0

s0

s1

s2

a) b)

The average codeword length in bits per source symbol is

L̄ =
3
∑

k=1

lkP (sk) = 1× 0.7 + 2× 0.15 + 2× 0.15 = 1.3,

where lk is the number of bits in the codeword representing the source symbol sk and P (sk)
is the corresponding probability of sk.

(b) The output alphabet of the extended source consist of all combinations of 2 symbols be-
longing to S i.e., Sext = {(s0, s0), (s0, s1), . . . , (s2, s2)}. One example of the corresponding
Huffman code tree is shown in the figure (b to the right). The average codeword length
given in bits/extended code symbol is thus

L̄ext =
3
∑

j=1

3
∑

k=1

lj,kP ((sj , sk)) = 2.3950,

where lj,k is the number of bits in the codeword representing the extended source symbol
(sj , sk) and P ((sj , sj)) is the corresponding probability of the extended symbol. The average
codeword length L̄ in bits/source symbol is 1.1975.
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(c) According to the what is often referred to as source coding theorem II, for a discrete mem-
oryless source with finite entropy, it is possible to construct a code that satisfies the prefix
condition and has an average length L̄ that satisfies the inequalities

H(X) ≤ L̄ < H(X) + 1.

However, instead of encoding on a symbol-by-symbol basis, a more efficient procedure is to
encode blocks of N symbols at a time. In case of independent source symbols, the bound of
the source coding theorem becomes

H(XN) = N H(X) ≤ L̄ext < N H(X) + 1 = H(XN) + 1

which indicates that L̄ = L̄ext/N can be made arbitrarily close to H(X) by selecting the
blocksize N large enough. For the considered source it is easily verified that the entropy of
the source alphabet H(X) is equal to 1.1813. Hence, it is readily verified that the inequalities
holds for both N = 1 and 2. It can further be observed that in the considered example, a
block length N = 2 will improve the efficiency (H(x)/L̄) of the Huffman code from 91% to
99% i.e., a relative gain of 8.6%.

1–9 (a) The probabilities for the 2-bit symbols are given in the table below.

Symbol Probability

00 0.25 · 0.25 = 0.0625
01 0.25 · 0.75 = 0.1875
10 0.75 · 0.25 = 0.1875
11 0.75 · 0.75 = 0.5625

The following tree diagram describes the Huffman code based on these symbols:

11

10

01

00

0.5625

0.1875

0.1875

0.0625

0.25

0.4375

0

1

1

0
0

1

Thus, the codewords are

Symbol Codeword

00 101
01 100
10 11
11 0

Using these codewords, the encoded sequence becomes

ENC{x24
1 } = 101, 100, 11, 100, 0, 0, 0, 100, 11, 0, 0, 0 .

This sequence is 22 bits long so two bits are saved by the Huffman encoding. The entropy
per output bit of the source is

H(X) = −0.25 log2(0.25)− 0.75 log2(0.75) ≈ 0.8113 bits

and the average codeword length is obtained as

E[l] = 3 · 0.0625 + 3 · 0.1875 + 2 · 0.1875 + 1 · 0.5625 = 1.6875 bits .
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To compare these quantities, we convert to bits per 2-bit symbol and bits for the entire
sequence and summarize our results in the table below.

Entity Bits Per 2-bit Symbol Bits Per 24-bit Sequence

Encoded sequence 22/12 ≈ 1.833 22
Entropy 0.8113 · 2 ≈ 1.623 0.8113 · 24 ≈ 19.47
Average compressed length 1.6875 1.6875· ≈ 20.25

We see that the average length of a coded 24-bit sequence is 20.25 bits which is somewhat
shorter than the 22 bits required for the particular sequence considered here. Of course,
depending on the realization of the sequence, the compressed sequence can be significantly
shorter. For example, 24 consecutive 1:s are compressed into a 12 bit long sequence of 0:s.
It is also seen that the average codeword length is slightly larger than the corresponding
entropy measure (1.6875 vs 1.623). In particular, these entities satisfy

1.623 ≤ 1.6875 ≤ 1.623 + 1 = 2.623 ,

which agrees well with the theory saying that

H(Xn) ≤ E[l] ≤ H(Xn) + 1 , (3.6)

where H(Xn) denotes the entropy of n-bit symbols (here n = 2).

(b) The probabilities for the 3-bit symbols are given by

Symbol Probability

000 0.25 · 0.25 · 0.25 = 0.015625
001 0.25 · 0.25 · 0.75 = 0.046875
010 0.25 · 0.75 · 0.25 = 0.046875
011 0.25 · 0.75 · 0.75 = 0.140625
100 0.75 · 0.25 · 0.25 = 0.046875
101 0.75 · 0.25 · 0.75 = 0.140625
110 0.75 · 0.75 · 0.25 = 0.140625
111 0.75 · 0.75 · 0.75 = 0.421875

with the corresponding tree diagram illustrated below.
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111

110

101

011

100

010

001

000

0.421875

0.140625

0.140625

0.140625

0.046875

0.046875

0.046875

0.015625

0.28125

0.09375

0.0625

0.15625

0.296875

0.578125

0

1

0

1

0

1

0

1

1

0

1

0

1

0

Thus, the codewords are

Symbol Codeword

000 00011
001 00010
010 00001
011 011
100 00000
101 010
110 001
111 1

and the encoded sequence is therefore

ENC{x24
1 } = 00011, 001, 011, 1, 001, 001, 1, 1 ,

which is seen to be 20 bits long. Moreover, the entropy per source bit is the same as before
while the average codeword length is obtained as

E[l] = 5 · 0.0625 + 5 · 0.09375+ 3 · 0.28125 + 3 · 0.140625+ 1 · 0.421875 = 2.46875 bits .

Similarly as was in (a), a table comparing these quantities is shown below.

Entity Bits per 3-bit symbol Bits per entire source sequence

Encoded sequence 22/12 ≈ 1.833 20
Entropy 0.8113 · 3 ≈ 2.4339 0.8113 · 24 ≈ 19.47
Average code length 2.46875 2.46875 · 8 ≈ 19.75

We see that the average length of the coded sequence has decreased to 19.75 bits as opposed
to the 20.25 bits for the 2-bit symbol case. This is also true in general, i.e. the average
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length decreases when more source bits are used for forming the symbols. Dividing (3.6) by
n (here n = 3) and utilizing that H(Xn) = nH(X), since the source is memoryless, shows
that

H(X) ≤
E[l]

n
≤ H(X) +

1

n
.

Hence, in the limit, as the number of symbol bits increases, the average codeword length
approaches the entropy of the source.

However, the advantage of a better compression ratio when more bits are grouped together is
offset by an exponential increase in complexity of the algorithm. Not only must one estimate
the statistics of more symbols, but the size of the tree diagram becomes much larger.

(c) The first step in the Lempel-Ziv algorithm is to identify the phrases. For the problem at
hand, they are

0, 00, 1, 10, 01, 11, 111, 101, 1011, 1111 .

Since there are ten phrases, four bits are needed for describing the location in the dictionary.
The dictionary is designed as

Dict. pos. Contents Codeword

0. 0000 – –
1. 0001 –0 00000
2. 0010 00 00010
3. 0011 –1 00001
4. 0100 10 00110
5. 0101 01 00011
6. 0110 11 00111
7. 0111 111 01101
8. 1000 101 01001
9. 1001 1011 10001
10. 1010 1111 01111

where ’–’ means ’empty’. The encoded sequence then becomes

00000, 00010, 00001, 00110, 00011, 00111, 01101, 01001, 10001, 01111 ,

which is 50 bits long. So, Lempel-Ziv coding has in this case expanded the sequence and
produced a result much longer than what the entropy of the source predicts! The original
sequence is simply too short for compression to take place. However, as the original sequence
grows longer, it can be shown that the number of bits in the compressed sequence approaches
the corresponding entropy measure, thus leading to good compression.

1–10 Let’s call the different output values of the source x1, . . . , x8, corresponding to the given proba-
bilities 1

2 , . . . ,
1
64 .

(a) The instantaneous code that minimizes the expected code-length is the Huffman code. One
Huffman code is specified below.

x1

x2

x3

x4

x5

x6

x7

x8

1
2

1
4

1
8

1
16

1
64

1
64

1
64

1
64

0

0

0

0

0

0

0

1

1

1

1
1

1
1
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Symbol Codeword

x1 0
x2 10
x3 110
x4 1110
x5 111100
x6 111101
x7 111110
x8 111111

(b) The entropy of the source is 2 bits per source symbol. The expected length of the Huffman
code is also 2 bits per source symbol. From the source-coding theorem, we know that a
lower expected length than the entropy of the source can not be obtained by any code. If
the expected length of the code would have been greater than the entropy, coding length-N
blocks of source symbols would have yielded a lower expected length.

(c) To find instantaneous codes, the code-tree can be used. The code-tree that minimizes the
length of the longest codeword is obviously as flat as possible, which gives the longest code-
word length 3 bits per source symbol.

x1 x2 x3 x4 x5 x6 x7 x8

0

0000

0

0

1

1111

1

1

Symbol Codeword

x1 000
x2 001
x3 010
x4 011
x5 100
x6 101
x7 110
x8 111

(d) In this problem, code-trees with a maximum depth of four bits should be considered. To
minimize the expected length, the most probable symbols should be assigned to the nodes
represented by fewer bits. This yields a few candidates to the optimal code-tree. Calculation
of the expected length of the different candidates gives the optimal one that is shown below.
Its expected code-word length is 2.25 bits.
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x1

x2

x3 x4 x5 x6 x7 x8

0

000

0

0

0

1

1

111

1

1

Symbol Codeword

x1 0
x2 100
x3 1010
x4 1011
x5 1100
x6 1101
x7 1110
x8 1111

1–11 (a) Obviously, there are 12 equiprobable outcomes of the pair (X,Y ):

(X,Y ) ∈ {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}

Therefore, K = 1/12. The marginal distributions for X and Y are

Pr(X = x) = Pr(Y = y) = 3K =
1

4
∀x, y ∈ {1, 2, 3, 4}

The entropies for X and Y are therefore equal.

H(X) = H(Y ) = −
∑

x

Pr(X = x) log Pr(X = x) = log 4 = 2 bits

From the definition of joint entropy:

H(X,Y ) = −
∑

x,y

Pr(X = x, Y = y) log Pr(X = x, Y = y) = log 12 ≈ 3.58 bits

The mutual information can be written as:

I(X ;Y ) = H(X) +H(Y )−H(X,Y ) = 2 log 4− log 12 = log
4

3
≈ 0.415 bits

(b) The probability mass function of X , if it is known that Y = 1, is

Pr(X = x|Y = 1) =

{
1
3 x = 2, 3, 4
0 x = 1

Using this probability distribution to design a Huffman code yields the tree:

2

3

41
3

1
3

1
3

0

0

1

1
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with the codewords:

x Codeword

2 0
3 10
4 11

(c) The rate of the code in (b) is R = 1
3 (1 + 2 + 2) = 5

3 ≈ 1.67 bits per input symbol. The
entropy of X, given that Y is known, is

H(X |Y = 1) = −
∑

x

Pr(X = x|Y = 1) logPr(X = x|Y = 1) = log 3 ≈ 1.58

According to the lossless source coding theorem, lossless uniquely decodable codes with rate
R > H exist. Therefore it is possible to construct such a code with rate lower than 1.67.

1–12 (a) The minimum rate (code-bits per source-bit) is given by the entropy rate

H = −p log p− (1− p) log(1 − p) ≈ 0.29

(b) The algorithm compresses variable-length source strings into 3-bit strings, as summarized
in the table below.

source string probability codeword
0 1− p = 0.05 000
10 p(1− p) = 0.0475 001
110 p2(1− p) = 0.045125 010
1110 p3(1− p) = 0.0428688 011
11110 p4(1− p) = 0.0407253 100
111110 p5(1− p) = 0.038689 101
1111110 p6(1− p) = 0.0367546 110
1111111 p7 = 0.698337 111

Hence the average rate is

R = 3 · (1− p) +
3

2
· p(1− p) + 1 · p2(1− p) +

3

4
· p3(1− p) + · · ·+

3

7
· p7 ≈ 0.657

in code-bits per source-bit.

1–13 The step-size is 2/24 = 1/8. Uniform variable, uniform distribution ⇒ D = ∆2/12 = 1/768

1–14 The resulting quantization levels are ±1/16, ±3/16, ±3/8 and ±3/4. The quantization distortion
is

D =
∑

i

piDi

where Di is the contribution to the distortion from the ith quantization interval, and pi is the
probability that the input variable belongs to the ith interval. Since the quantization error is
uniformly distributed in each interval, we get

D =
1

12

∑

i

pi∆i = . . . =
1

264

where ∆i is the length of the ith interval. Without companding the corresponding distortion is
D = 1/192. That is, the improvement over linear quantization is 264/192 ≈ 1.375 times.

1–15 Granular distortion: Since there are N = 28 = 256 quantization levels (N is a “large” number),
we get

Dg ≈
∆2

12
Pr(|X | < V )
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where ∆ = 2V/N = V/128, and

Pr(|X | < V ) =

∫ V

−V
f(x)dx = 1− exp(−

√
2V/σ)

That is, Dg ≈ 8.1 · 10−5 σ2.

Overload distortion: We get

Do = 2

∫ ∞

V
(x− V )2 f(x)dx = . . . = exp(−4

√
2)σ2 ≈ 3.5 · 10−3

Hence, Do > Dg.

1–16 Large number of levels ⇒ linear quantization gives Dlin ≈ ∆2/12. Optimal companding gives

Dopt ≈
∆2

12

∫ 1

−1

f(x)

[g′(x)]2
dx

That is
Dopt

Dlin
≈
∫ 1

−1

f(x)

[g′(x)]2
dx = . . . =

1

2

1–17 The signal-to-quantization-noise ratio is

SQNR =
V 2/3

∆2/12

with ∆ = 2V/2b, where b is the number of bits per sample. Hence,

SQNR = 22b > 104 ⇒ b ≥ 7

(noting that only an integer b is possible).

1–18 Let [−V, V ] be the granular region of the quantizer and let b = 64000/8000 = 8 be the number of
bits per sample used for quantization. We get

Dq ≈
(2V/2b)2

12
=

V 2

3 · 216

Also, letting X denote a source sample and X̂ its reconstructed value, we get

De = E[(X − X̂)2| error] =
V 2

2
+

V 2

3
=

5

6
V 2

since X is a sample from a sinusoid, with E[X ] = 0 and E[X2] = V 2/2, and since X̂ is uniformly
distributed and independent of X (when an error has occurred). Finally, Pe is obtained as

Pe = 1− Pr(no error) = 1−

[

1−Q

(

A
√

RN0/2

)]b

≈ bQ

(

A
√

RN0/2

)

We hence get,

PeDe < (1− Pe)Dq ⇒ Pe <
2

5
2−16 ⇒ A > 3.8

1–19 Let b be the number of bits per sample in the quantization. Then R = 6000 ·b bits are transmitted
per second. The probability of one bit error, in any of the 21 links, is

p = Q

(√

2P

N0R

)
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where P = 10−4 W and N0/2 = 10−10 W/Hz. The probability that the transmitted index
corresponding to one source sample is in error hence is

Pr(error) = 1− Pr(no error) = 1− (1− p)21b ≈ 21 pb = 21bQ

(√

106

6000b

)

and to get Pr(error) < 10−4 the number of bits can thus be at most b = 8. Since maximizing b
minimizes the distortion Dq due to quantization errors, the minimum Dq is hence

Dq = (2/28)2/12 ≈ 5 · 10−6

1–20 (a) The lower part of the figure below shows the sequence (0 → −1 and 1 → +1) and the upper
part shows the decoded signal.

0 5 10 15 20 25 30 35
−4

−2

0

2

4

6

8

System 1
System 2

0 5 10 15 20 25 30 35
−2

−1

0

1

2

(b) System 1 :
Pmax

Pmin
=

(
fd

2πfm

)2

System 2 :
Pmax

Pmin
=

(
fd
πfm

)2

1–21 We have

P

(

X̂ =
3

4
a

)

= P

(

X̂ = −
3

4
a

)

= P (X > γa) =
1− γ

2

P

(

X̂ =
1

4
a

)

= P

(

X̂ = −
1

4
a

)

= P (0 < X ≤ γa) =
γ

2

The variable X̂ cannot be coded below the rate H(X̂) bits per symbol. Therefore

H(X̂) = −2
γ

2
log2

γ

2
− 2

1− γ

2
log2

1− γ

2
= 1 +Hb(γ) ,

whereHb(γ) = −γ log2 γ−(1−γ) log2(1−γ) is the binary entropy function. This givesH(X̂) > 1.5
for 0.11 < γ < 0.89.

1–22 (a) We begin with defining the sets A0 = (−∞,−σ], A1 = (−σ, 0], A2 = (0,σ] and A3 = (σ,∞).
The average quantization distortion is

E[(X − X̂)2] = E[X2]− 2E[XX̂] + E[X̂2].

Studying these three averages on-by-one, we have E[X2] = σ2,

E[XX̂] =
3
∑

i=0

Pr(X ∈ Ai)E[X |X ∈ Ai]E[X̂|X ∈ Ai],
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and

E[X̂2] =
3
∑

i=0

Pr(X ∈ Ai)E[(X̂)2|X ∈ Ai].

We note that because of symmetry we have

E[X |X ∈ A0] = −E[X |X ∈ A3], E[X |X ∈ A1] = −E[X |X ∈ A2]

Also

E[X̂ |X ∈ A0] = −E[X̂|X ∈ A3] = −3σ/2, E(X̂|X ∈ A1) = −E(X̂|X ∈ A2) = σ/2

Furthermore we note that p0 ! Pr(X ∈ A0) = Pr(X ∈ A3) and p1 ! Pr(X ∈ A1) = Pr(X ∈
A2). So we need (at most) to find p0, p1, E[X |X ∈ A0] and E[X |X ∈ A1]. Since the source
is Gaussian, we have

E[X |X ∈ A0] =
1

p0
√
2πσ2

∫ −σ

−∞
x exp(−

1

2σ2
x2)dx = . . . = −

σ

p0
√
2π

e−1/2.

Similarly

E[X |X ∈ A1] =
1

p1
√
2πσ2

∫ 0

−σ
x exp(−

1

2σ2
x2)dx = . . . = −

σ

p1
√
2π

(e−1/2 − 1).

Hence we get

E[XX̂] = 2p0
σ

p0
√
2π

e−1/2 3σ

2
+ 2p1

σ

p1
√
2π

(e−1/2 − 1)
σ

2
=

1√
2π
σ2(1 + 2e−1/2).

We also have E[(X̂)2] = 2p0(
3σ
2 )2 + 2p1(

σ
2 )

2. Consequently, the average total distortion is

E[(X − X̂)2] = σ2 −
√

2

π
σ2(1 + 2e−1/2) + 2p0(

3σ

2
)2 + 2p1(

σ

2
)2.

Recognizing that p0 = Q(1) = 0.1587 and that p1 = 1
2 − Q(1) = 0.3413 (where Q(x) =

(2π)−1/2
∫∞
x exp(−2−1t2)dt), we finally have that

E[(X − X̂)2] =

(

1.8848−
√

2

π
(1 + 2e−1/2)

)

σ2 = 0.1190σ2.

(b) The entropy is obtained as H(X̂) = −
∑3

i=0 Pr(X ∈ Ai) log Pr(X ∈ Ai). Consequently

H(X̂) = −2p0 log p0 − 2p1 log p1 (where p0 and p1 were defined in part (a)). That is,
H(X̂) = 1.9015 bits.

(c) The entropy, H(X̂), is maximum iff all values for X̂ are equiprobable, that is iff Pr(X ≤
−aσ) = 1/4 ⇔ Q(a) = 1/4. This gives a ≈ 0.675.

(d) For simplicity, let I ∈ {0, 1, 2, 3} correspond to the transmitted two-bit codeword, and let
J ∈ {0, 1, 2, 3} correspond to the received codeword. Then, the average mutual information
is I(X, X̂) = I(I, J) = H(J)−H(J |I), where

H(J) = −
3
∑

j=0

Pr(J = j) log Pr(J = j),

H(J |I) =
3
∑

i=0

Pr(I = i)H(J |I = i).

Hence we need to find P (j), P (i) and H(J |i). The probabilities Pr(I = i) are known from
part (a), where we found that Pr(I = 0) = Pr(I = 3) = p0 = 0.1587 and Pr(I = 1) = Pr(I =
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2) = p1 = 0.3413. The probabilities, P (j), at the channel output are P (j) =
∑3

i=0 Pr(I =
i)P (j|i). That is,

Pr(J = 0) = Pr(J = 3) = p0
(

(1− q)2 + q2
)

+ 2p1q(1− q) = 0.1623

Pr(J = 1) = Pr(J = 2) = 2p0q(1− q) + p1
(

(1− q)2 + q2
)

= 0.3377

where the notation P (j|i) means “probability that j is received when i was transmitted.”
Consequently H(J) = . . . = 1.9093 bits. Furthermore,

H(J |I = 0) = H(J |I = 1) = H(J |I = 2) = H(J |I = 3)

= −
3
∑

j=0

P (j|0) logP (j|0) = . . . = 0.1616 bits.

Hence, H(J |I) = 0.1616 and consequently I(I, J) = 1.9093− 0.1616 = 1.7477 bits.

1–23 The quantization distortion can be expressed as

D =

∫ −a

−∞
(x+ b)2 fX(x)dx +

∫ a

−a
x2 fX(x)dx +

∫ ∞

a
(x− b)2 fX(x)dx

=

∫ a

0
x2 e−xdx+

∫ ∞

a
(x− b)2e−xdx

(a) Continuing with solving the expression for D above we get

D =
(

2ea + b2 − 2(a+ 1)b
)

e−a

(b) Differentiating D wrt b and setting the result equal to zero gives

2e−a(b− a− 1) = 0,

that is, b = a+ 1. Differentiating D wrt a and setting the result equal to zero then gives

(2a− b)be−a = 0,

that is, a = b/2. Hence we get b = 2 and a = 1, resulting in

D = 2(1− 2e−1) ≈ 0.528

Note that another approach to arrive at b = 2 and a = 1 is to observe that according to
the textbook/lectures a necessary condition for optimality is that b is the centroid of its
encoding region, i.e

b = E[X |X > a] = . . . = a+ 1

and in addition a should define a nearest-neighbor partition of the real line, i.e.

a = b/2

(since there is a code-level at 0, the number a should lie halfway between b and 0).

1–24 (a) The zero-mean Gaussian variable X with variance 1, has the pdf

fX(x) =
1√
2π

e−
x2

2

The distortion of the quantizer is a function of the step-size ∆, and the reproduction points
x̂1, x̂2, x̂3 and x̂4.

D(∆, x̂1, x̂2, x̂3, x̂4) = E[(X − X̂)2]

=

∫ −∆

−∞
(x+ x̂1)

2fX(x)dx +

∫ 0

−∆
(x+ x̂2)

2fX(x)dx

+

∫ ∆

0
(x− x̂3)

2fX(x)dx +

∫ ∞

∆
(x− x̂4)

2fX(x)dx
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In the (a) problem, it is given that x̂1 = x̂4 and x̂2 = x̂3. Since fX(x) is an even function,
this is valid also in the (b)-problem. Further, using the fact that the four integrands above
are all even functions gives

D(∆, x̂1, x̂2) = 2

∫ ∞

∆
(x− x̂1)

2fX(x)dx + 2

∫ ∆

0
(x− x̂2)

2fX(x)dx

= 2

∫ ∞

∆
x2fX(x)dx

︸ ︷︷ ︸

I

+2x̂2
1

∫ ∞

∆
fX(x)dx

︸ ︷︷ ︸

II

−4x̂1

∫ ∞

∆
xfX(x)dx

︸ ︷︷ ︸

III

+ 2

∫ ∆

0
x2fX(x)dx

︸ ︷︷ ︸

IV

+2x̂2
2

∫ ∆

0
fX(x)dx

︸ ︷︷ ︸

V

−4x̂2

∫ ∆

0
xfX(x)dx

︸ ︷︷ ︸

V I

Using the hints provided to solve or express the six integrals in terms if the Q-function yields

I = 2√
2π

∫∞
∆ x2e

−x2

2 dx =

√

2

π
∆e

−∆2

2 + 2Q(∆)

II = 2x̂2
1√
2π

∫∞
∆ e

−x2

2 dx = 2x̂2
1Q(∆)

III = − 4x̂1√
2π

∫∞
∆ xe

−x2

2 dx = −
4x̂1√
2π

e
−∆2

2

IV = 2√
2π

∫ ∆
0 x2e

−x2

2 dx = (1− 2Q(∆))−
√

2

π
∆e

−∆2

2

V = 2x̂2
2√
2π

∫∆
0 e

−x2

2 dx = x̂2
2(1 − 2Q(∆))

V I = − 4x̂2√
2π

∫ ∆
0 xe

−x2

2 dx = −
4x̂2√
2π

(1− e
−∆2

2 )

Adding these six parts together gives after some simplification

D(∆, x̂1, x̂2) = 2Q(∆)(x̂2
1 − x̂2

2) + 1 + x̂2
2 +

4e
−∆2

2

√
2π

(x̂2 − x̂1)−
4x̂2√
2π

Using MATLAB to find the minimum D(∆), using x̂1 = 3∆
2 and x̂2 = ∆

2 , gives ∆
∗ ≈ 0.9957

and D(∆∗) ≈ 0.1188, which is in agreement with the table in the textbook. The minimum
can be found by calculating D(∆) for, for instance 106, equally spaced values in a feasible
range of ∆, for instance 0-5, or by some more sophisticated numerical method.

(b) Because fX(x) is even and the quantization regions are symmetric, the optimal reproduction
points are symmetric; x̂∗

1 = x̂∗
4 and x̂∗

2 = x̂∗
3. The optimal reproduction points are the

centroids of the encoder regions, i.e.

x̂∗
1 = x̂∗

4 = E[X |∆∗ < X ≤ ∞] =

∫∞
∆∗ xfX(x)dx

P (∆∗ < X ≤ ∞)

x̂∗
2 = x̂∗

3 = E[X |0 < X ≤ ∆∗] =

∫ ∆∗

0 xfX(x)dx

P (0 < X ≤ ∆∗)

Since X is Gaussian, zero-mean and unit variance,

P (0 < X ≤ ∆∗) = Q(0)−Q(∆∗)

P (∆∗ < X ≤ ∞) = Q(∆∗)
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Using the hints gives

∫ ∞

∆∗
xfX(x)dx =

1√
2π

e
−(∆∗)2

2

∫ ∆∗

0
xfX(x)dx =

∫ ∞

0
xfX(x)dx −

∫ ∞

∆∗
xfX(x)dx =

1√
2π

(1− e
−(∆∗)2

2 )

which finally gives

x̂∗
1 = x̂∗

4 =
1√
2π

e
−(∆∗)2

2

Q(∆∗)
≈ 1.5216

x̂∗
2 = x̂∗

3 =
1√
2π

(1− e
−(∆∗)2

2 )

(Q(0)−Q(∆∗))
≈ 0.4582

Using the formula for the distortion from the (a)-part gives D(∆∗, x̂∗
1, x̂

∗
2) ≈ 0.11752

(c) The so-called Lloyd-Max conditions are necessary conditions for optimality of a scalar quan-
tizer:

1. The boundaries of the quantization regions are the midpoints of the corresponding
reproduction points.

2. The reproduction points are the centroids of the quantization regions.

From table 6.3 in the 2nd edition of the textbook, we find the following values for the op-
timal 4-level quantizer region boundaries, −a1 = a3 = 0.9816 and a2 = 0. The optimal
reproduction points are given as −x̂1 = x̂4 = 1.510 and −x̂2 = x̂3 = 0.4528. These values
are of course not exact, but rounded.

The first condition is easily verified:

1

2
(x̂1 + x̂2) = −0.9814 ≈ a1

1

2
(x̂2 + x̂3) = 0 = a2

1

2
(x̂3 + x̂4) = 0.9814 ≈ a3

The second condition is similar to problem (b).

−x̂1 = x̂4 =
1√
2π

e
−a2

3
2

Q(a3)
≈ 1.510

−x̂2 = x̂3 =
1√
2π

(1− e
−a2

3
2 )

(Q(0)−Q(a3))
≈ 0.4528

Again, using the formula for the distortion from the (a)-part gives D(a3, x̂4, x̂3) ≈ 0.11748
which is slightly better than in (b), and also in accordance with table 6.3.

1–25 A discrete memoryless channel with 4 inputs and 4 outputs, and a 4-level quantizer.

(a) We have
D = E[(Z − Ẑ)2]

with Z and Ẑ defined as in the problem. For Y = y, Ẑ takes on the value

ẑy = −
3

2
+

y

2
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We can write

D = E[Z2]− 2
3
∑

x=0

E[Z|X = x]E[Ẑ|X = x] Pr(X = x) + E[Ẑ2]

Here

E[Z2] =
1

2

∫ +1

−1
z2dz =

1

3
, E[Z|X = x] = ẑx, Pr(X = x) =

1

4

E[Ẑ|X = x] = (1 − ε)ẑx + εẑx+1 mod 4, E[Ẑ2] =
1

4

∑

y

ẑ2y =
5

16

so

D =
1

48
+

3

8
ε =

∆2

12
+

3

8
ε

(b) The optimal Ẑ’s are given by ẑy = E[X |Y = y], hence

ẑ0 = ẑ2 = 0, ẑ1 = −0.5, ẑ3 = 0.5

1–26 (a) Since X̂n = Ŷn + X̂n−1 and X̂0 = 0, we get

n Xn X̂n−1 Yn = Xn − X̂n−1 Ŷn = Q[Yn] X̂n = X̂n−1 + Ŷn

1 0.9 0 0.9 1 1
2 0.3 1 −0.7 −1 0
3 1.2 0 1.2 1 1
4 −0.2 1 −1.2 −1 0
5 −0.8 0 −0.8 −1 −1

(b) Since X̂0 = 0 we get Y1 = X1 and hence

D1 = E[(Y1 − Ŷ1)
2] = E[(X1 −Q[X1])

2] = E[X2
1 ]− 2E

[

X1Q[X1]
]

+ 1

= 2− 2

(∫ ∞

0
x

1√
2π

e−x2/2dx −
∫ 0

−∞
x

1√
2π

e−x2/2dx

)

= 2

(

1−
√

2

π

)

≈ 0.40

(c) Now Y2 = X2 −Q[X1], so we get

D2 = E
{(

X2 −Q[X1]−Q
[

X2 −Q[X1]
])2}

= E[(X2 −Q[X1])
2] + 1− 2E

{

(X2 −Q[X1])Q
[

X2 −Q[X1]
]}

= 3− 2

(
1

2
E
{

(X2 −Q[X1])Q
[

X2 −Q[X1]
]∣
∣X1 < 0

}

+
1

2
E
{

(X2 −Q[X1])Q
[

X2 −Q[X1]
]∣
∣X1 > 0

}
)

= 3− 2

(
1

2
E
{

(X2 + 1)Q
[

X2 + 1
]}

+
1

2
E
{

(X2 − 1)Q
[

X2 − 1
]}
)

where

E
{

(X2+1)Q
[

X2 + 1
]}

= E
{

(X2 − 1)Q
[

X2 − 1
]}

=

∫ ∞

−1
(x+ 1)

1√
2π

e−x2/2dx−
∫ −1

−∞
(x + 1)

1√
2π

e−x2/2dx

=

√

2

π
e−1/2 + 1− 2Q(1)

where

Q(x) =

∫ ∞

x

1√
2π

e−t2/2dt

is the Q-function. Thus

D2 = 1− 2

(√

2

π
e−1/2 − 2Q(1)

)

≈ 0.67
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(d) DPCM (delta modulation) works by utilizing correlation between neighboring values of
Xn, since such correlation will imply E[Y 2

n ] < E[X2
n]. However, in this problem {Xn} is

memoryless, and therefore E[Y 2
2 ] = 2 > E[X2

2 ] = 1. This means that D2 > D1 and the
feedback loop in the encoder increases the distortion instead of decreasing it.

1–27 To maximize H(Y ) the variable a that determines the encoder regions must be set so that all
values of Y are equally probable. This is the case when

∫ a

0
fX(x)dx =

∫ ∞

a
fX(x)dx ⇐⇒

∫ a

0
e−xdx =

∫ ∞

a
e−xdx

Solving gives a = ln 2. The optimal recunstruction points, that minimize D, are then given as
the centroids

y4 = −y1 = E[X |X ≥ ln 2] = 2

∫ ∞

ln 2
xe−xdx = 1 + ln 2

y3 = −y2 = E[X |0 ≤ X < ln 2] = 2

∫ ln 2

0
xe−xdx = 1− ln 2

The resulting distortion is then

D = E[(X − Y )2] =

∫ a

0
(x− y3)

2e−xdx+

∫ ∞

a
(x− y4)

2e−xdx = 1 + (ln 2)2 − ln 2 ln 4 ≈ 0.52

1–28 (a) Given X = W1 +W2, the probability density function for X is

fX =











1
8x+ 3

8 , X ∈ [−3,−1]
1
4 , |x| ≤ 1
− 1

8x+ 3
8 , X ∈ [1, 3]

0, otherwise

h(X) = −
∫ −1

−3
(
1

8
x+

3

8
) ln(

1

8
x+

3

8
)dx −

∫ 1

−1

1

4
ln(

1

4
)dx

−
∫ 3

1
(−

1

8
x+

3

8
) ln(−

1

8
x+

3

8
)dx

= 2 ln(2) +
1

4

(b) The optimum coefficients are obtained as

a1 = −a4

a2 = −a3

a3 = E{X |X ∈ [0, 1)}

=

∫ 1
0 xfxdx
∫ 1
0 fxdx

=
1

2

a4 = E{X |X ∈ [1, 3)}

=

∫ 3
1 xfxdx
∫ 3
1 fxdx

=
5

3

The minimum distortion is

D = E{(X −Q(X))2}

= 2

∫ −1

−3
(x+

5

3
)2(

x+ 3

8
)dx+ 2

∫ 0

−1

1

4
(x+

1

2
)2dx

=
11

72
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1–29 (a) The pdf of X is

fX(x) =
1√
2π

e−
x2

2

The clipped signal has pdf

fZ(z) = fZ
(

z
∣
∣ |Z| < A

)

Pr(|Z| < A) + fz
(

z
∣
∣ |Z| ≥ A) Pr(|Z| ≥ A) = g(z) + δ(z −A)Q(A) + δ(z +A)Q(A)

where

g(z) =

{

fX(z), |z| < A

0, |z| ≥ A

(b) To fully utilize the available bits, it should hold that c < A. The mean square error is

E{(Y − Z)2} = 2

∫ c

0
(x− b)2fX(x)dx + 2

∫ A

c
(x− a)2fX(x)dx + 2

∫ ∞

A
(A− a)2fX(x)dx

The optimal a and b are:

b =

∫ c
0 xfX(x)dx
∫ c
0 fX(x)dx

=

1−exp(− 1
2 c

2)√
2π

1− 0.5−Q(c)

a =

∫ A
c xfX(x)dx +

∫∞
A AfX(x)dx

∫∞
c fX(x)dx

=
e−

1
2 c2−e−

1
2A2

√
2π

+ 0.9Q(A)

Q(c)

The optimal c satisfies c = 1
2 (b+ a).

1–30 Let

p = Pr(X ≤ −a) = Pr(X > a) =
(b− a)2

2b2

(noting that 0 ≤ a ≤ b). Then Pr(−a < X ≤ 0) = Pr(0 < X ≤ a) = 1/2 − p and the entropy
H(X̂) of the variable X̂ is hence obtained as

H(X̂) = −2p log2(2p)− 2(1/2− p) log2(1/2− p) = 1 +Hb(2p)

where
Hb(x) = −x log2 x− (1 − x) log2(1− x)

is the binary entropy function. The requirement that it must be possible to compress X̂ without
errors at rates above (but not below) 1.5 bits per symbol is equivalent to requiring H(X̂) = 1.5.
Solving this equation gives the two possible solutions

p = p1 ≈ 0.0550 or p = p2 ≈ 0.4450

corresponding to
a = a1 ≈ 0.6683 b or a = a1 ≈ 0.0566 b

Now the parameter a is determined in terms of the given constant b, with two possible choices
that will both satisfy the constraint on the entropy. Hence the quantization regions are com-
pletely specified in terms of b (for any of the two cases). Then we know that the quantization
levels y1, . . . , y4 that minimize the mean-square distortion D correspond to the centroids of the
quantization regions. We can hence compute the quantization levels as

y4 = −y1 = E[X |X > a] =
1

p

∫ b

a
xfX(x)dx =

1

p

∫ b

a
x
b− x

b2
dx

=
1

p

[
b2 − a2

2b
−

b3 − a3

3b2

]

≈

{

0.7789 b, p = p1, a = a1
0.3711 b, p = p2, a = a2

99



and

y3 = −y2 = E[X |0 < X ≤ a] =
1

1/2− p

∫ a

0
xfX(x)dx

=
1

1/2− p

[
a2

2b
−

a3

3b2

]

≈

{

0.2782 b, p = p1, a = a1
0.0280 b, p = p2, a = a2

The corresponding distortions, for the two possible solutions, are

D = E[X2]− E[X̂2]

= E[X2]− py21 − (1/2− p)y22 − py23 − (1/2− p)y24 = E[X2]− 2py21 − (1− 2p)y22

≈

{

E[X2]− 0.136 b2, p = p1, a = a1
E[X2]− 0.123 b2, p = p2, a = a2

We see that the difference in distortion is not large, but choosing a = a1 clearly gives a lower
distortion. Hence we should choose a ≈ 0.6683, and the corresponding values for y1, . . . , y4, as
given above.

1–31 (a) The resulting Huffman tree is shown below, with the codewords listed to the down right.

11
01
101
001
1000
1001
0000
0001

codewords

0
1

0.25

0.2

0.15

0.1

0.1

0.09

0.07

0.04
0.11

0.19

0.21

0.34

0.41

0.59
1

The average codeword length is

L = 0.04 · 4 + 0.07 · 4 + 0.09 · 4 + 0.1 · 4 + 0.1 · 3 + 0.15 · 3 + 0.2 · 2 + 0.25 · 2 = 2.85

(bits per source symbol). The entropy (rate) of the source is

H = 0.04 log 1/0.04 + · · ·+ 0.25 log 1/0.25 ≈ 2.806

Hence the derived Huffman code performs about 0.044 bits worse than the theoretical opti-
mum.

(b) It is readily seen that the given quantizer is uniform with stepsize∆. The resulting distortion
is

D =

∫ ∆

0

(

x−
1

2
∆

)2

e−xdx+

∫ ∞

∆

(

x−
3

2
∆

)2

e−xdx = 2− (1 + 2e−∆)∆+
∆2

4

The derivative of D wrt ∆ is obtained as

∂D

∂∆
= 2(∆− 1)e−∆ − 1 +

∆

2
= g(∆)

Solving g(∆) = 0 numerically or graphically then gives ∆ ≈ 1.5378 (there is only one root
and it corresponds to a minimum). Hence 1.5 < ∆∗1.55 clearly holds true.
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1–32 Uniform encoding with ∆ = 1/4 of the given pdf gives a discrete variable X̂ with outcomes and
corresponding probabilities according to

p(x̂i) X̂
1/44 x̂0

1/44 x̂1

1/11 x̂2

4/11 x̂3

4/11 x̂4

1/11 x̂5

1/44 x̂6

1/44 x̂7

where p(x̂i) = Pr(X̂ = x̂i).

(a) The entropy is obtained as

H(X̂) = −
7
∑

i=0

p(x̂i) log p(x̂i) ≈ 2.19 [bits per symbol]

(b) The Huffman code is constructed as

4/11

4/11

1/11

1/11

1/11

2/11

7/11

3/11

1/22

1/22

1/44

1/44

1/44

1/44

0

1

and it has codewords {1, 01, 001, 0001, 000011, 000010, 000001, 000000} and average codeword
length L = 25/11 ≈ 2.27 > H(X̂). Getting L < H(X̂) must correspond to an error since
L ≥ H(X̂) for all uniquely decodable codes.

(c) With uniform output levels x̂i = (i − 7/2)∆ the distortion is

7
∑

i=0

∫ (i−3)∆

(i−4)∆
(x − x̂i)

2fX(x)dx =
1

∆

7
∑

i=0

p(x̂i)

∫ (i−3)∆

(i−4)∆
(x − x̂i)

2dx =
1

∆

7
∑

i=0

p(x̂i)

∫ ∆/2

−∆/2
ε2dε =

∆2

12
=

1

192

(d) The optimal reconstruction levels are

x̂i = E[X |(i− 4)∆ ≤ X < (i− 3)∆] =
1

∆

∫ (i−3)∆

(i−4)∆
x dx = (i −

7

2
)∆

That is, the uniform output-levels are optimal (since fX(x) is uniform over each encoder
region) ⇒ the distortion computed in (c) is the minimum distortion!

1–33 Quantization and Huffman: Since the quantizer is uniform with ∆ = 1, the 4-bit output-index I
has the pmf

p(i) =
128

255
2−(8−i) , i = 0, . . . , 7 ; p(i) =

128

255
2−(i−7) , i = 8, . . . , 15

A Huffman code for I, with codeword-lengths li (bits), is illustrated below.
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128
128
64
64
32
32
16
16
8
8
4
4
2
2
1
1

2
4

6

14

30

62

126

128

64

32

16

8

254

2
2
3
3
4
4
5
5
6
6
7
7
7
8
9
9

li

The expected length of the output from the Huffman code is

L =
128

255

(

2
9

256
+

8

128
+

7

128
+2

7

64
+2

6

32
+2

5

16
+2

4

8
+2

3

4
+2

2

2

)

=
756

255
≈ 2.965 [bits/symbol]

That is L̄ = 3.

Also, since the pdf f(x) is uniform over the encoder regions, the quantization distortion with
k = 4 bits is ∆2/12 = 1/12.

Quantization without Huffman: With k = L̄ = 3 we get ∆ = 2, and the resulting quantization
distortion is

E[(X − X̂)2] = 2

∫ 2

0
(x− 1)2f(x)dx + 2

∫ 4

2
(x− 3)2f(x)dx + 2

∫ 6

4
(x− 5)2f(x)dx + 2

∫ 8

6
(x− 7)2f(x)dx

= 2

∫ 1

−1
x2
[

f(x+ 1) + f(x+ 3) + f(x+ 5) + f(x+ 7)
]

dx =

∫ 1

−1
x2dx =

1

3

Consequently, when Huffman coding is employed to allow for spending one additional bit on
quantization the distortion can be lowered a factor four!

1–34 (a) It is straightforward to calculate the exact quantization noise, however slightly tiring.

Dg =

∫ V

−V
(x−Q(x))2fX(x)dx = {symmetry} = 2

∫ V

0
(x−Q(x))2fX(x)dx

=

{

fX(x) =
1

V
−

1

V 2
x

}

= 2

∫ V/2

0
(x−

V

4
)2(

1

V
−

1

V 2
x)dx +

2

∫ V

V/2
(x −

3V

4
)2(

1

V
−

1

V 2
x)dx = . . . =

V 2

48
+

V 2

192
=

V 2

48

The approximation of the granular quantization noise yields

Dg ≈
∆2

12
=

V 2

48

The approximation gives the exact value in this case. This is due to the fact that the
quantization error X̃ = (X − Q(X)) is uniformly distributed in [−V

4 ,
V
4 ]. An alternative

solution could use this approach.
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(b) The probability mass function of Yn is Pr(Yn = y0) = Pr(Yn = y3) =
1
8 and Pr(Yn = y1) =

Pr(Yn = y2) = 3
8 . A Huffman code for this random variable is shown below.

1

1

1

0

0

0

3
8

3
8

1
8

1
8

y0

y1

y2

y3

That is,

Symbol Codeword

y0 000
y1 01
y2 1
y3 001

(c) A typical sequence of length 8 is y81 = y0y3y1y1y1y2y2y2. The probability of the sequence
Pr(y81) = 2−8H(Yn), where H(Yn) is the entropy of Yn.

1–35 (a) The solution is straightforward.

E[X2
n] =

∫ ∞

−∞
x2fX(x)dx =

1

2

∫ ∞

−∞
x2e−|x|dx = {even} =

∫ ∞

0
x2e−xdx = {tables or integration by parts} = 2

E[(Xn − X̂n)
2] =

∫ ∞

−∞
(x− x̂(x))2fX(x)dx = {even} =

∫ ∞

0
(x− x̂(x))2e−xdx =

∫ 1

0
(x− 1/2)2e−xdx+

∫ ∞

1
(x− 3/2)2e−xdx = . . . =

1

4
(5−

13

e
) +

5

4e
=

5

4
−

2

e
≈ 0.5142

This gives the SQNR= E[X2
n]

E[(Xn−X̂n)2]
≈ 2

0.5142 ≈ 3.9 ≈ 5.9 dB.

(b) To find the entropy of In, the probability mass function of In must be found.

Pr(In = 0) = Pr(In = 3) =

∫ −1

−∞
fX(x)dx =

∫ ∞

1
fX(x)dx =

1

2

∫ ∞

0
e−xdx =

1

2e
= p0 ≈ 0.184

Pr(In = 1) = Pr(In = 2) =

∫ 0

−1
fX(x)dx =

∫ 1

0
fX(x)dx =

1

2

∫ 1

0
e−xdx =

1

2
−

1

2e
= p1 ≈ 0.316

⇒ H(In) = −2p0 log p0 − 2p1 log p1 ≈ 1.94 bits

Since there is no loss in information between In and În, the other entropies follow easily.

H(X̂n) = H(In)

H(X̂n|In) = 0

H(In|X̂n) = 0

H(X̂n|Xn) = 0
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The differential entropy of Xn is by definition

h(Xn) = −
∫ ∞

−∞
fX(x) log fX(x)dx = {fX(x) even} = −

∫ ∞

0
e−x log(

1

2
e−x)dx =

−
∫ ∞

0
e−x(log e−x − log 2)dx =

∫ ∞

0
xe−x log edx+

∫ ∞

0
e−xdx = . . . =

ln 2 + 1

ln 2
≈ 2.44 bits

(c) A Huffman code for In can be designed with standard techniques now that the pmf of In is
known. One is given in the table below.

In Codeword

0 11
1 10
2 01
3 00

The rate of the code is 2 bits per quantizer output, which means no compression. If the
block-length is increased the rate can be improved.

(d) A code for blocks of two quantizer outputs is to be designed. First, the probability distri-
bution of all possible combinations of (In−1, In) has to be computed. Then, the Huffman
code can be designed using standard techniques. The probabilities and one Huffman code is
given in the table below.

(In−1, In) Probability Codeword

00 p0p0 111
01 p0p1 110
02 p0p1 0111
03 p0p0 0110
10 p1p0 1011
11 p1p1 1010
12 p1p1 1001
13 p1p0 1000
20 p1p0 0011
21 p1p1 0010
22 p1p1 0001
23 p1p0 0000
30 p0p0 01011
31 p0p1 01010
32 p0p1 01001
33 p0p0 01000

The rate of the code is 1
2 (6p1p1 + 8p1p1 + 32p0p1 + 20p0p0) ≈ 1.97 bits per quantization

output, which is a small improvement.

(e) The rate of the code would approach H(In) = 1.95 bits as the block-length would increase.
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1–36 We have that {Xn} and {Wn} are stationary, E[Wn] = 0 and E[W 2
n ] = 1. Since {Wn} is Gaussian

{Xn} will be Gaussian (produced by linear operations on a Gaussian process). Let µ = E[Xn]
and σ2 = E[(Xn − µ)2] (equal for all n), then

E[Xn] = aE[Xn−1] + E[Wn] =⇒ µ(1− a) = 0 =⇒ µ = 0

E[X2
n] = a2 E[X2

n−1] + E[W 2
n ] =⇒ σ2(1− a2) = 1 =⇒ σ2 =

1

1− a2

Also, since {Xn} is stationary, r(m) = E[XnXn+m] depends only on m, and r(m) is symmetric
in m. For m > 0, Xm+n and Wn are independent, and hence

r(m) = E[XnXn+m] = aE[Xn−1Xn+m] = a r(m + 1) =⇒ r(m) = a−mσ2

Similarly r(m) = amσ2 for m < 0, so r(m) = a−|m|σ2 for all m.

(a) Since Xn is zero-mean Gaussian with variance σ2, the pdf of X = Xn (for any n) is

fX(x) =
1√
2πσ2

exp

(

−
x2

2σ2

)

and we hence get

h(Xn) = −
∫ ∞

−∞
fX(x) log fX(x)dx = − log e

∫ ∞

−∞
fX(x) ln fX(x)dx

= − log e

∫ ∞

−∞
fX(x)

(

ln
1√
2πσ2

−
x2

2σ2

)

dx

= − log e

(

ln
1√
2πσ2

−
1

2

)

=
1

2
log(2πeσ2)

where “log” is the binary logarithm and “ln” is the natural, and with σ2 = (1− a2)−1. Now
we note that

h(Xn, Xn−1) = h(Xn|Xn−1) + h(Xn−1) = h(Wn) + h(Xn−1)

by the chain rule, and since h(Xn|Xn−1) = h(Wn) (the only “randomness” remaining in Xn

when Xn−1 is known is due to Wn). We thus get

h(Xn, Xn−1) =
1

2
log(2πe) +

1

2
log(2πeσ2) = log(2πeσ) = log

2πe√
1− a2

(b) X = Xn (any n) is zero-mean Gaussian with variance σ2 = (1 − a2)−1. The quantizer
encoder is fixed, as in the problem description. The optimal value of b is hence given by the
conditional mean

b = E[X |X > 1] =
1

Q(1/σ)

∫ ∞

1

x√
2πσ2

exp

(

−
x2

2σ2

)

dx =
σ

Q(1/σ)
√
2π

exp

(

−
1

2σ2

)

where

Q(x) =

∫ ∞

x

1√
2π

e−t2/2dt

is the Q-function.

(c) With a = 0, Yn and Yn−1 are independent and Xn is zero-mean Gaussian with variance
σ2 = 1. The pmf for Y = Ym, m = n or m = n− 1, is then

p(y) = Pr(Y = y) =








Q(1), y = −b

1− 2Q(1), y = 0

Q(1), y = b

≈








0.16, y = −b

0.68, y = 0

0.16, y = b

and since Yn and Yn−1 are independent the joint probabilities are
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yn yn−1 p(yn, yn−1) = p(yn)p(yn−1)
0 0 0.466
0 b 0.108
0 −b 0.108
b 0 0.108

−b 0 0.108
b b 0.025

−b b 0.025
b −b 0.025

−b −b 0.025

A Huffman code for these 9 different values, with codewords listed in decreasing order of
probability, is (for example)

1, 001, 010, 011, 0000, 000100, 000101, 000110, 000111

with average length

L ≈ 0.466 + 3 · 3 · 0.108 + 4 · 0.108 + 4 · 6 · 0.025 ≈ 2.47

(bits per source symbol). The joint entropy of Yn and Yn−1 is

H(Yn, Yn−1) ≈ −0.466 log 0.466− 4 · 0.108 log 0.108− 4 · 0.025 log 0.025 ≈ 2.43

so the average length is about 0.04 bits away from its minimum possible value.

2 Modulation and Detection

2–1 We need two orthonormal basis functions, and note that no two signals out of the four alternatives
are orthogonal. All four signals have equal energy

E =

∫ T

0
s2i (t)dt =

1

3
C2T

To find basis functions we follow the Gram-Schmidt procedure:

• Chose ψ1(t) = s0(t)/
√
E.

• Find ψ2(t) ⊥ ψ1(t) so that s1(t) can be written as

s1(t) = s11 ψ1(t) + s12 ψ2(t)

where

s11 =

∫ T

0
s1(t)ψ1(t)dt = . . . =

1

2

√
E.

Now φ2(t) = s1(t) − s11ψ1(t) is orthogonal to ψ1(t) but does not have unit energy (i.e., φ2
and ψ1 are orthogonal but not orthonormal). To normalize φ2(t) we need its energy

Eφ2 =

∫ T

0
φ22(t)dt = . . . =

1

4
C2T.

That is

ψ2(t) =

√

4

C2T
φ2(t)

is orthonormal to ψ1(t). Also

s12 =

∫ T

0
s1(t)ψ2(t)dt =

√
3

2

√
E
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Noting that s0(t) = −s2(t) and s1(t) = −s3(t) we finally get a signal space representation
according to

ψ1

ψ2

s0

s1

s2

s3

with

s0 = −s2 =
√
E (1, 0)

s1 = −s3 =
√
E (

1

2
,

√
3

2
)

2–2 Since the signals are equiprobable, the optimal decision regions are given by the ML criterion.
Denoting the received vector r = (r1, r2) we get

(a) (r1 − 2)2 + (r2 − 1)2
1
≷
2
(r1 + 2)2 + (r2 + 1)2

(b) |r1 − 2|+ |r2 − 1|
1
≷
2
|r1 + 2|+ |r2 + 1|

2–3 (a) We get

f(r|s0) =
1√
2π

exp
(

− (r + 1)2/2
)

f(r|s1) =
1√
2π

exp
(

− (r − 1)2/2
)

The optimal decision rule is the MAP rule. That is

f(r|s1)p1
1
≷
0
f(r|s0)p0

which gives

r
1
≷
0
∆

where ∆ = 2−1 ln 3.

(b) In this case we get

f(r|s0) =
1

2
exp(−|r + 1|)

f(r|s1) =
1

2
exp(−|r − 1|)

The optimal decision rule is the same as in (a).

2–4 Optimum decision rule for S based on r. Since S is equiprobable the optimum decision rule is
the ML criterion. That is Ŝ = argmins∈{±5} f(r|s)
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(a) With a = 1 the conditional pdf is

f(r|s) =
1√
2π

exp
(

−
1

2
(r − s)2

)

and the ML decision hence is

r
+5
≷
−5

0 or Ŝ = 5 sgn(r)

where sgn(x) = +1 if x > 0 and sgn(x) = −1 otherwise. The probability of error is

Pe =
1

2
Pr(r > 0|S = +5) +

1

2
Pr(r > 0|S = −5) = Q

(

5
√

E[w2]

)

= Q(5) ≈ 2.9 · 10−7

(b) Conditioned that S = s, the received signal r is Gaussian with mean

E[a s+ w] = s

and variance
Var[a s+ w] = 0.2 s2 + 1 .

That is

f(r|S = s) =
1

√

2π(0.2 s2 + 1)
exp

(

−
1

2(0.2 s2 + 1)
(r − s)2

)

,

but since s2 = 25 for both s = +5 and s = −5, the optimum decision is

f(r|S = +5)
+5
≷
−5

f(r|S = −5) ⇐⇒ r
+5
≷
−5

0 .

That is, the same as in (a). The probability of error is

Pe = Pr(r < 0|S = +5) = Q(5/
√
2) ≈ 2.1 · 10−7

2–5 The optimal detector is the MAP detector, which chooses sm such that f(r|sm)pm is maximized.
This results in the decision rule

p0
1

√

2πσ2
0

exp

(

−
r2

2σ2
0

)
s1
≶
s0

p1
1

√

2πσ2
1

exp

(

−
(r −

√
E)2

2σ2
1

)

Note that σ2
1 = 2σ2

0 and p0 = p1 = 1/2 (since p0 = p1, the MAP and ML detectors are identical).
Taking the logarithm on both sides and reformulating the expression, the decision rule becomes

r2 + 2
√
E r − E − 2σ2

0 ln 2
s0
≶
s1

0

(r +
√
E)2

s0
≶
s1

2E + 2σ2
0 ln 2

The two roots are

γ1,2 =

[

−1±
√

2 + 2(σ2
0/E) ln 2

]√
E ,

and, hence, the receiver decides s0 if γ2 < r < γ1 and s1 otherwise. Below, (r +
√
E)2 and the

probability density functions (f(r|s0) and f(r|s1)) for the two cases are plotted together with the
decision regions (middle: linear scale, right: logarithmic scale).

10−25

10−20

10−15

10−10

10−5

10

s0 s0s0s1 s1 s1 s1s1 s1

γ1 γ1γ1 γ2γ2 γ2

f(r|s0)

f(r|s0)
f(r|s1)

f(r|s1)2E + 2σ2
0 ln 2

(r +
√
E)2

−
√
E
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2–6 (a) We have

p1 = 1− p, p2 =
1

8
+

p

8
, p3 =

7

8
−

p

8
, p4 = p

(b) The optimal strategy is

– Strategy 4 for 0 ≤ p ≤ 1/7
– Strategy 2 for 1/7 < p ≤ 7/9
– Strategy 1 for 7/9 < p ≤ 1

(c) Strategy 2

(d) Strategy 2

2–7 (a) Use the MAP rule (since the three alternatives, 900, 1000, and 1100, have different a priori
probabilities), i.e.,

max
i∈{900,1000,1100}

p(i)f(h|i)

where h is the estimated height. The pdf for the estimation error ε is given by

f(ε) =









ε+100
100·150 −100 ≤ ε < 0
200−ε
200·150 0 ≤ ε ≤ 200

0 otherwise

Solving for the decision boundaries yields

0.2
200− (h1 − 900)

200 · 150
= 0.6

(h1 − 1000) + 100

100 · 150
⇒ h1 = 928.57

0.6
200− (h2 − 1000)

200 · 150
= 0.2

200− (h2 − 1100)

200 · 150
⇒ h2 = 1150

(b) The error probabilities conditioned on the three different types of peaks are given by

pe|900 =

∫ 1100

h1

200− (h− 900)

200 · 150
dh =

∫ 200

28.57

200− ε

200 · 150
dε = 0.4898

pe|1000 =

∫ h1

900

h− 1000 + 100

100 · 150
dh+

∫ 1200

h2

200− (h− 1000)

200 · 150
dh = 0.0689

pe|1100 =

∫ 1100

1000

h− 1100 + 100

100 · 150
dh+

∫ h2

1100

200− (h− 1100)

200 · 150
dh = 0.625

This is illustrated below, where the shadowed area denotes pe|1000.

13001200900 1000 1100

928.6 1150

800

The total error probability is obtained as pe = pe|900p900 + pe|1000p1000 + pe|1100p1100 = 0.26.
Thus, B had better bring some extra candy to keep A in a good mood!

2–8 (a) The first subproblem is a standard formulation for QPSK systems. Gray coding, illustrated
in the leftmost figure below, should be used for the symbols in order to minimize the error
probability. The QPSK system can be viewed as two independent BPSK systems, one
operating on the I channel (the second bit) and one on the Q channel (the first bit). The
received vector can be anywhere in the two-dimensional plane. For the first bit, the two
decision boundaries are separated by the horizontal axis. Similarly, for the second bit, the
vertical axis separates the two regions. The bit error probability is given by

Pb = Pb,1 = Pb,2 = Q

(
d/2

σ

)

=
{

d =
√

4Eb

}

= Q

(√

Eb

σ2

)
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(b) In the second case, the noise components are fully correlated. Hence, the received vector
is restricted to lie along one of the three dotted lines in the rightmost figure below. Note
that for two of the symbols, errors can never occur! The other two symbol alternatives can
be mixed up due to noise, and in order to minimize the bit error probability only one bit
should differ between these two alternatives. For the first bit, it suffices to decide whether
the received signal lies along the middle diagonal or one of the outer ones. For the second
bit, the decision boundary (the dashed line in the figure) lies between the two symbols along
the middle diagonal. Equivalently, the system can be viewed as a BPSK system operating
in the same direction as the noise (the second bit) and one noise free tri-level PAM system
for the first bit. Be careful when calculating the noise variance along the diagonal line.
The noise contributions along the I and Q axes are identical, n, with variance σ2. Hence,
the noise contribution along the diagonal line is n

√
2 with variance 2σ2. This arrangement

results in the bit error probabilities

Pb,1 = 0

Pb,2 =
1

2
Q

(
d/2√
4σ2

)

=
{

d =
√

8Eb

}

=
1

2
Q

(√

Eb

σ2

)

Pb =
1

2
(Pb,1 + Pb,2) ,

where the factor 1/2 in the expression for Pb,2 is due to the fact that the middle diagonal
only occurs half the time (on average) and there cannot be an error in the second bit if any
of the two outer diagonals occur. With this (strange) channel, a better idea would be to use
a multilevel PAM scheme in the “noise-free” direction, which results in an error-free system!

0001

11 10

d

0011

01 10

d

Uncorrelated Correlated

2–9 The ML decision rule, max f(y1, y2|x) is optimal since the two transmitted symbols are equally
likely. Since the two noise components are independent,

f(y1, y2|x = −1) = f(y1|x = −1)f(y2|x = −1) =
1

4
e−(|y1+1|+|y1+1|)

f(y1, y2|x = +1) = f(y1|x = +1)f(y2|x = +1) =
1

4
e−(|y1−1|+|y1−1|) .

Assuming x = −1 is transmitted, the ML criterion results in

Choose −1 f(y1, y2|x = −1) > (y1, y2|x = +1)
Either choice f(y1, y2|x = −1) = (y1, y2|x = +1)
Choose +1 f(y1, y2|x = −1) < (y1, y2|x = +1)

which reduces to

Choose −1 |y1 + 1|+ |y2 + 1| < |y1 − 1|+ |y2 − 1|
Either choice |y1 + 1|+ |y2 + 1| = |y1 − 1|+ |y2 − 1|
Choose +1 |y1 + 1|+ |y2 + 1| > |y1 − 1|+ |y2 − 1|

After some simple manipulations, the above relations can be plotted as shown below. Similar
calculations are also done for x = +1.
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1y

2

1
-1

1

-1

Choose +1

Either choice

Either choice

Choose -1

y

2–10 It is easily recognized that the two signals s1 and s2 are orthogonal, and that they can be
represented in terms of the orthonormal basis functions φ1(t) = 1/(A

√
T )s1(t) and φ2(t) =

1/(A
√
T )s2(t).

(a) Letting r1 =
∫ T
0 R(t)φ1(t)dt and r2 =

∫ T
0 R(t)φ2(t)dt, we know that the detector that mini-

mizes the average error probability is defined by the MAP rule: “Choose s1 if f(r1, r2|s1)P (s1) >
f(r1, r2|s2)P (s2) otherwise choose s2.” It is straightforward to check that this rule is equiv-
alent to choosing s1 if

r1−r2 > −∆ ∆ =
N0/2

A
√
T

ln((1−p)/p) =
√

N0/210
−0.4 ln(0.85/0.15) since A

√
T =

√

N0/210
0.4

When s1 is transmitted, r1 is Gaussian(A
√
T ,N0/2) and r2 is Gaussian(0, N0/2), and vice

versa. Thus

P (e) = (1− p) Pr(n > dmin/2 +∆/
√
2) + pPr(n > dmin/2−∆/

√
2)

= (1− p)Q

(

A
√
T +∆√
N0

)

+ pQ

(

A
√
T −∆√
N0

)

= 0.85Q

(
1√
2
(100.4 + 10−0.4 ln(

0.85

0.15
)

)

+ 0.15Q

(
1√
2
(100.4 − 10−0.4 ln(

0.85

0.15
)

)

≈ 0.85Q(2.26) + 0.15Q(1.29) ≈ 0.024

(b) We get

P (e) = (1− p)Q

(

A
√
T√

N0

)

+ pQ

(

A
√
T√

N0

)

= Q

(
100.4√

2

)

≈ Q(1.78) ≈ 0.036

2–11 According to the text, Pr{ACK|NAK} = 10−4 and Pr{NAK|ACK} = 10−1. The received signal
has a Gaussian distribution around either 0 or

√
Eb, as illustrated to the left in the figure below.

NAK γACK 10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

100

Pr{NAK|ACK}

Pr
{A

C
K|

N
AK

}

Eb/N0 = 7 dB 

Eb/N0 = 10 dB 

Eb/N0 = 13 dB 

Eb/N0 = 10.97 dB 
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For the OOK system with threshold γ,

Pr{NAK|ACK} = Pr{
√

Eb + n < γ} = Q

(√
Eb − γ
√

N0/2

)

= 10−1

Pr{ACK|NAK} = Pr{n > γ} = Q

(

γ
√

N0/2

)

= 10−4

Solving the second equation yields γ ≥ 3.72
√

N0/2, which is the answer to the first question.
Inserting this into the first equation gives Eb/N0 = 10.97 dB as the minimum value. With this
value, the threshold can also be expressed as γ = 0.7437Eb. The type of curve plotted to the
right in the figure is usually denoted ROC (Receiver Operating Characteristics) and can be used
to study the trade-off between missing an ACK and making an incorrect decision on a NAK.

2–12 (a) An ML detector that neglects the correlation of the noise decodes the received vector ac-
cording to ŝ = argminsi∈{s1,s2} ‖r− si‖, i.e. the symbol closest to r is chosen. This means
that the two decision regions are separated by a line through origon that is perpendicular
to the line connecting s1 with s2. To obtain Pe1 we need to find the noise component along
the line connecting the two constellation points. From the figure below it is seen that this
component is n′ = n1 cos(θ) + n2 sin(θ).

θ

θ

n1

n2

n1 cos(θ)

n2 sin(θ)

The mean and the variance of n′ is then found as

E[n′] = E[n1] cos(θ) + E[n2] sin(θ) = 0

σ2
n′ = E[n′2] = E[n2

1] cos
2(θ) + 2E[n1n2] cos(θ) sin(θ) + E[n2

2] sin
2(θ)

= 0.1 cos2(θ) + 0.1 cos(θ) sin(θ) + 0.1 sin2(θ)

= 0.1 + 0.05 sin(2θ).

Due to the symmetri of the problem and since n′ is Gaussian we can find the symbol error
probability as

Pe1 = Pr[e|s1]Pr[s1] + Pr[e|s2]Pr[s2] = Pr[e|s1] = Pr[n′ > 1]

= Pr[n′/σn′ > 1/σn′ ] = Q (1/σn′) = Q
(

1/
√

0.1 + 0.05 sin(2θ)
)

.

Since Q(x) is a decreasing function, we see that the probability of a symbol error is minimized
when sin(2θ) = −1. Hence, the optimum values of θ are −45◦ and 135◦, respectively. By
studying the contour curves of p(r|s), i.e. the probability density function (pdf) of the
received vector conditioned on the constellation point (which is the same as the noise pdf
centered around the respective constellation point), one can easily explain this result. In the
figure below it is seen that at the optimum angles, the line connecting the two constellation
points is aligned with the shortest axes of the contour ellipses, i.e the noise component
affecting the detector is minimized.
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−45◦

135◦

r1

r2

Smallest principal axis

Largest principal axis

(b) The optimal detector in this case is an ML detector where the correlation is taken into
account. Let

p(r|si) =
exp(−0.5(r− si)TR−1(r− si))

π det(R)

denote the PDF of r conditioned on the transmitted symbol. Maximum likelihood detection
amounts to maximizing this function, i.e.

ŝ = arg max
si∈{s1,s2}

p(r|si) = arg min
si∈{s1,s2}

(r− si)
TR−1(r− si) = arg min

si∈{s1,s2}
‖r− si‖2R−1 ,

where the distance norm, ‖x‖R−1 !
√
xTR−1x, is now weighted using the covariance matrix

R =

[

E[n2
1] E[n1n2]

E[n2n1] E[n2
2]

]

=

[

0.1 0.05
0.05 0.1

]

.

Using the above expression for the distance metric, the conditional probability of error is

Pr[e|s1] = Pr[‖r− s1‖2R−1 > ‖r− s2‖2R−1 ] = Pr[‖n‖2
R−1 > ‖n− (s2 − s1)‖2R−1 ]

= Pr[nTR−1n > nTR−1n− nTR−1(s2 − s1)− (s2 − s1)
TR−1n+ (s2 − s1)

TR−1(s2 − s1)]

= Pr[2(s2 − s1)
TR−1n > (s2 − s1)

TR−1(s2 − s1)] .

The mean and variance of 2(s2 − s1)TR−1n are given by

E[2(s2 − s1)
TR−1n] = 0,

E[(2(s2 − s1)
TR−1n)2] = E[4(s2 − s1)

TR−1nnTR−1(s2 − s1)]

= 4(s2 − s1)
TR−1(s2 − s1) = 4‖s2 − s1‖2R−1 ,

which means that

Pr[e|s1] = Q

(
‖s2 − s1‖R−1

2

)

.

Because the problem is symmetric, the conditional probabilities are equal and hence after
inserting the numerical values

Pe2 = Q

(
‖s2 − s1‖R−1

2

)

= Q

(

20

√

0.1− 0.05 sin(2θ)

3

)

.

To see when the performance of the suboptimal detector equals the performance of the
optimal detector, we equate the corresponding arguments of the Q-function, giving the
equation

1/
√

0.1 + 0.05 sin(2θ) = 20

√

0.1− 0.05 sin(2θ)

3
.
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After some straightforward manipulations, this equation can be written as

sin2(2θ) = 1 .

Solving for θ finally yields θ = −135◦, −45◦, 45◦, 135◦. The result is again explained in
the figure, which illustrates the situation in the case of θ = 45◦, 135◦. We see that the line
connecting the two constellation point is parallel with one of the principal axes of the contour
ellipse. This means that the projection of the received signal onto the other principal axis
can be discarded since it only contains noise (and hence no signal part) which is statistically
independent of the noise along the connecting line. As a result, we get a one-dimensional
problem involving only one noise component. Thus, there is no correlation to take into
account and both detectors are thus optimal.

2–13 (a) The optimal bit-detector for the 0th bit is found using the MAP decision rule

b̂0 = argmax
b0

p(b0|r)

= {Bayes theorem}

= argmax
b0

p(r|b0)p(b0)
p(r)

= {p(b0) = 1/2 and p(r) are constant with respect to (w.r.t.) b0}
= argmax

b0
p(r|b0)

= argmax
b0

p(r|b0, b1 = 0)p(b1 = 0|b0) + p(r|b0, b1 = 1)p(b1 = 1|b0)

= {b0 and b1 are independent so p(b1|b0) = p(b1) = 1/2, which is constant w.r.t. b0}
= argmax

b0
p(r|b0, b1 = 0) + p(r|b0, b1 = 1)

= argmax
b0

p(r|s(b0, 0)) + p(r|s(b0, 1))

= {r|s(b0, b1) is a Gaussian distributed vector with mean s(b0, b1) and covariance matrix σ2I}

= argmax
b0

exp(−‖r − s(b0, 0)‖2/(2σ2))
√
2πσ2

2 +
exp(−‖r − s(b0, 1)‖2/(2σ2))

√
2πσ2

2

= {
√
2πσ2

2
is constant w.r.t. b0}

= argmax
b0

exp(−‖r − s(b0, 0)‖2/(2σ2)) + exp(−‖r − s(b0, 1)‖2/(2σ2)) .

The optimal bit detector for the 1st bit follows in a similar manner and is given by

b̂1 = argmax
b1

exp(−‖r − s(0, b1)‖2/(2σ2)) + exp(−‖r − s(1, b1)‖2/(2σ2)) .

(b) Consider the detector derived in (a) for the 0th bit. According to the hint we may replace

exp(−‖r − s(b0, 0)‖2/(2σ2)) + exp(−‖r − s(b0, 1)‖2/(2σ2))

with
max{exp(−‖r − s(b0, 0)‖2/(2σ2)), exp(−‖r − s(b0, 1)‖2/(2σ2))}

Hence, when σ2 → 0, we may study the equivalent detector

b̂0 = argmax
b0

max{exp(−‖r − s(b0, 0)‖2/(2σ2)), exp(−‖r − s(b0, 1)‖2/(2σ2))}

= argmax
b0

max
b1

b0fixed

exp(−‖r − s(b0, b1)‖2/(2σ2))

But the two max operators are equivalent to max(b0,b1), which means that the optimal

solution (b̃0, b̃1) to
max
(b0,b1)

exp(−‖r − s(b0, b1)‖2/(2σ2))
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also maximizes the criterion function for b̂0. Hence, b̂0 = b̃0. The above development can be
repeated for the other bit-detector resulting in b̂1 = b̃1. To conclude the proof it remains to
be shown that (b̃0, b̃1) is the output of the optimal symbol detection approach. Since (b0, b1)
determines s(b0, b1), we note that we get the optimal symbol detector

s̃ = arg max
s

s∈{s(b0,b1)}
p(s|r)

= arg max
s

s∈{s(b0,b1)}
exp(−‖r − s(b0, b1)‖2/(2σ2))

with the optimal solution given by s̃ = s(b̃0, b̃1). It follows that (b̃0, b̃1) is the output from
the optimal symbol detection approach and hence the proof is complete.

2–14 (a) The Maximum A Posteriori (MAP) decision rule minimizes the symbol error probability.
Since the input symbols are equiprobable, the MAP decision rule is identical to the Maximum
Likelihood (ML) decision rule, which is

x̂n(yn) = arg max
i∈{0,1}

fyn(y|xn = i)

where fyn(y|xn) is the conditional pdf of the decision variable yn:

fyn(y|xn) =











1√
2πσ2

0

e
− y2

2σ2
0 xn = 0

1√
2πσ2

1

e
− (y−1)2

2σ2
1 xn = 1

Hence, the decision rule can be written as

fyn(y|xn = 1)

fyn(y|xn = 0)
=

1√
2πσ2

1

e
− (y−1)2

2σ2
1

1√
2πσ2

0

e
− y2

2σ2
0

1
≷
0
1

Simplifying and taking the natural logarithm of the inequalities gives

−
(y − 1)2

2σ2
1

+
y2

2σ2
0

1
≷
0
ln
σ1
σ0

which can be written as

ay2 + by − c
1
≷
0
0

where a = 1
σ2
0
− 1

σ2
1
> 0, b = 2

σ2
1
> 0 and c = 1

σ2
1
+2 ln σ1

σ0
> 0. The equation ay2 + by− c = 0

has the two solutions

y = −
b

2a
±

√
b2 + 4ac

2a
The decision boundary in this case can not be negative, so the optimal decision boundary is

ỹ =
1

2a
(
√

b2 + 4ac− b)

To summarize, the ML decision rule is

yn
1
≷
0
ỹ

(b) The bit error probability is

Pb = Pr(x̂n = 1|xn = 0)Pr(xn = 0) + Pr(x̂n = 0|xn = 1)Pr(xn = 1)

= 0.5

∫ ỹ

−∞
fyn(y|xn = 1)dy + 0.5

∫ ∞

ỹ
fyn(y|xn = 0)dy

= 0.5

(

Q

(
1− ỹ

σ1

)

+Q

(
ỹ

σ0

))
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(c) The decision boundary ỹ → 0 as σ2
0 → 0, since the critical term

√
ac
a = σ0

√

2 ln(1/σ0) → 0
as σ2

0 → 0.

Furthermore, note that ỹ
σ0

→
√

2 ln 1/σ0 → ∞ as σ2
0 → 0. Since limx→∞ Q(x) = 0,

lim
σ2
0→0

Pb = 0.5Q

(
1

σ1

)

. (3.7)

2–15 (a) The filter is h0(t) = s0(4τ − t), and the output of the filter when the input is the signal s0(t)
is shown below.

t

τ

Es

Es/2

(b) The filter is h1(t) = s1(7τ − t), and the output of the filter when the input is the signal s1(t)
is illustrated below.

tτ

Es

−Es/7

(c) The output of h1(t) when the input is the signal s0(t) is shown below.

Es/
√
14

−2Es/
√
14

tτ

2–16 (a) The signal y(t) is shown below.

tT 2T

r(t) = s1(t)

r(t) = s0(t)

y(t)

(b) The error probability does not depend on which signal was transmitted. Assume s1(t) was
transmitted. Then, for |∆| ≤ T , we see that

y =
√
E(1−

|∆|
T

)

in the absence of noise. Hence, with noise the symbol error probability is

Pe = Q

(

(1−
|∆|
T

)

√

2E

N0

)
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2–17 The received signal is r(t) = si(t) + n(t), where n(t) is AWGN with noise spectral density N0/2.
The signal fed to the detector is

z(T ) =







−KABT s1(t) was sent
0 s2(t) was sent
KABT s3(t) was sent






+ n n = KB

∫ T

0
n(t)dt

where n is Gaussian with mean value 0 and variance K2B2TN0/2. The entity γ is chosen under
the assumption K = 1. Nearest neighbor detection is optimal. This gives (with K = 1) the
optimal γ according to γ = ABT/2. We get

Pr (error|s1(t)) = Pr (−KABT + n > −γ) = Pr

(

n > −
ABT

2
+KABT

)

= Q





√

2A2T

N0

(

1−
1

2K

)




Pr (error|s2(t)) = Pr (|n| > γ) = 2Pr

(

n >
ABT

2

)

= 2Q





√

2A2T

N0

1

2K





Pr (error|s3(t)) = Pr (error|s1(t))

and, finally

Pr (error) =
1

3
Pr (error|s1(t)) +

1

3
Pr (error|s3(t)) +

1

3
Pr (error|s3(t))

=
2

3
Q





√

2A2T

N0

(

1−
1

2K

)


+
2

3
Q





√

2A2T

N0

1

2K





2–18 Let r be the sampled output from the matched filter. The decision variable r is Gaussian with
variance N0/2 and mean ±

√
E. Decisions are based on comparing r with a threshold ∆. That

is,

r
no fire
≷
fire

∆

The miss probability is

Pr(r > ∆|fire) = Q

(√
E +∆
√

N0/2

)

= 10−7 ⇒ ∆ ≈ 5.2
√

N0/2−
√
E

The false alarm probability hence is

Pr(r < ∆|no fire) = Q

(√
E −∆
√

N0/2

)

≈ Q(2.8) ≈ 3 · 10−3

2–19 We want to find the statistics of the decision variable after the integration.

First, let’s find Ψ(t), which is a unit-energy scaled gT (t). The energy of gT (t) is

Eg =

∫ T

0
g2T (t)dt =

∫ T

0
A2dt = A2T

which gives the basis function

Ψ(t) =
1
√

Eg
gT (t) =

{ 1√
T

0 ≤ t ≤ T

0 otherwise
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and the corrupted basis function is Ψ̄(t) = bΨ(t). The decision variable out from the integrator
is

r̄ =

∫ T

0
(sm(t) + n(t))Ψ̄(t)dt = b

∫ T

0
(sm(t) + n(t))Ψ(t)dt =

b√
T

∫ T

0
sm(t)gT (t)dt+

b√
T

∫ T

0
n(t)dt = s̄m + n̄

where

s̄m =










3
2bA

√
T m = 1

1
2bA

√
T m = 2

− 1
2bA

√
T m = 3

− 3
2bA

√
T m = 4

If the correct basis function would have been used, b would have been 1. n̄ is the zero-mean
Gaussian noise term, with variance

σ2
n̄ = E[n̄2] = E

[

b2

T

∫ T

0

∫ T

0
n(t)n(τ)dtdτ

]

=
b2

T

∫ T

0

∫ T

0

N0

2
δ(t− τ)dtdτ =

b2N0

2

The detector uses minimum distance detection, designed for the correct Ψ(t), so the decision re-
gions for r̄ are [A

√
T ,∞], [0, A

√
T ), [−A

√
T , 0) and [−∞,−A

√
T ). The symbol-error probability

can now be computed as the probability that the noise brings the symbols into the wrong decision
regions. Due to the complete symmetry of the problem, it’s sufficient to analyze s1 and s2.

Pr(symbol-error) = 2

[

Pr(s1 transmitted)Pr(n̄ < −(
3

2
b− 1)A

√
T )+

Pr(s2 transmitted)

(

Pr(n̄ ≥ (1 −
b

2
)A

√
T ) + Pr(n̄ < −

b

2
A
√
T )

)]

Since n̄ is Gaussian, this can be written in terms of Q-functions.

Pr(symbol-error) =
1

2

[

Q

(

(32b− 1)A
√
2T

b
√
N0

)

+Q

(

A
√
2T

2
√
N0

)

+Q

(

(1 − b
2 )A

√
2T

b
√
N0

)]

2–20

(a) First, find the basis waveforms. The signals s0(t) and s1(t) are already orthogonal, so the
orthonormal basis waveforms Ψ0(t) and Ψ1(t) can be obtained by normalizing s0(t) and
s1(t).

Ψ0(t) =
√

2
T for 0 ≤ t <

T

2

Ψ1(t) =
√

2
T for

T

2
≤ t < T

Hence,

s0(t) = A

√

T

2
Ψ0(t) = BΨ0(t)

s1(t) = A

√

T

2
Ψ1(t) = BΨ1(t)

The minimum-symbol-error receiver is shown below.
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y(t)

Ψ0(t)

Ψ1(t)

∫ T

0
dt

∫ T

0
dt

r0

r1

D
et
ec
to
r

Î

The signal alternatives can be written as vectors in the signal space,

s0 =

[

B
0

]

s1 =

[

0
B

]

.

The decision variable vector, if I = 0, is

r =

[

r0
r1

]

=

[

B + w0

w1

]

If I = 1, the decision variable vector is

r =

[

r0
r1

]

=

[

w0

B + w1

]

where w0 and w1 are independent zero-mean Gaussian random variables with variance N0/2.
Since the symbol alternatives are not equally probable, the ML decision rule doesn’t minimize
the symbol error probability. Instead the general MAP criterion has to be used.

Î = argmax
I

fr(r|I) Pr(I)

Since r0 and r1 are independent, the joint pdf can be split into the product of the marginal
distributions:

fr(r|I) = fr0(r0|I)fr1(r1|I)
The marginal distributions are given by

fr0(r0|0) =
1√
πN0

e−(r0−B)2/N0

fr1(r1|0) =
1√
πN0

e−r21/N0

fr0(r0|1) =
1√
πN0

e−r20/N0

fr1(r1|1) =
1√
πN0

e−(r1−B)2/N0

Hence, the joint distributions are given by

fr(r|0) =
1

πN0
e−((r0−B)2+r21)/N0

fr(r|1) =
1

πN0
e−((r1−B)2+r20)/N0

The MAP decision rule can now be written as

pe−((r0−B)2+r21)/N0
0
≷
1

(1− p)e−((r1−B)2+r20)/N0

⇒ ln p−
(r0 −B)2

N0
−

r21
N0

0
≷
1

ln(1− p)−
(r1 −B)2

N0
−

r20
N0

⇒ r0 − r1
0
≷
1

N0

2B
ln

1− p

p
=

N0

A
√
2T

ln
1− p

p
= −C
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The decision regions are illustrated below.

C

Ψ0

Ψ1

s0

s1

Î = 0

Î = 1

(b)

y(t) = s1(t) ⇒ r =

[

0
B

]

The range of p’s for which y(t) = s1(t) ⇒ Î = 0 can be obtained from the decision rule
derived in (a).

−B >
N0

2B
ln

1− p

p

⇒
1− p

p
< e−2B2/N0

⇒ p >
1

1 + e−2B2/N0
=

1

1 + e−A2T/N0

2–21 The received signal is
r(t) = s(t) + w(t)

where s(t) is s1(t) or s2(t) and w(t) is AWGN. The decision variable is

yT =

∫ ∞

0
h(t)r(T − t)dt = s+ w

where

s =

∫ ∞

0
e−t/T s(T − t)dt =

{

0 when s(t) = s1(t)√
ET (1− e−1) when s(t) = s2(t)

and where

w =

∫ ∞

0
h(t)w(T − t)dt

is zero-mean Gaussian with variance

N0

2

∫ ∞

0
e−2t/Tdt =

TN0

4

(a) We get

Pe =
1

2
Pr(yT > b|s1(t)) +

1

2
Pr(yT < b|s2(t)) =

1

2
Pr (w > b) +

1

2
Pr
(√

ET (1− e−1) + w < b
)

=
1

2
Q





√

4b2

TN0



+
1

2
Q





√

4E

N0
(1− e−1)−

√

4b2

TN0





(b) Pe is minimized when Pr(yT > b|s1(t)) = Pr(yT < b|s2(t)), that is when
√

4b2

TN0
=

√

4E

N0
(1− e−1)−

√

4b2

TN0
⇒ b =

√

ET

4
(1− e−1)
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2–22 The Walsh modulation in the problem is plain 64-ary orthogonal modulation with the 64 basis
functions consisting of all normalized length 64 Walsh sequences. The bit error probability for
orthogonal modulation is plotted in the textbook and for Eb/N0 = 4 dB, it is found that Pe, bit ≈
10−3. We get Pe, block ≈ 2Pe, bit ≈ 2 · 10−3. It is of course also possible to numerically compute
the error probabilities, but it probably requires a computer.

2–23 Translation and rotation does not influence the probability of error, so the constellation in the
figure is equivalent to QPSK with symbol energy E = a2/2, and the exact probability of error is
hence

Pe = 2Q

(√

E

N0

)

−

[

Q

(√

E

N0

)]2

= 2Q

(
a√
2N0

)

−
[

Q

(
a√
2N0

)]2

2–24 The decision rule “decide closest alternative” is optimal, since equiprobable symbols and an
AWGN channel is assumed. After matched filtering the two noise components, n1 and n2, are
independent and each have variance σ2 = N0/2. The error probabilities for bits b1 and b2,
conditioning on b1b2 = 01 transmitted, are denoted p1 and p2, respectively. Due to the symmetry
in the problem, p1 and p2 are identical conditioning on any of the four symbols. The average bit
error probability is equal to p = (p1 + p2)/2.

For the left constellation:

p1 =Pr{n1 < d/2, n2 > d/2}+ Pr{n1 > d/2, n2 < d/2}
=Pr{n1 < d/2}Pr{n2 > d/2}+ Pr{n1 > d/2}Pr{n2 < d/2}

p2 =Pr{n1 > d/2}

p =
1

2

[

2Q

(
d/2

σ

)[

1−Q

(
d/2

σ

)]

+Q

(
d/2

σ

)]

=
3

2
Q

(
d/2

σ

)

−Q2

(
d/2

σ

)

For the right constellation:

p1 =Pr{n2 > d/2}
p2 =Pr{n1 > d/2}

p =
1

2

[

Q

(
d/2

σ

)

+Q

(
d/2

σ

)]

= Q

(
d/2

σ

)

2–25 It is natural to choose a such that the distance between the signals ‖(1, 1)−(a, a)‖ = d1 =
√
2(1−a)

is equal to the distance between ‖(a, a) − (a,−a)‖ = d4 = 2a. Thus, a = 1/(1 +
√
2). In the

figure, the two types of decision regions are displayed. Note that the decision boundary between
the signals (1, 1) and (a,−a) (with distance d3) does not effect the shape of the decision regions.

d1

d2

d3

d4
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The union bound gives

(M − 1)Q

(
d1
2σn

)

= 7Q

(
1

(1 +
√
2)σn

)

≈ 0.0308 > 10−2

Thus, we must make more accurate approximations. Condition on the signal (1, 1) being sent.

Pr(error|(1, 1)) ≤ Q

(
d1
2σn

)

+ 2Q

(
d2
2σn

)

= Q

(
1

(1 +
√
2)σn

)

+ 2Q

(
1

σn

)

Condition on the signal (a, a) being sent.

Pr(error|(a, a)) ≤ Q

(
d1
2σn

)

+ 2Q

(
d4
2σn

)

= 3Q

(
1

(1 +
√
2)σn

)

An upper bound on the symbol error probability is then

Pe ≤
1

2
(Pr(error|(1, 1)) + Pr(error|(a, a))) = 2Q

(
1

(1 +
√
2)σn

)

+Q

(
1

σn

)

≈ 0.0088 < 10−2

2–26 The trick in the problem is to observe that the basis functions used in the receiver, illustrated
below, are non-orthogonal.

3

01

2

Ψ1(t)

Ψ2(t)

Basis functions used in the receiver (solid) and in the transmitter (dashed). The grey area is the
region where an incorrect decision is made, given that the upper right symbol is transmitted.

Hence, the corresponding noise components n1 and n2 in y1 and y2 are not independent, which
must be accounted for when forming the decision rule. If the non-orthogonality is taken into
account, there is no loss in performance compared to the case with orthogonal basis functions.

The statistical properties for n1 and n2 can be derived as

E{n1n1} =E

{
∫ T

0

∫ T

0
n(t)n(t′)Ψ1(t)Ψ1(t

′)

}

=E

{
∫ T

0

∫ T

0
n(t)n(t′)

√

2

T
cos(2πft)

√

2

T
cos(2πft)

}

=
N0

2
= σ2

1

E{n2n2} =E

{
∫ T

0

∫ T

0
n(t)n(t′)Ψ2(t)Ψ2(t

′)

}

=E

{
∫ T

0

∫ T

0
n(t)n(t′)

√

2

T
cos(2πft+ π/4)

√

2

T
cos(2πft+ π/4)

}

=
N0

2
= σ2

2

E{n1n2} =E

{
∫ T

0

∫ T

0
n(t)n(t′)Ψ1(t)Ψ2(t

′)

}

=E

{
∫ T

0

∫ T

0
n(t)n(t′)

√

2

T
cos(2πft)

√

2

T
cos(2πft+ π/4)

}

=
N0

2
cos(π/4) = ρσ1σ2
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Starting from the MAP criterion, the decision rule is easily obtained as

i = argmin
i
(y − si)

TC−1(y − si) .

where

y =

[

y1
y2

]

si =

[
∫ T
0 si(t)Ψ1(t) dt
∫ T
0 si(t)Ψ2(t) dt

]

C =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

.

Conditioning on the upper right signal alternative (s0) being transmitted, an error occurs when-
ever the received signal is somewhere in the grey area in the figure. Note that this grey area is
more conveniently expressed by using an orthonormal basis. This is possible since an ML receiver
has the same performance regardless of the basis functions chosen as long as they span the same
plane and the decision rule is designed accordingly. Thus, the error probability conditioned on
s0 can be expressed as

Pe|s0 = 1− Pr{correct|s0} = 1− Pr{n′
1 > −d/2 and n′

2 > −d/2} =

1−
∫ ∞

−d/2

∫ ∞

−d/2

1

2πσ1σ2
√

1− ρ2
exp

(

−
[
x2
1

σ2
1

+
x2
2

σ2
2

])

dx1dx2 = 1−
(

1−Q

(
d/2

σ

))2

,

where d/2 =
√

Es/2 and σ = σ1 = σ2. A similar argument can be made for the remaining three
signal alternatives, resulting in the final symbol error probability being Pe = Pe|s0 .

2–27 Let’s start with the distortion due to quantization noise. Since the quantizer has many levels and
fXn(x) is “nice”, the granular distortion can be approximated as Dc = ∆2

12 . To calculate ∆, we
first need to find the range of the quantizer, (−V, V ), which is equal to the range of Xn. Since
the pdf of the input variable is

fXn(x) =

{
1
2V when − V ≤ x ≤ V
0 otherwise

the variance of Xn is

E[X2
n] =

∫ ∞

−∞
x2fXn(x)dx =

∫ V

−V
x2 1

2V
dx =

V 2

3

Since E[X2
n] = 1, V =

√
3. Thus, the quantizer step-size is ∆ = 2V/256 =

√
3/128, which finally

gives Dc = 1.53 · 10−5.

The distortion when a transmission error occurs is

De = E[(Xn − X̂n)
2] = E[X2

n] + E[X̂2
n] = 1 + 1 = 2

since Xn and X̂n are independent.

What is then the probability that all eight bits are detected correctly, Pa? Let’s assume that the
symbol error probability is Ps. The probability that one symbol is correctly received is 1 − Ps.
Then, the probability that all four symbols (that contain the eight bits) are correctly detected is
Pa = (1− Ps)4.

The communication system uses the four signals s0(t), . . . , s3(t) to transmit symbols. It can easily
be seen that two orthonormal basis functions are:

1 1
2

2t t

Ψ0(t) Ψ1(t)
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The four signals can then be expressed as:

s0(t) = Ψ0(t)−Ψ1(t)

s1(t) = −Ψ0(t) +Ψ1(t)

s2(t) = Ψ0(t) +Ψ1(t)

s3(t) = −Ψ0(t)−Ψ1(t)

The constellation is QPSK! For QPSK, the symbol error probability is known as

Ps = 2Q

(√

2Eb

N0

)

−

(

Q

(√

2Eb

N0

))2

Since Es/N0 = 16 and Es = 2Eb,

Ps = 2Q

(√

Es

N0

)

−

(

Q

(√

Es

N0

))2

= 2Q(4)− (Q(4))2 ≈ 6.33 · 10−5

Using, Pa = (1− Ps)4, the expected total distortion is

D = DcPa +De(1 − Pa) ≈ 0.15 · 10−4 + 5.07 · 10−4 ≈ 5.22 · 10−4

2–28 Enumerate the signal points “from below” as 0, 1, . . . 7, let P (i → j) = Pr(j received given i
transmitted), and let

q(x) = Q

(

xA

√

2

N0

)

(a) Assuming the NL: Considering first b1 we see that Pr(b̂1 += b1|b1 = 0) = Pr(b̂1 += b1|b1 = 1),
and

Pr(b̂1 += 0|b1 = 0)

=
1

4

(

Pr(b̂1 += 0|point 0 sent) + Pr(b̂1 += 0|point 1 sent) + Pr(b̂1 += 0|point 2 sent) + Pr(b̂1 += 0|point 3 sent)

where

Pr(b̂1 += 0|point 0 sent) = P (0 → 4) + P (0 → 5) + P (0 → 6) + P (0 → 7) = q(7)

Pr(b̂1 += 0|point 1 sent) = P (1 → 4) + P (1 → 5) + P (1 → 6) + P (1 → 7) = q(5)

Pr(b̂1 += 0|point 2 sent) = P (2 → 4) + P (2 → 5) + P (2 → 6) + P (2 → 7) = q(3)

Pr(b̂1 += 0|point 3 sent) = P (3 → 4) + P (3 → 5) + P (3 → 6) + P (3 → 7) = q(1)

Hence

Pr(b̂1 += b1) =
1

4

(

q(1) + q(3) + q(5) + q(7)
)

Studying b2 we see that Pr(b̂2 += b2|b2 = 0) = Pr(b̂2 += b2|b2 = 1), and

Pr(b̂2 += 0|b2 = 0)

=
1

4

(

Pr(b̂2 += 0|point 0 sent) + Pr(b̂2 += 0|point 1 sent) + Pr(b̂2 += 0|point 4 sent) Pr(b̂2 += 0|point 5 sent)
)

where

Pr(b̂2 += 0|point 0 sent) = P (0 → 2) + P (0 → 3) + P (0 → 6) + P (0 → 7) = q(3)− q(7) + q(11)

Pr(b̂2 += 0|point 1 sent) = P (1 → 2) + P (1 → 3) + P (1 → 6) + P (1 → 7) = q(1)− q(5) + q(9)

Pr(b̂2 += 0|point 4 sent) = P (4 → 2) + P (4 → 3) + P (4 → 6) + P (4 → 7) = q(1)− q(5) + q(3)

Pr(b̂2 += 0|point 5 sent) = P (5 → 2) + P (5 → 3) + P (5 → 6) + P (5 → 7) = q(3)− q(7) + q(1)
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Hence

Pr(b̂2 += b2) =
1

4

(

3q(1) + 3q(3)− 2q(5)− 2q(7) + q(9) + q(11)
)

Now, for b3 we again have the symmetry Pr(b̂3 += b3|b3 = 0) = Pr(b̂3 += b3|b3 = 1), and we
see that

Pr(b̂3 += 0|b3 = 0)

=
1

4

(

Pr(b̂3 += 0|point 0 sent) + Pr(b̂3 += 0|point 2 sent) + Pr(b̂3 += 0|point 4 sent) Pr(b̂3 += 0|point 6 sent)
)

where

Pr(b̂3 += 0|point 0 sent) = P (0 → 1) + P (0 → 3) + P (0 → 5) + P (0 → 7)

= q(1)− q(3) + q(5)− q(7) + q(9)− q(11) + q(13)

Pr(b̂3 += 0|point 2 sent) = P (2 → 1) + P (2 → 3) + P (2 → 5) + P (2 → 7)

= q(1)− q(3) + q(1)− q(3) + q(5)− q(7) + q(9)

Pr(b̂3 += 0|point 4 sent) = P (4 → 1) + P (4 → 3) + P (4 → 5) + P (4 → 7)

= q(3)− q(5) + q(1)− q(3) + q(1)− q(3) + q(5)

Pr(b̂3 += 0|point 6 sent) = P (6 → 1) + P (6 → 3) + P (6 → 5) + P (6 → 7)

= q(9)− q(11) + q(5)− q(7) + q(1)− q(3) + q(1)

so

Pr(b̂3 += b3) =
1

4
(7q(1)− 5q(3) + 2q(5)− 2q(7) + 3q(9)− 2q(11) + q(13))

Finally, for the NL, we get

Pb =
1

3
(Pb,1 + Pb,2 + Pb,3) =

1

12
(11q(1)− q(3) + q(5)− 3q(7) + 4q(9)− q(11) + q(13))

As A2/N0 → ∞ the q(1) term dominates, so

lim
A2/N0→∞

Pb = lim
A2/N0→∞

11

12
Q



x

√

2A2

N0





(b) Assuming the GL: Obviously Pb, 1 is the same as for the NL. For Pb,2 we get

Pb,2 =
1

2

(

Pr(b̂2 += 0|b2 = 0) + Pr(b̂2 += 0|b2 = 1)
)

where now Pr(b̂2 += 0|b2 = 0) += Pr(b̂2 += 0|b2 = 1). In a very similar manner as above for
the NL we get

Pr(b̂2 += 0|b2 = 0) =
1

2
(q(1) + q(3)− q(9)− q(11))

and

Pr(b̂2 += 0|b2 = 1) =
1

2
(q(1) + q(3) + q(5) + q(7))

that is

Pb,2 =
1

4
(2q(1) + 2q(3) + q(5) + q(7)− q(9)− q(11))

For the GL and b3 we get

Pr(b̂3 += 0|b3 = 0) = q(1)− q(5) +
1

2
(q(9)− q(13) + q(3)− q(7))
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and

Pr(b̂3 += 0|b3 = 1) = q(1) + q(3) +
1

2
(q(9) + q(11)− q(7)− q(5))

so

Pb,3 = q(1) +
3

4
(q(3)− q(5)) +

1

2
(q(9)− q(7)) +

1

4
(q(11)− q(13))

and finally

Pb =
1

12

(

7q(1) + 6q(3)− q(5) + q(9)− q(13)
)

Also, as A2/N0 → ∞ we get

lim
A2/N0→∞

Pb = lim
A2/N0→∞

7

12
Q



x

√

2A2

N0





(c) That is, the GL is asymptotically better than the NL.

2–29 The constellation is 4-PAM (baseband). The basis waveform is

ψ(t) =

√

1

T
, 0 ≤ t < T

with ψ(t) = 0 for t < 0 and t ≥ T , and the signal space coordinates for the four different
alternatives are

s0 = 3A
√
T , s1 = A

√
T , s2 = −A

√
T , s3 = −3A

√
T

The received signal is r(t) = sI ψ(t) + w(t) where w(t) is AWGN with psd N0/2, and sI is the
coordinate of the transmitted signal (I is the transmitted data variable corresponding to the two
bits). The probabilities of the different signal alternatives are

p0 = Pr(sI = s0) = Pr(b1 = 0, b0 = 0) = 4/9, p1 = Pr(sI = s1) = Pr(b1 = 0, b0 = 1) = 2/9

p2 = Pr(sI = s2) = Pr(b1 = 1, b0 = 1) = 1/9, p3 = Pr(sI = s3) = Pr(b1 = 1, b0 = 0) = 2/9

(a) Optimal demodulation is based on

r =

∫ T

0
r(t)ψ(t)dt = sI + w

where w is zero-mean Gaussian with variance N0/2. Optimal detection is defined by the
MAP rule,

Î = arg max
i∈{0,1,2,3}

f(r|si)pi = arg max
i∈{0,1,2,3}

pi exp

(

−
1

N0
(r − si)

2

)

The rule indirectly specifies the decision regions

Ωi = {r : Î = i}

with
Ω3 = (−∞, a], Ω2 = (a, b], Ω1 = (b, c], Ω0 = (c,∞)

where the decision boundaries can be computed as

a =
N0 ln(p3/p2) + (s22 − s23)

2(s2 − s3)
=

N0

4A
√
T

ln 2− 2A
√
T

b =
N0 ln(p2/p1) + (s21 − s22)

2(s1 − s2)
=

N0

4A
√
T

ln
1

2
= −a− 2A

√
T

c =
N0 ln(p1/p0) + (s20 − s21)

2(s0 − s1)
=

N0

4A
√
T

ln
1

2
+ 2A

√
T = b+ 2A

√
T
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(b) The average error probability is

Pe =
3
∑

i=0

Pr(Î += i|I = i)pi

where the conditional error probabilities are obtained as

Pr(Î += 3|s3) = Pr(s3 + w > a) = Pr(w > A
√
T + d) = Q

(

A
√
T + d

√

N0/2

)

Pr(Î += 2|s2) = Pr(s2 + w < a) + Pr(s2 + w > b) = 2Pr(w > A
√
T − d) = 2Q

(

A
√
T − d

√

N0/2

)

Pr(Î += 1|s1) = Pr(s1 + w < b) + Pr(s1 + w > c) = Pr(w > A
√
T + d) + Pr(w > A

√
T − d)

= Q

(

A
√
T + d

√

N0/2

)

+Q

(

A
√
T − d

√

N0/2

)

Pr(Î += 0|s0) = Pr(Î += 3|s3)

with

d =
N0

4A
√
T

ln 2

Hence we get

Pe =
4

9

(

2Q

(

A
√
T + d

√

N0/2

)

+Q

(

A
√
T − d

√

N0/2

))

(c) Since N0 - A2T , “large” errors can neglected, and we get

Pr(b̂1 += b1) = Pr(b̂1 += b1|s0)p0 + Pr(b̂1 += b1|s1)p1 + Pr(b̂1 += b1|s2)p2 + Pr(b̂1 += b1|s3)p3

≈ 0 +
2

9
Q

(

A
√
T + d

√

N0/2

)

+
1

9
Q

(

A
√
T − d

√

N0/2

)

+ 0

Pr(b̂0 += b0) = Pr(b̂0 += b0|s0)p0 + Pr(b̂0 += b0|s1)p1 + Pr(b̂0 += b0|s2)p2 + Pr(b̂0 += b0|s3)p3

≈
4

9
Q

(

A
√
T + d

√

N0/2

)

+
2

9
Q

(

A
√
T − d

√

N0/2

)

+
1

9
Q

(

A
√
T − d

√

N0/2

)

+
2

9
Q

(

A
√
T + d

√

N0/2

)

so we get

Pb ≈
2

9

(

2Q

(

A
√
T + d

√

N0/2

)

+Q

(

A
√
T − d

√

N0/2

))

=
Pe

2

again with

d =
N0

4A
√
T

ln 2

2–30 For the constellation in figure, the 4 signals on the outer square each contribute with the term

I1 = 2Q(

√

5− 2
√
2
√
Es√

2N0
) + 2Q(

2
√
2
√
Es√

2N0
)

and the other 4 signals, on the inner square, contribute with

I2 = 2Q(

√

5− 2
√
2
√
Es√

2N0
) + 2Q(

√
2
√
Es√

2N0
)

The total bound is obtained as
1

2
I1 +

1

2
I2 (3.8)
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2–31 We chose the orthonormal basis functions

ψj(t) =

√

2

T
sin

2πj

T
t, 0 ≤ t ≤ T

for j = 1, 2, 3, 4, 5. The signals can then be written as vectors in signal space according to

si = A

√

T

2
(ai, bi, ci, di, ei)

where

i ai bi ci di ei
0 1 1 0 0 0
1 1 0 1 0 0
2 1 0 0 1 0
3 1 0 0 0 1
4 0 1 1 0 0
5 0 1 0 1 0
6 0 1 0 0 1
7 0 0 1 1 0
8 0 0 1 0 1
9 0 0 0 1 1

We see that there is full symmetry, i.e., the probability of error is the same for all transmitted
signals. We can hence condition that s0 was transmitted and study

Pe = Pr(error) = Pr(error|s0 transmitted)

Now, we see that s0 differs from si, i = 1, . . . , 6 in 2 coordinates, and from si, i = 7, 8, 9 in 4
coordinates. Hence the squared distances in signal space from s0 to the other signals are

d2i = A2T, i = 1, . . . , 6, d2i = 2A2T, i = 7, 8, 9

The Union Bound technique thus gives

Pe ≤
9
∑

i=1

Q

(

di/2
√

N0/2

)

= 6Q

(

A
√
T√

2N0

)

+ 3Q

(

A
√
T√

N0

)

2–32 We see that one signal point (the one in Origo) has 6 neighbors at distance d, and 6 points (the
ones on the inner circle) have 5 neighbors at distance d, and finally 6 points (the ones on the
outer circle) have two neighbors at distance d. Hence the Union Bound gives

Pe ≤
1

13
(1 · 6 + 6 · 5 + 6 · 2)Q

(

d/2
√

N0/2

)

=
48

13
Q

(
d√
2N0

)

with approximate equality for high SNRs. Thus K = 48/13.
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2–33 This is a PSK constellation. The signal points are equally distributed on a circle of radius
√
E

in signal space. The distance between two neighboring signals hence is

2
√
E sin(π/L)

Each signal point has two neighbors at this distance. There is total symmetry. Conditioning that
e.g. s0(t) is transmitted, the probability of error is the probability that any other signal is favored
by the receiver. Hence Pe < 2Q(β) since this counts the antipodal region twice. Clearly it also
holds that Pe > Q(β), since this does not count all regions.

2–34 The average energy is Emean = (E1 + E2)/2 = 2 and, hence, the average SNR is SNR =
2Emean/N0 = Emean/σ2, where σ2 is the noise variance in each of the two noise components
n = (n1, n2). Let the eight signal alternatives be denoted by si, where the four innermost al-
ternatives are given by (in complex notation) si =

√
E1ej(iπ/2−π/4), i = 1, . . . , 4 and the four

outermost alternatives by si =
√
E2ej((i−5)π/2), i = 5, . . . , 8. Assuming that symbol i is trans-

mitted, the received vector is r = si + n. The optimal receiver is the MAP receiver, which,
since the symbols are equiprobable, reduces to the ML receiver. Since the channel is an AWGN
channel, the decision rule is to choose the closest (in the Euclidean sense) signal, and, as there
is no memory in the channel, no sequence detection is necessary. As shown in class, the symbol
error probability can, by using the union bound technique, be upper bounded as

Pe =
∑

i

Pr(si)
∑

j *=i

Pr(error|si)

≤
8
∑

i=1

1

8

8
∑

j=1
j *=i

Q

(
dij/2

σ

)

,

where dij = ‖si − sj‖ is the distance between si and sj . A lower bound on Pe is obtained by
including only the dominating term in the double sum above. The upper and lower bounds are
plotted below. The figure also shows a simulation estimating the true symbol error.
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As can be seen from the plots, the upper bound is loose for low SNRs (it is even larger than one!),
but improves as the SNR increases and is quite tight for high SNRs. The lower bound is quite
loose in this problem (although this it not necessarily the case for other problems). The reason
for this is that there are several distances in the constellation that are approximately equal and
thus the dominating term in the summation is not “dominating enough”. At high SNRs the error
probability is dominated by the smallest dij . Since d15 is smaller than d12, one way of improving
the error probability is to decrease E1 and increase E2 such that d15 = d12. By inspecting the
signal constellation, d212 = 2E1 and d215 = E1 + E2 −

√
2E1E2. Keeping E1 + E2 constant and

solving for E1 in d12 = d15, E1 ≈ 0.8453 is obtained. Unfortunately, the improvement obtained
is negligible as E1 was close to this value from the beginning.
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2–35 For 0 ≤ t ≤ T we get, using the relations cos (α− π/2) = sinα, sin (α+ β) = sinα cosβ +
cosα sinβ and cosπ/4 = sinπ/4 = 1/

√
2, that

s1(t) =

√

2E

T
cos 4π

t

T
=

√
E

√

2

T
cos 4π

t

T
s2(t) =

√

2E

T
cos

(

4π
t

T
−
π

2

)

=
√
E

√

2

T
sin 4π

t

T

s3(t) =

√

E

T
sin

(

4π
t

T
+
π

4

)

=

√

E

T
sin

π

4
cos 4π

t

T
+

√

E

T
cos

π

4
sin 4π

t

T

=

√
E

2

√

2

T
cos 4π

t

T
+

√
E

2

√

2

T
sin 4π

t

T

(

=
1

2
s1(t) +

1

2
s2(t)

)

Now introduce the orthonormal basis functions

ψ1(t) =

{ √

2
T cos

(

4π t
T

)

0 ≤ t < T

0 otherwise
ψ2(t) =

{ √

2
T sin

(

4π t
T

)

0 ≤ t < T

0 otherwise

The signal alternatives can then be expressed in signal space according to

s1 =
(√

E, 0
)

s2 =
(

0,
√
E,
)

s3 =
(√

E/2,
√
E/2

)

The optimal receiver is based on nearest-neighbor detection as illustrated below, where the solid
lines mark the boundaries of the decision regions.

s1

s2

s3

ψ1

ψ2

B1
B2

B3

Since all signal alternatives lie on a straight line we can derive an exact expression for the error
probability. We get

Pr(error|s1) = Pr(|r− s3|2 < |r− s1|2|r = s1 + n) = . . . = Q

(

|s1 − s3|
√

N0/2

)

and Pr(error|s2) = . . . = Q

(

|s2−s3|√
N0/2

)

. We also get

Pr(error|s3) = Pr(|r− s1|2 < |r− s3|2|r = s3 + n) + Pr(|r− s2|2 < |r− s3|2|r = s3 + n)

= Q

(

|s1 − s3|
√

N0/2

)

+Q

(

|s2 − s3|
√

N0/2

)

Since |s1 − s3| = |s2 − s3| =
√

E/2 we finally conclude that

Pr(error) =
3
∑

i=1

Pr(error|si) Pr(si) =
4

3
Q

(√

E

4N0

)

Also, the Union Bound is computed according to

Pr(error|s1) ≤ Q

(

|s2 − s1|
√

N0/2

)

+Q

(

|s3 − s1|
√

N0/2

)

Pr(error|s2) ≤ Q

(
|s1 − s2|√

2N0

)

+Q

(
|s3 − s2|√

2N0

)

Pr(error|s3) ≤ Q

(
|s1 − s3|√

2N0

)

+Q

(
|s2 − s3|√

2N0

)
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Pr(error) =
1

3
(Pr(error|s1) + Pr(error|s2) + Pr(error|s3)) ≤

4

3
Q

(√

E

4N0

)

+
2

3
Q

(√

E

N0

)

2–36 Note that the symbol period is so short so that the symbols disturb each other, i.e we have
ISI. In the general case, the presence of ISI makes an analysis of the system difficult. However,
the problem that is considered here is considerably simplified by the fact that only two symbols
are transmitted and the receiver is supposed to minimize the probability of a sequence error (as
opposed to a symbol error). This means that, from a performance point of view, the two symbols
can be considered as one “super symbol” corresponding to four different messages (and hence
message waveforms). We can therefore convert the problem into the standard form taught in
class where one out of a set of waveforms (in this case four) is transmitted and the receiver is
designed to minimize the probability of a message error. Thus, the solution strategy is as follows:

i. Find an orthonormal basis for the four message waveforms

ii. Draw the signal constellation with decision boundaries

iii. Use the union bound technique to get a tight upper bound for the error probability.

i. The four message waveforms are given by s(t) = d0p(t)+d1p(t−1), where d0 = ±1, d1 = ±1.
We’ll use Gram-Schmidt for expressing s(t) in terms of an orthonormal basis. The basis
functions are given by

ϕ1(t) =
p(t)

‖p(t)‖
=

p(t)√
2

=

{

1/
√
2, 0 ≤ t ≤ 2

0, otherwise

ϕ̃2(t) = p(t− 1)− < p(t− 1),ϕ1(t) > ϕ1(t) = p(t− 1)− p(t)/2

ϕ2(t) =
ϕ̃2(t)

‖ϕ̃2(t)‖
=
ϕ̃2(t)
√

3/2
=
√

2/3 ·








−1/2, 0 ≤ t < 1

1/2, 1 ≤ t < 2

1, 2 ≤ t < 3

Hence, we have

p(t) =
√
2ϕ1(t)

p(t− 1) = ϕ1(t)/
√
2 +

√

3/2ϕ2(t)

and can therefore write the transmitted signal as

s(t) = d0
√
2ϕ1(t) + d1

(

ϕ1(t)/
√
2 +

√

3/2ϕ2(t)
)

= (d0
√
2 + d1/

√
2)ϕ1(t) + d1

√

3/2ϕ2(t)

ii. From the above expression, we see that the coordinates of the signal constellation points are
given by

(sx, sy) = (d0
√
2 + d1/

√
2, d1

√

3/2), d0 = ±1, d1 = ±1

Writing out the coordinates of the four points we get

s1 =
(

−3
√
2/2,−

√

3/2
)

, s2 =
(

−1/
√
2,
√

3/2
)

, s3 = −s2, s4 = −s1

If you make a picture of the signal constellation you will find that two points have three
neighbors each and the two other points have two neighbors each (two points are neighbors
if they share a decision boundary).

iii. All the neighbors are at the same distance d = |s1 − s2| = 2
√
2. Hence, by also noting that

the symbols are equally likely (since d0 and d1 are independent and uniformly distributed),
we finally get the desired answer by upperbounding the probability of a sequence error as

Pe =
4
∑

i=1

Pr[e|si]Pr[si] <
1

4

(

2 · 3Q

(

d/2
√

N0/2

)

+ 2 · 2Q

(

d/2
√

N0/2

))

=
5

2
Q

(
2√
N0

)
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2–37 (a) We can chose

ψ1(t) =
s0(t)

‖s0(t)‖
=

1

2
√
3
s0(t)

as the first basis waveform. The component of s1(t) that is orthogonal to s0(t) and ψ1(t)
then is

s1(t)−

(
∫ T

0
s1(t)ψ1(t)dt

)

ψ1(t) = s1(t) +
1

2
s0(t)

so we have the second basis waveform as

ψ2(t) =
s1(t) + 1

2 s0(t)

‖s1(t) + 1
2 s0(t)‖

=
1√
8

(

s1(t) +
1

2
s0(t)

)

=
1√
8

(

s1(t) +
√
3ψ1(t)

)

(Check that ‖ψ1(t)‖ = ‖ψ2(t)‖ = 1 and that ψ1(t) ⊥ ψ2(t).) We also get

s1(t) = −
√
3ψ1(t) +

√
8ψ2(t)

Now, the component of s2(t) being orthogonal to both ψ1 and ψ2 is

s2(t)−

(
∫ T

0
s2(t)ψ1(t)dt

)

ψ1(t)−

(
∫ T

0
s2(t)ψ2(t)dt

)

ψ2(t) = s2(t)−
√
3ψ1(t)+

√
2ψ2(t) = 0

That is, s2(t) has no component orthogonal to ψ1(t) and ψ2(t) and is hence a two-dimensional
signal that can be fully described in terms of ψ1(t) and ψ2(t) as

s2(t) =
√
3ψ1(t)−

√
2ψ2(t)

A similar check on s3(t) gives that also s3(t) can be fully described in terms of ψ1(t) and
ψ2(t) as

s3(t) = −
√
3ψ1(t)−

√
8ψ2(t)

In signal space we hence get the representation illustrated below.

s0

s1

s2

s3

ψ1

ψ2

√
3

√
2

(b) An upper bound to Pe is given by the union bound. Letting dij = ‖si − sj‖ and

Pij = Q

(
dij√
2N0

)

we get

Pr(error|s0) ≤ P01 + P02

Pr(error|s1) ≤ P10 + P12 + P13

Pr(error|s2) ≤ P20 + P21 + P23

Pr(error|s3) ≤ P31 + P32

and hence

Pe ≤
1

2

(

P01 + P02 + P12 + P13 + P23

)
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which, with N0 = 1, gives
Pe ≤ 0.0305492 . . .

A lower bound to Pe can be obtained by observing that

Pr(error|s0) ≥ P02

Pr(error|s1) ≥ P12

Pr(error|s2) ≥ P20

Pr(error|s3) ≥ P32

since using only the “nearest neighbors” in the union bounds gives lower bounds on the
conditional error probabilities. Consequently we get

Pe ≥
1

4
(P02 + P12 + P20 + P32) = 0.0294939 . . .

We have hence shown that
0.029 < Pe < 0.031

2–38 We enumerate the signal alternatives from s0 to s7 counter-clockwise starting with the signal at
coordinates (

√
2d, 0). The symmetry of the constellation then gives

Pe = Pr(symbol error) =
1

2
Pr(error|s0) +

1

2
Pr(error|s1)

Letting Pe(i, j|a) denote the pairwise error probability between si and sj, conditioned on a known
amplitude a, the union bound gives

Pr(error|s0, a) ≤ Pe(0, 1|a) + Pe(0, 7|a) = 2Pe(0, 1|a)
Pr(error|s1, a) ≤ Pe(1, 0|a) + Pe(1, 2|a) + Pe(1, 3|a) + Pe(1, 7|a)

= 2Pe(1, 0|a) + 2Pe(1, 3|a)

(Note that the terms included above are enough to ensure an upper bound, since they “cover the
whole plane” [c.f. the signal space diagram].) Let Pe(i, j) = E[Pe(i, j|a)], where the expectation
is with respect to the Rayleigh distribution of the amplitude, denote the average pairwise error
probability. Then since s0 and s1 are at distance a · d and s1 and s3 are at distance a ·

√
2d (for

a known value of a), we get (using the hint)

Pe(0, 1) = Pe(1, 0) =

∫ ∞

0
Q

(
ad√
2N0

)

a exp
(

−
a2

2σ2

)

da =
1

2

[

1−
√

γ/2
√

1 + γ/2

]

Pe(1, 3) =

∫ ∞

0
Q

(
ad√
N0

)

a exp
(

−
a2

2σ2

)

=
1

2

[

1−
√
γ

√
1 + γ

]

where γ ! σ2d2/N0. Hence we get the bound

Pe ≤
3

2
−

√

γ/2
√

1 + γ/2
−

1

2

√
γ

√
1 + γ

2–39 Using Ψ1(t) = 1, 0 ≤ t < 1 and Ψ2(t) = 1, 1 ≤ t ≤ 2 as orthonormal basis, the signal constellation
can be written as:

s̄i = (< si(t),Ψ1(t) >,< si(t),Ψ2(t) >) , i = 1, 2, 3

and

s̄1 = A(2, 2)

s̄2 = A(
√
3− 1,−(

√
3 + 1))

s̄3 = A(−(
√
3 + 1),

√
3− 1)

which yields a 3-PSK constellation, where ||s̄i|| =
√
8A ∀i
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(a) The received signal can be written as

r(t) = s(t) +
1

4
s(t− τ) + w(t) , τ = T = 2

or in vector form, conditioned that sn(t) was transmitted and the previous symbol was sm(t):

r̄nm = s̄n +
1

4
s̄m + w̄

which yields nine equiprobable received signals (disregarding the noise w̄):

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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0

0.5

1

1.5

2

Received constellation tau=2

D12

D23

D13

s̄1

s̄2

s̄3

Due to symmetry, the error probability is equal for all three transmitted symbols (= Pr[error]).
Two non-trivial upper-bounds can be expressed as:

• The tighter alternative:

Pr[error] = Pr[error |s̄1 transmitted] =
1

3
Pr[error |r̄11 received] +

1

3
Pr[error |r̄12 received] +

1

3
Pr[error |r̄13 received]

where

Pr[error |r̄1j received] < Pr[|w̄| > dj12]+Pr[|w̄| > dj13] = Q

(

dj12
√

N0/2

)

+Q

(

dj13
√

N0/2

)

and dj12 and dj13 denote the closest distance from r̄1j to boundary D12 and D13 respec-
tively.
Thus,

Pr[error] <
1

3

[

Q

(

d112
√

N0/2

)

+Q

(

d113
√

N0/2

)

+Q

(

d212
√

N0/2

)

+

Q

(

d213
√

N0/2

)

+Q

(

d312
√

N0/2

)

+Q

(

d313
√

N0/2

)]

where

dj12 = 5
8

√
3, 3

8

√
3, 1

2

√
3 j = 1, 2, 3

dj13 = 5
8

√
3, 1

2

√
3, 3

8

√
3 j = 1, 2, 3

which finally gives

Pr[error] <
1

3

(

2Q

(√

75

32N0

)

+ 2Q

(√

3

2N0

)

+ 2Q

(√

27

32N0

))
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• A less tight upper-bound can be found by only considering the worst case ISI, i.e. either
r̄13 or r̄12, i.e.

Pr[error] = Pr[error |r̄13 received] < Q

(

d312
√

N0/2

)

+Q

(

d313
√

N0/2

)

= Q

(√

3

2N0

)

+Q

(√

27

32N0

)

(b) Now the delay τ of the second tap in the channel is half a symbol period. Again, let
sn(t) be the current transmitted symbol, and sm(t) be the previous transmitted symbol.
Furthermore, let skl =< sk(t),Ψl(t) >, e.g. sm1 is the Ψ1-component of sm. Also, let r̄nm
be the received signal vector (after demodulation), when the current transmitted signal is
sn(t) and the previous transmitted signal is sm(t).

Due to the time-orthonormal basis we have chosen, the Ψ1-component of r̄nm is the result
of integration of the received signal over the first half of the symbol period (0 ≤ t ≤ 1). Due
to the ISI, the received signal in this time-interval consists of the first half of the desired
symbol sn(t), but also the second half of the previous symbol sm(t) and noise.

Similarly, the Ψ2-component of r̄nm contains the desired contribution from the second half
of sn(t), but also an ISI-component from the first half of sn(t). This can be expressed as:

r̄nm = (sn1 +
1

4
sm2, sn2 +

1

4
sn1) + w̄

Disregarding the noise term, received constellation looks like below. Note that the constel-
lation is not symmetric.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Received constellation, tau=1

D12

D23

D13

s̄1

s̄2

s̄3

r̄31

Several bounds of different tightness can be obtained. A fairly simple, but not very tight
bound can be found by considering the overall worst case ISI. The bound takes only the
constellation point closest to the decision boundaries into account. The point is r̄31 with
distances d13 = 0.679 and d23 = 0.787 to the two boundaries D13 and D23 respectively.

The upper-bound is then

Pr[error] < Q

(

d13
√

N0/2

)

+Q

(

d23
√

N0/2

)

Of course, more sophisticated and tighter bounds can be found.

2–40 First, orthonormal basis functions need to be found. To do this, the Gram-Schmidt orthonormal-
ization procedure can be used. Starting with s0(t), the first basis function Ψ0(t) becomes
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t

Ψ0(t)

4

1
2

To find the second basis function, the projection of s1(t) onto Ψ0(t) is subtracted from s1(t),
which after normalization to unit energy gives the second basis function Ψ1(t). This procedure
is easily done graphically, since all of the functions are piece-wise constant.

t

Ψ1(t)

4

1
2
√

3

It can be seen that also s2(t) and s3(t) are linear combinations of Ψ0(t) and Ψ1(t). Alternatively,
the continued Gram-Schmidt procedure gives no more basis functions.

To summarize:

s0(t) = 2Ψ0(t)

s1(t) = Ψ0(t) +
√
3Ψ1(t)

s2(t) = −Ψ0(t) +
√
3Ψ1(t)

s3(t) = −2
√
3Ψ1(t)

(a) Since the four symbols are equiprobable, the optimal receiver uses ML detection, i.e. the
nearest symbol is detected. The ML-decision regions look like:

Ψ0

Ψ1

s0

s1s2

s3

The upper bound on the probability of error is given by

Pe ≤
1

4

3
∑

i=0

3
∑

k=0
k *=i

Q(
dik√
2N0

)
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Some terms in the sum can be skipped, since the error regions they correspond to are already
covered by other regions. Calculating the distances between the symbols gives the following
expression on the upper bound

Pe ≤
1

2
(2Q(

√

2

N0
+Q(

√

6

N0
) +Q(

√

8

N0
) +Q(

√

14

N0
))

(b) The analytical lower bound on the probability of error is given by

Pe ≥
1

4

3
∑

i=0

Q(
mindik√

2N0
)

where min dik is the distance from the i:th symbol to its nearest neighbor.

Calculating the distances gives min d0k = 2, min d1k = 2, min d2k = 2, min d3k = 4, which
gives

Pe ≥
3

4
Q(

2√
2N0

) +
1

4
Q(

4√
2N0

)

To estimate the true Pe the system needs to be simulated using a software tool like MATLAB. By
using the equivalent vector model, it’s easy to generate a symbol from the set defined above, add
white gaussian noise, and detect the symbol. Doing this for very many symbols and counting the
number of erroneosly detected symbols gives a good estimate of the true symbol error probability.
Repeating the procedure for different noise levels gives a curve like below. As you can see, the
“true” Pe from simulation is very close to the upper bound.

100 101
10−6

10−5

10−4

10−3

10−2

10−1

gamma

Pe

Simulated
Upper
Lower

2–41 • First, observe that s2(t) = −s0(t)− s1(t), and that the energy of s0(t) equals the energy of
s1(t). It can also directly be seen that s0(t) and s1(t) are orthogonal, so normalized versions
of s0(t) and s1(t) can be used as basis waveforms.

‖s0(t)‖2 = ‖s1(t)‖2 =

∫ T/2

0
s0(t)

2dt =

{

symmetry of s0(t)
2 around t =

T

4

}

= 2

∫ T/4

0
s0(t)

2dt =

{

s0(t) =

√

24

T 3
t

}

=
48

T 3

∫ T/4

0
t2dt =

1

4

This gives the orthonormal basis waveforms

Ψ0(t) = 2s0(t) Ψ1(t) = 2s1(t)

and the signal constellation
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Ψ0

Ψ1

s0

s1

s2

d0
d1

d1
− 1

2

− 1
2

where d0 = 1√
2
and d1 =

√
5
2 .

• The union bound on the probability of symbol error (for ML detection) on one link is

Pe ≤
2
∑

i=0

Pr(si)
2
∑

k=0
k *=i

Q

(
dik√
2N0

)

where dik is the distance between si and sk. Writing out the terms of the sums gives

Pe ≤ 2 1
4

(

Q
(

d0√
2N0

)

+Q
(

d1√
2N0

))

+ 1
2

(

2Q
(

d1√
2N0

))

=
1

2
Q

(
d0√
2N0

)

+
3

2
Q

(
d1√
2N0

)

Now, a bound on the probability that the reception of one symbol on one link is correct is

1− Pe ≥ 1− 1
2Q
(

d0√
2N0

)

− 3
2Q
(

d1√
2N0

)

• The probability that the communication of one symbol over all n + 1 links is successful is
then

Pr(ŝ = s) = (1− Pe)
n+1 ≥

(

1−
1

2
Q

(
d0√
2N0

)

−
3

2
Q

(
d1√
2N0

))n+1

• This finally gives the requested bound

Pr(ŝ += s) = 1− (1− Pe)
n+1 ≤ 1−

(

1−
1

2
Q

(
d0√
2N0

)

−
3

2
Q

(
d1√
2N0

))n+1

= 1−
(

1−
1

2
Q

(
1√
4N0

)

−
3

2
Q

(√

5

8N0

))n+1

• Note that if we assume that 1
2Q
(

d0√
2N0

)

+ 3
2Q
(

d1√
2N0

)

is small, the approximation (1+x)α ≈
1 + αx (x small) can be applied with the result

1−
(

1−
1

2
Q

(
d0√
2N0

)

−
3

2
Q

(
d1√
2N0

))n+1

≈
n+ 1

2

(

Q

(
d0√
2N0

)

+ 3Q

(
d1√
2N0

))

2–42 (a) It can easily be seen from the signal waveforms that they can be expressed as functions of
only two basis waveforms, φ1(t) and φ2(t).

φ1(t) = ψ1(t)

φ2(t) = K

(

3

4
ψ2(t) +

√
3

4
ψ3(t)

)
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where K is a normalization factor to make φ2(t) unit energy. Let’s find K first.

‖K

(

3

4
ψ2(t) +

√

(3)

4
ψ3(t)

)

‖2 =

∫ T

T/3
K2

(

3

4
ψ2(t) +

√

(3)

4
ψ3(t)

)2

dt =
9K2

16

∫ 2T/3

T/3
ψ2
2(t)dt+

3K2

16

∫ T

2T/3
ψ2
3(t)dt =

3K2

4
= 1

⇒ K =
2√
3

Hence, φ2(t) =
√
3
2 ψ2(t) +

1
2ψ3(t). The signal waveforms can be written as

s1(t) = Aφ1(t) +

√
3

2
Aφ2(t)

s2(t) = −Aφ1(t) +

√
3

2
Aφ2(t)

s3(t) = −
√
3

2
Aφ2(t)

The optimal decisions can be obtained via two correlators with the waveforms φ1(t) and
φ2(t).

(b) The constellation is an equilateral triangle with side-length 2A and the cornerpoints in

s1 = (A,
√
3
2 A), s2 = (−A,

√
3
2 A) and s3 = (0,−

√
3
2 A). The union bound gives an upper

bound by including, for each point, the other two. The lower bound is obtained by only
counting one neighbor.

(c) The true error probability is somewhere between the lower and upper bounds. To guarantee
an error probability below 10−4, we must use the upper bound.

Pe < 2Q





√

2A2

N0



 = 10−4

Tables ⇒

√

2A2

N0
≈ 3.9 ⇒ A2 ≈

N0

2
3.92

To find the average transmitted power, we first need to find the average symbol energy. The
three signals have energies:

Es1 = Es2 =
7

4
A2

Es3 =
3

4
A2

Since the signals are equally likely, we get an average energy per symbol Ēs = 17
12A

2. The

average transmitted power is then P̄ = Ēs
T = 17A2

12T . Due to the transmit power constraint
P̄ ≤ P , we get a constraint on the symbol-rate:

R =
1

T
≤

12P

17A2

Plugging in the expression for A2 from above gives the (approximate) bound

R ≤
24P

3.92 · 17N0
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2–43 (a) The three waveforms can be represented by the three orthonormal basis waveforms ψ0(t),
ψ1(t) and ψ2(t) below.

PSfrag

1√
T

1√
T

1√
T

ttt TT 2T 2T 3T

ψ0(t) ψ1(t) ψ2(t)

Orthonormal basis waveforms could also have been found with Gram-Schmidt orthonor-
malization. The waveforms can be written as linear combinations of the basis waveforms
as

x0(t) = B (ψ0(t))

x1(t) = B (ψ0(t) + ψ1(t))

x2(t) = B (ψ0(t) + ψ1(t) + ψ2(t))

where B = A
√
T . The optimal demodulator for the AWGN channel is either the correla-

tion demodulator or the matched filter. Using the basis waveforms above, the correlation
demodulator is depicted in the figure below.

r(t)

∫ 3T

0
dt

∫ 3T

0
dt

∫ 3T

0
dt

r0

r1

r2

r =





r0
r1
r2





ψ0(t)

ψ1(t)

ψ2(t)

Note that the decision variable r0 is equal for all transmitted waveforms. Consequently, it
contains no information about which waveform was transmitted, so it can be removed.

r(t)

∫ 3T

0
dt

∫ 3T

0
dt

r1

r2

r =

(

r1
r2

)

ψ1(t)

ψ2(t)

(b) Since the transmitted waveforms are equiprobable and transmitted over an AWGN chan-
nel, the Maximum Likelihood (ML) decision rule minimizes the symbol error probability

Pr (x̂ += x) = Pr
(

Î += I
)

, where x denotes the constellation point of the transmitted signal.

The signal constellation with decision boundaries looks as follows.

140



B

B

x0

x1

x2

ψ1

ψ2

From the figure, the detection rules are

ψ1 ≤
B

2
and ψ1 + ψ2 < B ⇒ x0 was transmitted (Î = 0).

ψ1 >
B

2
and ψ2 <

B

2
⇒ x1 was transmitted (Î = 1).

Otherwise ⇒ x2 was transmitted (Î = 2).

(c) The distances between the constellation values di,k can be obtained from the constellation
figure above. A lower and upper bound on the symbol error probability is given by

1

3

2∑

i=0

Q

(
min di,k√

2N0

)

≤ Pr
(

Î += I
)

≤
2∑

i=0

2∑

k=0,k *=i

Q

(
di,k√
2N0

)

.

The distances are

d0,1 = d1,0 = d1,2 = d2,1 = B

d0,2 = d2,0 =
√
2B

which gives the lower and upper bounds as (B = A
√
T )

Q

(

A
√
T√

2N0

)

≤ Pr
(

Î += I
)

≤
4

3
Q

(

A
√
T√

2N0

)

+
2

3
Q

(

A
√
T√

N0

)

2–44 All points enumerated “1” in the figure below have the same conditional error probability, and
the same holds for the points labelled “2” and “3.” We can hence focus on the three points whose
decision regions are scetched in the figure.

φ1

φ2

2

2

2
2

3

3

3 3

11

1 1

Point 1 has two nearest neighbors at distance d11 = a
√
2, two at distance d12 = a

√

5− 2
√
2 and

one at d13 = a. Point 2 has two neigbors at distance d21 = d12 and two at d23 = 4a sin(π/8).
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Finally, point 3 has two neighbors at distance d32 = d23 and one at d31 = d13. Hence, the union
bound gives

P (error|1) ≤ 2Q

(
d11√
2N0

)

+ 2Q

(
d12√
2N0

)

+Q

(
d13√
2N0

)

= 2Q





√

a2

N0



+ 2Q





√

a2(5 − 2
√
2)

2N0



+Q





√

a2

2N0





P (error|2) ≤ 2Q

(
d12√
2N0

)

+ 2Q

(
d23√
2N0

)

= 2Q





√

a2(5 − 2
√
2)

2N0



+ 2Q



sin(π/8)

√

8a2

N0





P (error|3) ≤ 2Q

(
d23√
2N0

)

+Q

(
d13√
2N0

)

= 2Q



sin(π/8)

√

8a2

N0



+Q





√

a2

2N0





Using a2/N0 = 10 then gives

P (error|1) ≤ 2Q
(√

10
)

+ 2Q

(√

5(5− 2
√
2)

)

+Q
(√

5
)

P (error|2) ≤ 2Q

(√

5(5− 2
√
2)

)

+ 2Q
(

sin(π/8)
√
80
)

P (error|3) ≤ 2Q
(

sin(π/8)
√
80
)

+Q
(√

5
)

and the overall average error probability can then be bounded as

Pe =
1

3
(P (error|1) + P (error|2) + P (error|3))

≤
1

3

[

2Q
(√

10
)

+ 4Q

(√

5(5− 2
√
2)

)

+ 4Q
(

sin(π/8)
√
80
)

+ 2Q
(√

5
)
]

≈ 0.0100 < 0.011

Similarly, lower bounds can be obtained as

P (error|1) ≥ Q

(
d13√
2N0

)

= Q
(√

5
)

P (error|2) ≥ Q

(
d21√
2N0

)

= Q

(√

5(5− 2
√
2)

)

P (error|3) ≥ Q

(
d31√
2N0

)

= Q
(√

5
)

which gives

Pe ≥
1

3

[

2Q
(√

5
)

+Q

(√

5(5− 2
√
2)

)]

≈ 0.0086 > 0.0085

2–45 The signal set is two-dimensional, and can be described using the basis waveforms ψ1(t) = s1(t)
and

ψ2(t) =

{

+1, 0 ≤ t < 1/2

−1, 1/2 ≤ t ≤ 1

It is straightforward to conclude that

s1(t) = ψ1(t), s2(t) =
1

2
ψ1(t) +

√
3

2
ψ2(t), s3(t) = −

1

2
ψ1(t) +

√
3

2
ψ2(t)

and, as given, s4(t) = −s1(t), s5(t) = −s2(t), s6(t) = −s3(t), resulting in the signal space
diagram shown below.
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1
ψ1

ψ2

As we can see, the constellation is equivalent to 6-PSK with signal energy 1, and any two neigh-
boring signals are at distance d = 1. The union bound technique thus gives

Pe < 2Q

(
d√
2N0

)

= 2Q

(
1√
2N0

)

noting the symmetry of the constellation and the fact that, as in the case of general M -PSK,
only the two nearest neighbors need to be accounted for. The lower bound is obtained by only
counting one of the two terms in the union bound.

2–46 The signals are orthogonal if the inner product is zero.
∫ T

0
sin(2πft) cos(2πft)dt =

1

2

∫ T

0
sin(4πft)
︸ ︷︷ ︸

Period 1
2f

dt =

1

2

∫ K
2f

0
sin(4πft)dt

︸ ︷︷ ︸

=0

+
1

2

∫ T

K
2f

sin(4πft)dt

︸ ︷︷ ︸

≈0

≈ 0

where K is the number of whole periods of the sinusoid within the time T . The residual time
T − K

2f is very small if f / 1/T .

2–47 The received signal is r(t) = ±
√

2E
T cos(2πfct) + n(t), where n(t) is AWGN with p.s.d. N0/2.

The input signal to the detector is

r0 =

∫ T

0
r(t) cos(2π(fc +∆f)t)dt = . . . ≈ ±

√

E

2T

sin(2π∆fT )

2π∆f
+ n0 ,

where n0 is independent Gaussian with variance E
{

n2
0

}

= T/2 · N0/2. We see that the SNR
degrades as the frequency offset increases (initially). We have

P (error) = P

(√

E

2T

sin(2π∆fT )

2π∆f
+ n0 < 0

)

= Q

(√

2E

N0

sin(2π∆fT )

2π∆fT

)

If ∆f = 0, P (error) = Q
(√

2E
N0

)

and if ∆f = 1/2T , P (error) = 0.5. Note that it is possible to

obtain an error probability of more than 0.5 for 1/2T < ∆f < 1/T .

2–48 (a) In the analogue system it is a good approximation to say that each amplifier compensates
for the loss of the attenuator, i.e. the gain of each amplifier is 130 dB. Consider the signal
power Sf and the noise power Nf just before the final amplifier.

Nf = 3
(

kTB ∗ 105/10
)

Sf = P/10130/10

The signal to noise ratio needs to be at least 10 dB so the minimum required power can be
determined by solving the following equation.

Sf

Nf
= 10 =

P/10130/10

3
(

kTB ∗ 105/10
)

P = 11.4 mW or −19.4 dBW.
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(b) In the digital system, the maximum allowable error rate is 1× 10−3 therefore each stage can
only add approximately 3.3 × 10−4 to the error rate. Using a figure from the textbook it
can be seen that an Eb/N0 of 7.6 dB is required at each stage for BPSK.

P = Eb ∗ 64000 ∗ 10130/10

The energy per bit Eb/N0 is measured just before the demodulator.

N0 = kT × 105/10

Solving for P results in P = 47 mW or −13.3 dBW.

(c) Using the values given, which are reasonable, the digital system is less efficient than the
analogue system. The digital system could be improved by using speech compression
coding, code excited linear prediction (CELP) would allow the voice to be reproduced with
a data rate of approximately only 5 kbps. Error control coding would also be able to
improve the power efficiency of the system. Integrated circuits for 64 state Viterbi codecs
are readily available.

2–49 (a) The transmitted signals:

s1(t) = g(t) cos(2πfct)

s2(t) = −g(t) cos(2πfct)

The received signal is
r(t) = ±g(t) cos(2πfct) + n(t) (3.9)

The demodulation follows
∫ T

0
r(t) cos(2πfct+∆φ)dt

= ±
∫ T

0
g(t)

1

2
(cos(4πfct+∆φ) + cos(∆φ))dt

+

∫ T

0
n(t) cos(2πfct+∆φ)dt

≈ ±
AT

2
cos(∆φ) + n̄

where the integration of double carrier frequency term approximates to 0. For the zero-mean
Gaussian noise term n̄ we get

E[n̄2] = E

∫ T

0

∫ T

0
n̄(t)n̄(s) cos(2πfct+∆φ) cos(2πfcs+∆φ)dtds

≈
N0T

4

Hence, the symbol error probability is obtained as

Q

(√

A/2T cos(∆φ) − (−A/2T cos(∆φ))
√

N0T/4

)

= Q

(√

(cos2 ∆φ)
2Eb

N0

)

(b)

Eb = Es =
1

2
A2T = 2× 10−9

For the system without carrier phase error, the error probability is

Q(

√

2Eb

N0
) = 3.87× 10−6
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For the system with carrier phase error, the error probability is

Q(

√

(cos2 ∆φ)
2Eb

N0
) = 9.73× 10−6

2–50 The bit error probability for Gray encoded QPSK in AWGN is

Pb = Q

(√

2Eb

N0

)

.

A table for the Q-function, for instance in the textbook, gives that for a bit error probability of
0.1,

√

2Eb

N0
≈ 1.3

which gives an SNR

10 log10
2Eb

N0
≈ 2.3 dB.

2–51 (a) Due to the Doppler effect, the transmitter frequency seen by the receiver is higher than the
receiver frequency. This frequency difference can be seen as a time-varying phase offset, i.e.,
the signal constellation in the receiver rotates with 2πfDT ≈ 3.6◦ per symbol duration.

(b) This is an eye diagram with ISI.
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(c) An equalizer would help, e.g., an zero-forcing equalizer (if the noise level is not too high)
or an MLSE equalizer. The equalizer would be included in the decision block, either as a
filter preceding the two threshold devices (zero-forcing) or replacing the threshold devices
completely (MLSE equalizer).

(d) The decision devices must be changed. In a 8-PSK system, the information about each of
the three bits in a symbol is present on both the I and Q channels. Hence, the two threshold
devices must be replaced by a decision making block taking two soft inputs (I and Q) and
producing three hard bit outputs.

(e) Depends on the specific application and channel. PAM would probably be preferred over
orthogonal modulation as the system is band-limited but (hopefully) not power-limited.

2–52 The increase in phase offset by π/4 between every symbol can be seen as a rotation of the signal
constellation as illustrated below.
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Since the receiver has knowledge of this rotation, it can simply derotate the constellation be-
fore detection. Hence, the π/4-QPSK modulation technique has the same bit and symbol error
probabilities as ordinary QPSK.

One reason for using π/4-QPSK instead of ordinary QPSK is illustrated to the far right in the
figure. The transmitted signal can have any of eight possible phase values, but at each symbol
interval, only four of them are possible. The phase trajectories, shown with dashed lines, does
not pass through the origin for π/4-QPSK, which is favorable for reducing the requirements on
the power amplifiers in the transmitter.

Another reason for using π/4-QPSK is to make the symbol timing recovery circuit more reliable.
An ordinary QPSK modulator can output a carrier wave if the input data is a long string of zeros
thus making timing acquisition impossible. A π/4-QPSK modulator always has phase transitions
in the output regardless of the input which is good for symbol timing recovery.

2–53 An important observation to make is that the basis functions used in the receiver are non-
orthogonal. Consequently, the noise at the two outputs y1 and y2 from the front end, denoted n1

and n2, are not independent. The correlation matrix for the noise output n = [n1 n2]T can easily
be show to be

R = E{nn∗} =
N0

2

[

1 1/
√
2

1/
√
2 1

]

Despite this, it is possible to derive an ML receiver. A simple way of approaching the problem
is to transform it into a well-known form, e.g., a two-dimensional output with orthonormal basis
functions and independent noise samples. Once this is done, the conventional decision rules as
given in any text book can be used. The outputs y = [y1 y2]T can be transformed by

y′ = Ty =

[

1 0
1 −

√
2

] [

y1
y2

]

It is easy to verify that this will result in independent noise in y′1 and y′2, i.e., E{Tnn∗T∗} ∝ I,
and a square signal constellation after transformation. To summarize, the decision block should
consist of the transformation matrix T followed by a conventional ML decision rule, i.e., choose
nearest signal point.

2–54 (a) This is an eye diagram (the eye opening is sometimes called noise margin).
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(b) A coherent receiver requires a phase reference, while a non-coherent receiver operates without
a phase reference. Assuming a reliable phase reference, the coherent scheme outperforms the
non-coherent counterpart (compare, for example, PSK and differentially demodulated DPSK
in the textbook). Hence, the coherent receiver is preferable at high SNRs when a reliable
phase estimate is present. At low SNRs, the non-coherent scheme is probably preferable,
but a detailed analysis is necessary to investigate whether the advantage of not using an
(unreliable) phase estimate outweighs the disadvantage of the higher error probability in the
non-coherent scheme.

(c) This causes the rotation of the signal constellation as shown in the figure below (unfilled
circles: without phase error, filled circles: 30◦ phase error). Depending on the sign of the
phase error, the constellation rotates either clockwise or counterclockwise.
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30◦

(d) Reducing the filter bandwidth without reducing the signaling rate will cause intersymbol
interference in dI(n) and dQ(n).

(e) The integrators in the figure must be changed as (similar for the Q channel)

∫ t
t−T (·) dt

h(t)

intImultI

The BP filter might need some adjustment as well, depending on the bandwidth of the pulse,
but this is probably less critical.

2–55 Denote the transmitted power in the Q channel with PQ. The power is attenuated by 10 dB,
which equals 10 times, in the channel. Hence, the received bit energy is

Eb,Q = PQT/10 ,

where T = 1/4000 (4 kbit/s bit rate). The bit error probability is given by

10−3 = Q

(√

Eb,Q

R0

)

= Q





√

PQT/10

R0



 ,

from which PQ = 382 µW is solved. For the I channel, which is active 70% of the total time (30%
of the time, nothing is transmitted and thus PI = 0), the data rate is 8 kbit/s (bit duration T/2)
when active. Hence,

10−3 = 0.7Q





√

(PI/10)(T/2)/4

R0



 .

From this, PI = 712 µW is obtained. Hence, the average transmitted power in the I and Q
channels are

P̄I = 0.7PI + 0.3 · 0 = 498µW

P̄Q = PQ = 382µW

2–56 The received signal is r(t) = sm(t) + n(t), where sm(t) = ±a
√

2E
T cos(2πfct)± b

√

2E
T sin(2πfct)

is the transmitted signal and n(t) is AWGN with p.s.d. N0/2. The input signals to the detector
are

r0 =

∫ T

0
r(t)A cos(2πfct)dt = . . . ≈ ±aA

√

ET

2
+ n0

r1 = −
∫ T

0
r(t)B sin(2πfct)dt = . . . ≈ ±bB

√

ET

2
+ n1 ,

where n0 and n1 are independent Gaussian since

E {n0n1} =

∫ T

t=0

∫ T

s=0
AB sin(2πfct) cos(2πfcs)

N0

2
δ(t− s)dtds ≈ 0 ,
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E
{

n2
0

}

=

∫ T

t=0

∫ T

s=0
A2 cos(2πfct) cos(2πfcs)

N0

2
δ(t− s)dtds ≈ A2 T

2

N0

2
,

E
{

n2
1

}

=

∫ T

t=0

∫ T

s=0
B2 sin(2πfct) sin(2πfcs)

N0

2
δ(t− s)dtds ≈ B2T

2

N0

2
.

As all signals are equally probable, and the noise is Gaussian, the detector will select signal
alternative closest to the received vector (r0, r1). (Draw picture !). Thus, if r0 > 0 and r1 > 0,
the alternative +(. . .) + (. . .) is selected, if r0 < 0 and r1 > 0, −(. . .) + (. . .) is selected etc. Due
to the symmetry, the error will not depend on the signal transmitted, therefore, assume that

s1(t) = a
√

2E
T cos(2πfct) + b

√

2E
T sin(2πfct) is the transmitted signal. Then

Pr (error) = Pr (error|s1)

= 1− Pr (no error|s1) = 1− Pr
(

aA
√

ET/2 + n0 > 0, bB
√

ET/2 + n1 > 0
)

= 1−

(

1−Q

(

a

√

2E

N0

))(

1−Q

(

b

√

2E

N0

))

2–57 (a) The mapping between the signals and the noise is: r(t) ↔ Signal B, rBP(t) ↔ Signal C, and
multQ(t) ↔ Signal A.

This can be seen by noting that

• the noise at the receiver is white and its spectrum representation should therefore be
constant before the filter.

• the bandpass filter is assumed to filter out the received signal around the carrier fre-
quency.

• after multiplication with the carrier the signal will contain two peaks, one at zero fre-
quency and one at the double carrier frequency.

From the spectra in Signal C it is easily seen that the carrier frequency is approximately 500
Hz.

(b) First, note that a phase offset between the transmitter and the receiver rotates the signal
constellation, except from this the constellation looks like it does when all parameters are
assumed to be known. A frequency offset rotates the signal constellation during the complete
transmission, making an initial QPSK constellation look like a circle. Ideally, when the SNR
is high and the ISI is negligible, a received QPSK signal is four discrete points in the diagram.
When ISI is present, several symbols interfere and several QPSK constellations can be seen
simultaneously. From this we conclude that

Condition 1 ↔ Constellation C Condition 2 ↔ Constellation A

Condition 3 ↔ Constellation B Condition 4 ↔ Constellation D.

Thus, the signaling scheme is QPSK.

2–58 The received signal is r(t) = sm(t) +n(t), where m ∈ {1, 2, 3, 4} and n(t) is AWGN with spectral
density N0/2. The detector receives the signals

r0 =

∫ T

0
r(t) cos(2πfct+ φ̂)dt = . . . ≈

√

ET

2
cos

(
2π

4
m−

π

4
+ φ− φ̂

)

+ n0

r1 = −
∫ T

0
r(t) sin(2πfct+ φ̂)dt = . . . ≈

√

ET

2
sin

(
2π

4
m−

π

4
+ φ− φ̂

)

+ n1

where n0 and n1 are independent zero-mean Gaussian with variance

E
{

n2
0

}

= E
{

n2
1

}

=

∫ T

t=0

∫ T

s=0
cos(2πfct+ φ̂) cos(2πfcs+ φ̂)

N0

2
δ(t− s)dtds ≈

T

2

N0

2
.
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Since all signal alternatives are equally probable the optimal detector is the defined by the nearest-
neighbor rule. That is, the detector decides s1 if r0 > 0 and r1 > 0, s2 is r0 < 0 and r1 > 0,
and so on. The impact of an estimation error is equivalent to rotating the signal constellation.
Symmetry gives P (error) = P (error|s1 sent), and we get

P (error) = P (error|s1) = 1− P (correct|s1)

= 1− P
(√

ET/2 cos(π/4 + φ− φ̂) + n0 > 0,
√

ET/2 sin(π/4 + φ− φ̂) + n1 > 0
)

= 1−

(

1−Q

(√

2E

N0
cos
(π

4
+ φ− φ̂

)
))(

1−Q

(√

2E

N0
sin
(π

4
+ φ− φ̂

)
))

2–59 In order to avoid interference, the four carriers in the multicarrier system should be chosen to be
orthogonal and, in order to conserve bandwidth, as close as possible. Hence,

∆f = fi − fj =
1

T
=

R

8
.

In the multicarrier system, each carrier carries symbols (of two bits each) with duration T = 8/R
and an average power of P/4. A symbol error occurs if one (or more) of the sub-channels is in
error. Assuming no inter-carrier interference,

Pe = 1−

[

1−Q

(√

2P

RN0

)]8

The 256-QAM system transmits 8 bits per symbol, which gives the symbol duration T = 8/R. The
average power is P since there is only one carrier. The symbol error probability for rectangular
256-QAM is

Pe = 1− (1− p)2

p = 2

(

1−
1√
256

)

Q

(√

3

256− 1

8P

RN0

)

For a (time-varying) unknown channel gain, the 256-QAM system is less suitable since the ampli-
tude is needed when forming the decision regions. This is one of the reasons why high-order QAM
systems is mostly found in stationary environment, for example cable transmission systems.

Using Eb = PTb = P/R and SNR = 2Eb/N0, the error probability as a function of the SNR is
easily generated.
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The power spectral density is proportional to [sin(πfT )/(πfT )]2 in both cases and the following
plots are obtained (four QPSK spectra, separated in frequency by 1/T ).
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Multi-carrier

Additional comments: multicarrier systems are used in several practical application. For
example in the new Digital Audio Broadcasting (DAB) system, OFDM (Orthogonal Frequency
Division Multiplex) is used. One of the main reasons for splitting a high-rate bitstream into
several (in the order of hundreds) low-rate streams is equalization. A low-rate stream with
relatively large symbol time (much larger than the coherence time (a concept discussed in 2E1435
Communication Theory, advanced course) and hence relatively little ISI) is easier to equalize than
a single high-rate stream with severe ISI.

2–60 Beacuse of the symmetry of the problem, we can assume that the symbol s0(t) was transmitted
and look at the probabilty of choosing another symbol at the receiver. Given that i = 0 (assuming
the four QPSK phases are ±π/4,±3π/4), standard theory from the course gives

rcm = am
√

E/2 + wcm, rsm = am
√

E/2 + wsm

where wcm and wsm, m = 1, 2, are independent zero-mean Gaussian variables with variance N0/2.
Letting wm = (wcm, wsm), the detector is hence fed the vector

u = (u1, u2) = (b1a1 + b2a2)
√

E/2 (1, 1) + b1w1 + b2w2

where we assume b1 > 0 and b2 > 0 (even if b1 and b2 are unknown, and to be determined, it
is obvious that they should be chosen as positive). Given that s0(t) was transmitted, an ML
decision based on u will be incorrect if at least one of the components u1 and u2 of u is negative
(i.e., if u is not in the first quadrant). We note that u1 and u2 are independent and Gaussian
with E[u1] = E[u2] = (b1a1 + b2a2)

√

E/2 and Var[u1] = Var[u2] = (b21 + b22)N0/2. That is, we
get

Pe = Pr(error) = 1− Pr(correct) = 1− Pr(u1 > 0, u2 > 0)

= 1−

[

Q

(

−(b1a1 + b2a2)
√
E

√

(b21 + b22)N0

)]2

= 1−

[

1−Q

(

(b1a1 + b2a2)
√
E

√

(b21 + b22)N0

)]2

= 2Q

(

(b1a1 + b2a2)
√
E

√

(b21 + b22)N0

)

−

[

Q

(

(b1a1 + b2a2)
√
E

√

(b21 + b22)N0

)]2

We thus see that Pe is minimized by choosing b1 and b2 such that the ratio

λ !
(b1a1 + b2a2)

√
E

√

(b21 + b22)N0

is maximized (for fixed E and N0 and given values of a1 and a2). Since

λ =
a · b
‖b‖

√

E

N0
,
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with a = (a1, a2) and b = (b1, b2), we can apply Schwartz’ inequality (x·y ≤ ‖x‖ ‖y‖ with equality
only when x = (positive constant) · y) to conclude that the optimal b1 and b2 are obtained when
b = k a, where k > 0 is an arbitrary constant. This choice then gives

Pe,min = 2Q





√

(a21 + a22)E

N0



−



Q





√

(a21 + a22)E

N0









2

The diversity combining method discribed in the problem, with weighting b1 = k a1 and b2 = k a2
for known or estimated values of a1 and a2, is called maximal ratio combining (since the ratio λ is
maximized), and is frequently utilized in practice to obtain diversity gain in radio communications.
In practice, the different signals rm(t) do not have to correspond to different receiver antennas,
but can instead obtained e.g. by transmitted the same information at different carrier frequencies
or different time-slots.

2–61 The correct pairing of the measurement signals and the system setup is

5A is the time-discrete signal at the oversampling rate at the output of the matched filter but
before symbol rate sampling.

6B is an IQ-plot of the symbols after matched filtering and sampling at the symbol rate but
before the phase correction.

7C is an IQ-plot of the received symbols after phase correction. However, the phase correction
is not perfect as there is a residual phase error. This is the main contribution to the bad
performance seen in the BER plot and an improvement of the phase estimation algorithm
is suggested (on purpose, an error was added in the simulation setup to get this plot).

4D shows the received signal, including noise, before matched filtering.

The plot E is called an eye diagram and in this case we can guess that ISI is not present in the
system considered. The plot was generated by using plotting the signal in point 5, but with the
inclusion of the phase correction from the phase estimator (point 11). If the phase offset was not
removed from the signal before plotting, the result would be rather meaningless as phase offsets
in the channel would affect the result as well as any ISI present. This would only be meaningful
in a system without any phase correction.

2–62

(a) Since the two signal sets have the same number of signal alternatives L and hence the same
data rate, the peak signal power is proportional to the peak signal energy. The peak energy
ÊA of the PAM system obeys

√

ÊA =
L− 1

2
dA

In system B we have
dB
2

=

√

ÊB sin(π/L)

Setting dA = dB and solving for the peak energies gives

P̂A

P̂B

=
ÊA

ÊB

= [(L− 1) sin(π/L)]2 ≈ π2

where the approximate equality is valid for large L since then L−1 ≈ L and sin(π/L) ≈ π/L.
This means that system A needs about 9.9 dB higher peak power to achieve the same symbol
error rate performance as system B.

(b) The average signal power is in both cases proportional to the average energy. In the case of
the PAM system (system A) the transmitted signal component is approximately uniformly

distributed in the interval [−
√

ÊA,
√

ÊA], since L is large and since transmitted signals are
equally probable. Hence the mean energy of system A is ĒA ≈ ÊA/3. In system B, on the
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other hand, all signals have the same energy so we have ĒB = ÊB. Hence using the results
from (a) we have that in the case dA = dB it holds

P̄A

P̄B
=

ĒA

ĒB
≈
π2

3

This means that the PAM system needs about 5.2 dB higher mean power to achieve the
same symbol error rate performance as the PSK system.

2–63 Since the three independent bits are equally likely, the eight different symbols will be equally
likely. The assumption that E/N0 is large means that when the wrong symbol is detected in the
receiver (symbol error), it is a neighboring symbol in the constellation.

Let’s name the three bits that are mapped to a symbol b3b2b1 and let’s assume that the symbol
error probability is Pe.
The Gray-code that differs in only one bit between neighboring symbols looks like

000

001
011

010

110

111
101

100

The error probabilities for the three bits are

Pb1 = 1
8 (

1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 )Pe =
Pe

2

Pb2 = 1
8 (0 +

1
2 + 1

2 + 0 + 0 + 1
2 + 1

2 + 0)Pe =
Pe

4

Pb3 = 1
8 (

1
2 + 0 + 0 + 1

2 + 1
2 + 0 + 0 + 1

2 )Pe =
Pe

4

It can be seen that the mapping that yields the largest ratio between the maximum and minimum
error probabilites for the three different bits is the regular binary representation of the numbers
0-7.

000

001
010

011

100

101
110

111

The right-most bit (b1) changes between all neighboring symbols, whereas the left-most bit (b3)
changes only between four neighbors, which is the minimum in this case.

The error probabilities for b1 and b3 are

152



Pb1 = 1
8 (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)Pe = Pe

Pb3 = 1
8 (

1
2 + 0 + 0 + 1

2 + 1
2 + 0 + 0 + 1

2 )Pe =
Pe

4

which gives the ratio

Pb1

Pb3
= 4

Of course, various permutations of this mapping give the same result, like swapping the three
bits, or rotating the mapping in the constellation.

A mapping the yields equal error probabilites for the bits can be found by clever trial and error.
One example is

000

101
100

111

001

011
010

110

The error probabilities for the bits are

Pb1 = 1
8 (

1
2 + 1 + 1 + 1

2 + 0 + 1
2 + 1

2 + 0)Pe =
Pe

2

Pb2 = 1
8 (

1
2 + 0 + 1

2 + 1 + 1 + 1
2 + 0 + 1

2 )Pe =
Pe

2

Pb2 = 1
8 (1 +

1
2 + 0 + 1

2 + 1
2 + 0 + 1

2 + 1)Pe =
Pe

2

Rotation of the mapping around the circle, and swapping of bits gives the same result.

2–64 Without loss of generality we can consider n = 1. We get

y1 =

∫ 2T

T
g(t− T )

(

x0g(t− τ) + x1g(t− τ − T )
)

dt+

∫ 2T

T
g(t)n(t)dt

= x0

∫ τ

0
g(t)g(T − τ + t)dt+ x1

∫ T

τ
g(t)g(t− τ)dt + w

= x0
4− π

4
√
2π

+ x1
4 + 3π

4
√
2π

+ w = a x0 + b x1 + w

with a ≈ 0.048, b ≈ 0.755, and where

g(t) =

√

2

T
sin(πt/T ), 0 ≤ t ≤ T

and τ = T/4 was used, and where w is complex Gaussian noise with independent zero-mean
components of variance N0/2.
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Due to the symmetry of the problem, we can assume x1 = 1 and compute the probability of error
as

Pe = Pr(x̂1 += x1) = Pr(b+ a x0 + w /∈ Ω0)

where Ω0 is the decision region of alternative zero. The eight equally likely different values for
b+ a x0 are illustrated below (not to correct scale!). The figure also marks the boundaries of Ω0.

When N0 - 1, the error probability is dominated by the event that y1 is outside Ω0 for x0 =
(−1 + j)/

√
2, x0 = j, x0 = (−1 + j)/

√
2 or x0 = −j, since these values for x0 make a+ b x0 end

up close to the decision boundaries. All these four alternatives are equally close to their closest
decision boundary, and the distance is

d = b sin
π

8
− a cos

π

8
≈ 0.244

Hence, as N0 → 0 we get

Pe ≈
1

2
Q

(

d
√

N0/2

)

≈
1

2
Q

(

0.244
√

N0/2

)

2–65 First, substitute the expression for the received signal r(t) into the expression for the decision
variable v0,m,

v0,m =

∫ m+1/2
1000

m−1/2
1000

r(t)e−j2π500t dt =

∫ m+1/2
1000

m−1/2
1000

(x(t) + n(t) + ej2π2000t)e−j2π500t dt

=

∫ m+1/2
1000

m−1/2
1000

x(t)e−j2π500t dt

︸ ︷︷ ︸

s0,m

+

∫ m+1/2
1000

m−1/2
1000

n(t)e−j2π500t dt

︸ ︷︷ ︸

n0,m

+

∫ m+1/2
1000

m−1/2
1000

ej2π2000te−j2π500t dt

︸ ︷︷ ︸

i0,m

.

The decision variable v0,m can be decomposed into 3 components, the signal s0,m, the noise n0,m

and the interference i0,m. Examining the signal s0,m in branch zero results in

s0,m =

∫ m+1/2
1000

m−1/2
1000

x(t)e−j2π500t dt

=









∫ m+1/2
1000

m−1/2
1000

ej2π500te−j2π500t dt =
∫ m+1/2

1000
m−1/2
1000

1 dt = 1
1000 if dm = 0

∫ m+1/2
1000

m−1/2
1000

ej2π1500te−j2π500t dt =
∫ m+1/2

1000
m−1/2
1000

ej2π1000t dt = 0 if dm = 1.

The noise n0,m is sampled Gaussian noise. Each sample with respect to m is independent as a
different section of n(t) is integrated to get each sample. Assuming the noise spectral density of
n(t) is N0 then the energy of each sample n0,m can be calculated as

σ2
n = E{|n0,m|2} = E







∣
∣
∣
∣
∣

∫ m+1/2
1000

m−1/2
1000

n(t)e−j2π500t dt

∣
∣
∣
∣
∣

2






= N0

∫ m+1/2
1000

m−1/2
1000

∫ m+1/2
1000

m−1/2
1000

δ(t− t′)e−j2π500tej2π500t
′
dt dt′ =

N0

1000
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Similarly, the interference in branch zero, i0,m, can be calculated as

i0,m =

∫ m+1/2
1000

m−1/2
1000

ej2π2000te−j2π500t dt =

∫ m+1/2
1000

m−1/2
1000

ej2π1500t dt = −
(−1)m

1500π
.

Repeating the above calculations for v1,m (i.e., the first branch) results in

s1,m =

{

0 if dm = 0
1

1000 if dm = 1.

i1,m =

∫ m+1/2
1000

m−1/2
1000

ej2π2000te−j2π1500t dt =

∫ m+1/2
1000

m−1/2
1000

ej2π500t dt =
(−1)m

500π

The variance of the noise n1,m is also (N0)/1000. The correlation between n1,m and n0,m should
be checked,

E{n1,mn∗
0,m} = E

{
∫ m+1/2

1000

m−1/2
1000

n(t)e−j2π1500t dt

∫ m+1/2
1000

m−1/2
1000

n(t)∗ej2π500t dt

}

= N0

∫ m+1/2
1000

m−1/2
1000

∫ m+1/2
1000

m−1/2
1000

δ(t− t′)e−j2π1500tej2π500t
′
dt dt′ = 0 .

Hence, n1,m and n0,m are uncorrelated.

Using the above, the decision variables v0,m and v1,m for dm = 0 are

v0,m =
1

1000
+ n0,m −

(−1)m

1500π

v1,m = n1,m +
(−1)m

500π

and for dm = 1

v0,m = n0,m −
(−1)m

1500π

v1,m =
1

1000
+ n1,m +

(−1)m

500π
.

For uncorrelated Gaussian noise the optimum decision rule is

d̂m = argmindm

(

|v0,m − E{v0,m|dm}|2 + |v1,m − E{v1,m|dm}|2
)

We calculate the distance from the received decision variables to their expected positions for each
possible value of transmitted data (dm = 0 or dm = 1) and then chose the data corresponding to
the smallest distance.

The signal components sm and interference components im of the decision variables are real, so
only the real parts of the decision variables need to be considered. Rewriting this formula for the
given FSK system






(v0,m −
1

1000
+

(−1)m

1500π
)2

+(v1,m −
(−1)m

500π
)2






dm=0
≶

dm=1






(v0,m +
(−1)m

1500π
)2

+(v1,m −
1

1000
−

(−1)m

500π
)2






v1,m −
(−1)m

500π

dm=0
≶

dm=1
v0,m +

(−1)m

1500π

The decision rule can be found by simplifying the previous equation, resulting in

v1,m − v0,m
dm=0
≶

dm=1

(−1)m

375π
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2–66 (a) The receiver correlates with the functions ϕ1(t) and ϕ2.

ϕ1(t) =

{ √

2
T sin 2πt

T , 0 ≤ t < T

0, otherwise
ϕ2(t) =

{ √

2
T sin 4πt

T , 0 ≤ t < T

0, otherwise

Let fk(ρ) =
1
kπ sin kπρ. Compute the inner products

(u1(t),ϕ1(t)) =

∫ ρT

0

√

2E

T
sin

(
2πt

T

)

dt

√

2

T
sin

(
2πt

T

)

=
√
E(ρ− f4(ρ))

(u1(t),ϕ2(t)) = (u2(t),ϕ1(t)) =

∫ ρT

0

√

2E

T
sin

(
2πt

T

)√

2

T
sin

(
4πt

T

)

dt =
√
E(f2(ρ)− f6(ρ))

(u2(t),ϕ2(t)) =

∫ ρT

0

√

2E

T
sin

(
4πt

T

)√

2

T
sin

(
4πt

T

)

dt =
√
E(ρ− f8(ρ))

d2E = ((u1(t),ϕ1(t))− (u2(t),ϕ1(t)))
2 + ((u1(t),ϕ2(t))− (u2(t),ϕ2(t)))

2

= E(ρ− f2(ρ)− f4(ρ) + f6(ρ))
2 + E(ρ− f2(ρ) + f6(ρ)− f8(ρ))

2

=⇒ dE =
√
E
√

(ρ− f2(ρ)− f4(ρ) + f6(ρ))2 + (ρ− f2(ρ) + f6(ρ)− f8(ρ))2

(b) No, the receiver adds unnecessary noise during ρT ≤ t < T .

2–67 When s0(t) is transmitted, the received signal can be modeled as

r(t) =

√

2Eb

T
cos(2πfct+ φ0) + n(t)

Studying the coherent receiver, we thus have

r0 =

∫ T

0
r(t)

√

2

T
cos(2πfct+ φ̂0)dt

=
2
√
Eb

T

∫ T

0
cos(2πfct+ φ0) cos(2πfct+ φ̂0)dt+

=n0
︷ ︸︸ ︷
∫ T

0
n(t)

√

2

T
cos(2πfct+ φ̂0)dt

=

√
Eb

T

∫ T

0
cos(φ0 − φ̂0)dt+

√
Eb

T

∫ T

0
cos(4πfct+ φ0 + φ̂0)dt

︸ ︷︷ ︸

fc,1/T → ≈0

+n0 ≈
√

Eb cos(φ0 − φ̂0) + n0

Similarly,

r1 =

∫ T

0
r(t)

√

2

T
cos(2πfct+ 2πt/T + φ̂1)dt

=
2
√
Eb

T

∫ T

0
cos(2πfct+ φ0) cos(2πfct+ 2πt/T + φ̂1)dt+

=n1
︷ ︸︸ ︷
∫ T

0
n(t)

√

2

T
cos(2πfct+ 2πt/T + φ̂1)dt

=

√
Eb

T

∫ T

0
cos(2πt/T + φ̂1 − φ+ 0)dt+

√
Eb

T

∫ T

0
cos(4πfct+ 2πt/T + φ0 + φ̂1)dt

︸ ︷︷ ︸

fc,1/T → ≈0

+n1 ≈ n1

The noise components are obtained as

n0 =

∫ T

0
n(t)

√

2

T
cos(2πfct+ φ̂0)dt n1 =

∫ T

0
n(t)

√

2

T
cos(2πfct+ 2πt/T + φ̂1)dt
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These are independent zero-mean Gaussian with variance N0/2. The error probability is hence
obtained as

Pr(error|s0(t)) = Pr(r0 < r1|s0(t)) = Pr(
√

Eb cos(φ0 − φ̂0) + n0 < n1)

= Pr(
√

Eb cos(φ0 − φ̂0) < n1 − n0)

= Pr(
√

Eb cos(φ0 − φ̂0) < n′) = Q

(√

2Eb

N0
cos(φ0 − φ̂0)

)

where n′ = n1 − n0 is zero-mean Gaussian with variance N0/2 + N0/2 = N0. According to the
textbook, the error probability of the non-coherent receiver is obtained as

Pr(error|s0(t)) = Pr(error) =
1

2
e−1/2

Eb
N0

With 10 log10(2Eb/N0) = 10 dB we get Eb/N0 = 5, and hence

Q
(√

5 cos(φ0 − φ̂0)
)

≤
1

2
e−5/2

This gives

|φ0 − φ̂0| ≤ cos−1 1.74√
5

≈ 39◦

2–68 (a) Signal set 1 is M-PSK and signal set 2 is M-FSK. Since the SNR is quite high, the upper
bound on the symbol error probability is tight enough for the purpose of this problem.
For the M-PSK and phase-coherent reception, the distance to the two nearest neighbors is
2
√
Es sin(

π
M ). Hence, the upper bound is

P 1
e = 2Q

(√

2Es

N0
sin(

π

M
)

)

.

For phase-coherent M-FSK, the distances to the M − 1 neighbors are
√
2Es. Hence, the

upper bound is

P 2
e = (M − 1)Q

(√

Es

N0

)

.

Table-lookup of the Q-function gives the following result for low values of M .

M P 1
e (M-PSK) P 2

e (M-FSK)
2 7.7 · 10−9 3.2 · 10−5

3 4.8 · 10−7 6.3 · 10−5

4 3.2 · 10−5 9.5 · 10−5

5 4.4 · 10−4 1.3 · 10−4

The error probability for M-PSK grows faster than for M-FSK, since the distance to the
two nearest neighbors decreases with M . For M-FSK, the distance remains constant, but
the number of nearest neighbors increases. For M < 5, M-PSK gives the lower symbol error
probability, and for M ≥ 5, M-FSK gives the lower symbol error probability.

(b) For high constellation orders (M ≥ 5), M-FSK gives a lower symbol error probability.
However, the required bandwidth grows linearly with M for M-FSK. If the target system is
bandwidth limited, M-PSK is probably a more feasible choice, even for high M .

2–69 (a) At high SNR the symbol error probability is determined by the minimum signal space
distance between pairs of signal points. Maximum possible distance for a fixed b is obtained
when √

2a = b− a =⇒ a =
b

1 +
√
2
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(b) The given QAM constellation with b = 3a has mean energy and minimum squared distance

ĒQAM =
4

8
a2 +

4

8
(3a)2 = 5a2 dQAM

min =
√
2a

The 8PSK system has mean energy ĒPSK and dPSK
min = 2

√

ĒPSK sinπ/8. Setting the
minimum distances equal gives

2
√

ĒPSK sinπ/8 =
√
2a =

√
2

√

ĒQAM

5
=⇒

ĒQAM

ĒPSK
=

5

2
4 sin2 π/8 = 1.4645, 10 log10 1.4645 = 1.65dB

That is, the QAM constellation needs about 1.65 dB higher energy.

2–70 (a) To minimize the symbol error probability of the 16-Star Constellation we need to maximize
the distance between the 2 closest constellation points. This is done because errors due to
the closest constellation points dominate when the Es/N0 is high. Referring to the figure
below, as the ratio R1/R2 is increased then d2 increases but d1 decreases. The energy per
symbol is kept constant, Es = (R2

1 +R2
2)/2. In this situation the maximum of the minimum

distance will occur when d1 = d2. This simplifies the geometry as an equilateral triangle is
formed. The sin rule can be applied.

π/3 d2

d2

π/8
d1

3π/8R2

R1

π/6

The ratio R1/R2 can be determined from the “Sine Rule”.

R1

R2
=

sin((1/3 + 3/8)π)

sin(π/6)
= 1.59

(b) Beginning with 16 PSK. The radius of the constellation is
√
Es. The decision boundary is

set at half way between 2 constellation points. The distance d from a constellation point to
a decision boundary is

√
Es sin(π/16). The distance can expressed in terms of number of

standard deviations k.

σ =

√

N0

2
; kσ = d; k =

√

2Es

N0
sin(π/16)

The probability of the received signal crossing the boundary is then given by the Q(.)
function.

P (X > µ+ kσ) = Q(k); Pe = Q

(√

2Es

N0
sin(π/16)

)

An error occurs if the decision boundary is crossed in either direction. Therefore the prob-
ability of symbol error Ps is:

Ps = 2Q

(√

2Es

N0
sin(π/16)

)
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Here lies the first assumption. Part of the error region has been counted twice by sim-
ply summing the probability of the 2 regions, however for 16 PSK and high Es/N0 this
approximation is accurate. Four bits are transmitted for every symbol Es = 4Eb, therefore

Ps = 2Q

(√

8Eb

N0
sin(π/16)

)

When Es/N0 is high we can assume that the majority of the errors are produced by the
neighboring symbols there Pb ≈ Ps/4. The probability of bit error Pb in terms of Eb/N0 can
be approximated by:

Pb =
1

2
Q

(√

8Eb

N0
sin(π/16)

)

Now consider the 16 Star constellation. Es = (R2
1 +R2

2)/2 and R1/R2 = 1.59

2Es = 1.592R2
2 +R2

2; R2 = 0.75
√

Es

The distance d from a constellation point to a decision boundary is R2 sin(π/8).

k = 0.75

√

2Es

N0
sin(π/8)

The probability of the received signal crossing the boundary is then given by the Q(.)
function.

Pe = Q

(

0.75

√

2Es

N0
sin(π/8)

)

An error occurs if the decision boundary is crossed in either direction. The outer constella-
tions have 2 neighbors and the inner constellation points have 4 neighbors giving an average
of 3. This is a loser approximation than for 16 PSK and will tend to give sightly high error
probability results.

Ps = 3Q

(

0.75

√

2Es

N0
sin(π/8)

)

Es = 4Eb

Ps = 3Q

(

0.75

√

8Eb

N0
sin(π/8)

)

In the star constellation the outer constellation points have 2 neighbors each with one bit
difference while the inner constellation points have 4 neighbors, 2 with 1 bit difference and 2
with 2 bits difference. When a symbol error occurs it is most likely that one of the neighbors
is mistaken for the correct symbol. Here, it is assumed that each neighbor is equally likely
to be the source of the error. Hence, the average number of bit errors per symbol error is
(2×1+2×1+2×2)/(2+2+2) = 4/3. However, there are 4 bits transmitted per symbol so
the conversion factor from symbol error probability to bit error probability is 4/3/4 = 1/3.
Thus, the probability of bit error Pb in terms of Eb/N0 can be approximated by:

Pb = Q

(

0.75

√

8Eb

N0
sin(π/8)

)

It was assumed that only the neighbors influence the probability of bit error Pb.

2–71 At high Eb/N0 the error probability is dominated by the nearest neighbors. Studying each bit
separately and counting the number of nearest neighbors giving an error in the bit considered, the
desired error probabilities can be found. Below, two figures illustrating the error events assuming
a ’0’ is transmitted for the first and third bits are shown. Similar figures can be made for the
second and fourth bit as well. Based upon the above, it is concluded that the bit error probability
is three times higher for the two last bits compared to the two first ones.
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Time-varying bit mappings could be employed to give each user the same time average bit error
probability, e.g., swap the first/second bits with the third/fourth every second transmitted sym-
bol. The receiver can do the reverse in the demapping process. This way, all bits will have the
same error probability measured over a long sequence.

2–72 In the 64-QAM case, each symbol carries 6 bits and the symbol rate is R/6. The symbol error
probability is given by

P (64)
e = 1− (1− p)2

p = 2

(

1−
1√
64

)

Q

(√

3

64− 1

6P

RN0

)

.

In the multicarrier case, each of the 3 carriers transfers 2 bits per symbol. The QPSK symbol
duration is 6/R and each carrier is given a power of P/3. Hence, the QPSK symbol error
probability for one carrier is

P (4)
e = 1−

(

1−Q

(√

P

3

6

R

1

N0

))2

A symbol error occurs if any of the subcarriers are in error. Assuming no inter-carrier interference,

P (MC)
e = 1−

(

1− P (4)
e

)3

From the above, the required power at a symbol error rate of 10−2 can be derived. It amounts
to roughly 8.2 dB in favor of the multicarrier solution. However, there are other issues affecting
the final choice as well, for example the bandwidth required, which is not touched upon in this
problem.

2–73 Considering first the bandwidth constraint, we know that the power spectral density of u(t) is

Su(f) =
1

4
[Sz(f + fc) + Sz(f − fc)]

where, in the case of rectangular QAM, uniform PSK or uniform ASK

Sz(f) =
1

T
E[|xn|2] |G(f)|2

with
|G(f)|2 = (AT )2sinc2(fT )

Hence the fractional power within | ± fc ±B| is

2

∫ BT

0
sinc2(τ)dτ = 2f(BT )

where f(x) is the function plotted in the problem formulation.

The different modulation formats considered in the problem can convey L = 2, 3, 4 or 6 bits
per symbol, so since the bit rate is fixed to 1000 the possible values for the transmission rate
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1/T are 500, 1000/3,250 or 500/3, giving the possible values 1/2, 3/4, 1 or 3/2 for BT . To get
2f(BT ) > 0.9 we need BT ≥ 1 (i.e., 1/2 and 3/4 will not work). Thus the possible values for L
are 4 or 6. This means we can concentrate on investigating further the formats 16-ASK, 16-PSK,
16-QAM and 64-QAM.

The transmitted power is

P =
EgE[|xn|]2

2T

where Eg = ‖g(t)‖2. Assuming the levels −15,−13,−11, . . . , 11, 13, 15 for the 16-ASK constella-
tion, we get E[|xn|2] = 85. Thus, to satisfy the power constraint

Eg <
200

85 · 250

For 16-ASK, noting that N0 = 1/250, we then get

Pe > Q

(√

Eg

N0

)

= Q

(√

200

85

)

> 0.01

Thus 16-ASK will not work.

For 16-PSK, assuming E[|xn|2] = 1, we can use at most Eg = 200/250 to get

Pe < 2Q
(√

200 sin
π

16

)

< 0.006

Hence 16-PSK will work. Problem solved!

For completeness, we list also the corresponding error probabilities for 16-QAM and 64-QAM:
With 16-QAM we can achieve

Pe < 4Q(
√
20) ≈ 0.000015

and 64-QAM will give

Pe =
7

4
Q

(√

50

7

)

≈ 0.0066

Hence, both 16- and 64-QAM will work as well.

2–74 (a) The spectral density of the complex baseband signal is given by Bennett’s formula,

Sz(f) =
1

T
Sx(fT )|G(f)|2.

The autocorrelation of the stationary information sequence is:

Rx(m) = E[x∗
nxn+m] =

{

E[|xn|2] = 5a2 when m = 0
E[x∗

n]E[xn+m] = 0 when m += 0
= 5a2δ(m)

The spectral density of the information sequence is the time-discrete Fourier-transform of
the autocorrelation function:

Sx(fT ) = Fd {Rx(m)} = Fd

{

5a2δ(m)
}

= 5a2

Since the pulse g(t) is limited to [0, T ], it can be written as

g(t) =

√

2

T
sin(πt/T )rectT (t− T/2)
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and the Fourier transform is obtained as

G(f) =

√

2

T
F {sin(πt/T )} ∗ F {rectT (t− T/2)}

F {sin(πt/T )} =
1

2j
(δ(f − 1/2T )− δ(f + 1/2T ))

F {rectT (t− T/2)} = e−jπfTT sinc(fT )

⇒ G(f) =
√
2T

1

2j

(

δ(f − 1/2T ) ∗
(

e−jπfT sinc(fT )
)

− δ(f + 1/2T ) ∗
(

e−jπfT sinc(fT )
))

=
√
2T

1

2j

(

e−jπT (f−1/2T )sinc(fT − 1/2)− e−jπT (f+1/2T )sinc(fT + 1/2)
)

=
j
√
T√
2
e−jπfT

(

e−jπ/2sinc(fT + 1/2)− ejπ/2sinc(fT − 1/2)
)

=
j
√
T√
2
e−jπfT (−jsinc(fT + 1/2)− jsinc(fT − 1/2))

=

√
T√
2
e−jπfT (sinc(fT + 1/2) + sinc(fT − 1/2))

⇒ |G(f)|2 =
T

2
(sinc(fT + 1/2) + sinc(fT − 1/2))2

⇒ Sz(f) =
5a2

2
(sinc(fT + 1/2) + sinc(fT − 1/2))2

The spectral density of the carrier modulated signal is given by

Su(f) =
1

4
[Sz(f − fc) + Sz(f + fc)]

(b) The phase shift in the channel results in a constellation rotation as illustrated in the figure
below. The dashed lines are the decision boundaries (ML detector).

The symbol error probability is

Pr(symbol error) =
1

8

7
∑

i=0

Pr(symbol error | symbol i transmitted)

Due to symmetry, only two of these probabilities have to be studied. Furthermore, since the
signal to noise power ratio is very high, we approximate the error probability by the distance
to the nearest decision boundary.
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d1 d2

Hence,

Pr(symbol error |xn = a) ≈ Q

(

d1
√

N0/2

)

Pr(symbol error |xn = 3a) ≈ Q

(

d2
√

N0/2

)

which gives the error probability

Pr(symbol error) =
1

2
Q

(

d1
√

N0/2

)

+
1

2
Q

(

d2
√

N0/2

)

The distances d1 and d2 can be computed as

d1 = a sinφ ≈ 0.38a

d2 = a(3 cosφ− 2) ≈ 0.77a

2–75 (a) Derive and plot the power spectral density (psd) of v(t).

The modulation format is QPSK. Let’s call the complex baseband signal after the transmit
filter z(t). The power spectral density of z(t) is given by

Sz(f) =
1

T
Sx(fT )|GT (f)|2

where Sx(fT ) is the psd of xn, and GT (f) is the frequency response of gT (t). The autocor-
relation of xn is

Rx(k) = E[xnx
∗
n−k] = δ(k)

which gives the power spectral density as the time-discrete Fourier transform of Rx(k).

Sx(fT ) = 1

The frequency response of the transmit filter is

GT (f) = F{gT (t)} = rect 1
T
(f) =

{

1 |f | < 1
2T

0 otherwise

This gives the psd of z(t)

Sz(f) =
1

T
rect 1

T
(f)

The psd of the carrier modulated bandpass signal v(t) is given by

Sv(f) =
1

4
[Sz(f − fc) + Sz(f + fc)] =

1

4T
[rect 1

T
(f − fc) + rect 1

T
(f + fc)]

which looks like
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Sv(f)

1
4T

1
T

ffc fc

(b) Derive an expression for y(nT ).

First, let’s find an expression for v(t) in the time-domain.

v(t) = :
{

z(t)ej2πfc
}

= :

{ ∞
∑

n=−∞
ejφngT (t− nT )ej2πfct

}

= :

{ ∞
∑

n=−∞
gT (t− nT )ej(2πfct+φn)

}

=
∞
∑

n=−∞
gT (t− nT ) cos(2πfct+ φn) =

1

2

∞
∑

n=−∞
gT (t− nT )

(

ej(2πfct+φn) + e−j(2πfct+φn)
)

Let’s call the received baseband signal, before the receive filter, u(t) = us(t) + un(t), where
us(t) is the signal part and un(t) is the noise part.

u(t) = us(t) + un(t) = 2v(t)e−j(2π(fc+fe)+φe) + 2n(t)e−j(2π(fc+fe)+φe)

Let’s analyze the signal part first.

us(t) =
∞
∑

n=−∞
gT (t− nT )

(

ej(2πfct+φn) + e−j(2πfct+φn)
)

e−j(2π(fc+fe)+φe)

=
∞
∑

n=−∞
gT (t− nT )

(

e−j(2πfet+φe−φn) + e−j(2π(2fc+fe)t+φe+φn)
)

Note that the signal contains low-frequency terms and high-frequency terms (around 2fc).

The receiver filter gR(t) =
sin(2πt/T )

πt is a low-pass filter with frequency response

GR(f) = F{gR(t)} = rect 2
T
(f) =

{

1 |f | < 1
T

0 otherwise

Since fc / 1
T , the high-frequency components of us(t) will not pass the filter. The psd of

the low-frequency terms of us(t) looks like

Sus(f)

−fe−fe − 1
2T −fe +

1
2T

f

Since, fe <
1
2T , the low-frequency part of us(t) will pass the filter undistorted. If we divide

also y(t) into its signal and noise parts, y(t) = ys(t) + yn(t), we get

ys(t) =
∞
∑

k=−∞

gT (t− kT )e−j(2πfet+φe−φk)
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Sample this process at t = nT ,

ys(nT ) =
∞
∑

k=−∞

gT (nT − kT )e−j(2πfenT+φe−φk) =

{

gT ((n− k)T ) =
1

T
δ(n− k)

}

=
1

T
e−j(2πfenT+φe−φn)

Now, let’s analyze the noise.

un(t) = 2n(t)e−j(2π(fc+fe)t+φe) ⇒

yn(t) = un(t) 1 gR(t) =

∫ ∞

−∞
2n(v)e−j(2π(fc+fe)v+φe) sin(2π(t− v)/T )

π(t− v)
dv ⇒

yn(nT ) =

∫ ∞

−∞
2n(v)e−j(2π(fc+fe)v+φe) sin(2π(nT − v)/T )

π(nT − v)
dv

This complicated expression for the noise in y(nT ) can not easily be simplified, so we leave
it in this form. However, the statistical properties of the noise will be evaluated in (c).

(c) Find the autocorrelation function for the noise in y(t).

The mean and autocorrelation function of un(t) are

E[un(t)] = 0

Run(t) = E[un(t)u
∗
n(t− τ)] = 2N0δ(τ)

Hence, un(t) is white. The psd of the noise is Sun(f) = 2N0. The psd of the noise after the
receive filter is

Syn(f) = Sun(f)|GR(f)|2 = 2N0rect 1
T
(f)

which gives the autocorrelation function

Ryn(τ) = 2N0
sin(2πτ/T )

πτ

The noise in y(n) is colored, but still additive and Gaussian (Gaussian noise passing though
LTI-systems keeps the Gaussian property).

(d) Find the symbol-error probability. Assuming that fe = 0, the sampled received signal is

y(nT ) =
1

T
ej(φn−φe) + yn(nT )

The real and imaginary parts of this signal are the decision variables of the detector. The
detector was designed for the ideal case, i.e. the decision regions are equal to the four
quadrants of the complex plane. The mean and variance of the complex noise is

E[yn(nT )] = 0

σ2
yn

= Ryn(0) = 4N0/T

The complex noise is circular symmetric in the complex plane, so the variance of the real
noise (σ2

nRe
) is equal to the variance of the imaginary noise (σ2

nIm
).

yn(n) = nRe(n) + jnIm(n)

σ2
nRe

= σ2
yn
/2 = 2N0/T

σ2
nIm

= σ2
yn
/2 = 2N0/T
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Due to the phase rotation φe, the distances to the decision boundaries are not equal, but

d1 =
1

T
cos(

π

4
− φe)

d2 =
1

T
sin(

π

4
− φe)

where The probability for a correct decision is then

Pr(correct) = (1− Pr(nRe > d1)) (1− Pr(nIm > d2))

=

(

1−Q

(
cos(π4 − φe)√

2N0T

))(

1−Q

(
sin(π4 − φe)√

2N0T

))

The probability of symbol error is then

Pr(error) = 1− Pr(correct) = Q

(
cos(π4 − φe)√

2N0T

)

+Q

(
sin(π4 − φe)√

2N0T

)

−Q

(
cos(π4 − φe)√

2N0T

)

Q

(
sin(π4 − φe)√

2N0T

)

3 Channel Capacity and Coding

3–1 The mutual information is
I(X ;Y ) = H(Y )−H(Y |X)

with

H(Y ) = 1−
1

2
(1− ε) log(1 − ε)−

1

2
(1 + ε) log(1 + ε)

and

H(Y |X) =
1

2
H(Y |X = 0) +

1

2
H(Y |X = 1) =

1

2
h(ε) + 0

where h(x) is the binary entropy function. Hence we get

I(X ;Y ) = 1−
1

2
(1− ε) log(1− ε)−

1

2
(1 + ε) log(1 + ε)−

1

2
h(ε)

= 1−
1

2
(1 + ε) log(1 + ε) +

1

2
ε log ε ≈ 0.85

3–2 (a) The average error probability is

pae = p0ε0 + (1− p0)ε1 = 3p0ε1 + ε1 − p0ε1

=
1

3
(1 + 2p0)ε0 =

1

2
ε0

(b) The average error probability for the negative decision law is

pbe = p0(1− ε0) + p1(1− ε1) = p0 − p0ε0 + p1 − p1ε1

= 1−
1

2
ε0

When ε0 > 1, we will have pbe < pae , which is not possible.

3–3 There are four different bit combinations, X ∈ {00, 01, 10, 11}, output from the two encoders
in the transmitter, where X = 01 denotes that the second, but not the first, encoder has sent
a pulse over the channel. Similarly, two different bit values can be received, Y ∈ {0, 1}, where
1 denotes a pulse detected and 0 denotes the absence of a pulse. Based on this, the following
transition diagram can be drawn (other possibilities exist as well, for example three inputs and a
non-uniform X):
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X Y

Pf

1− Pf

Pd,1

Pd,1

1− Pd,1

1− Pd,1

Pd,2

1− Pd,2

00

01

10

11

0

1

The channel capacity is given by C = maxp(x) I(X ;Y ). However, in this problem, the probabilities
of the transmitted bits are fixed and equal. Hence, the full capacity of the channel might not be
used, but nevertheless the amount of information transmitted per channel use is given by

I(X ;Y ) = H(Y )−H(Y |X) = H(Y )−
∑

p(x)H(Y |X = x) ,

where p(x) = 1/4,
H(Y ) = h([1− Pf + 2Pd,1 + Pd, 2]/4)

and h(a) = −a log a − (1 − a) log(1 − a) denotes the binary entropy function. The conditional
entropies are obtained from the transition diagram as

H(Y |X = 00) = h(Pf )

H(Y |X = 01) = h(Pd,1)

H(Y |X = 10) = h(Pd,1)

H(Y |X = 11) = h(Pd,2) .

Hence, the amount of information transmitted per channel use and the answer to the first part is

h([1 − Pf + 2Pd,1 + Pd, 2]/4)− [h(Pf ) + 2h(Pd,1) + h(Pd,2)] /4

which in the idealized case Pd,1 = Pd,2 = Pf = 0 in the second part of the problem equals
approximately 0.81 bits/channel use. If the two transmitters would not interfere with each other
at all, 2 bits/channel use could have been transfered (1 bit per user). The advantage with a scheme
similar to the above is of course that the two users share the same bandwidth. Schemes similar
to the above are the foundation to CDMA techniques, used in WCDMA, a recently developed
3rd generation cellular communication system for both voice and data.

3–4 Given the figures in the problem, a simple link budget in dB is given by

Prx = Ptx +Grx antenna − Lfree space = 20 dBW+ 5 dB − 20 log10(4πd/λ) = −263 dBW (3.10)

where λ = 3 · 108/10 · 109 m and d = 6.28 · 1011 m. The temperature in free space is typically a
few degrees above 0 K. Assume ϑ = 5 K, then N0 = kϑ = 6.9 · 10−23 W/Hz. It is known that
Eb/N0 must be larger that −1.6 dB for reliable communication to be possible. Solving for Rb

results in Rb = Prx/N010−1.6/10 = .001 bit/s, which is far less than the required 1 kbit/s. Hence,
the space probe should not be launched in its current design. One possible improvement is to
increase the antenna gain, which is quite low.

3–5 (a) To determine the entropy H(Y ) we need the output probabilities of the channel. If we use
the formula

fY (y) =
3
∑

k=1

fX(xk)fY |X(y|xk)

we obtain 



fY (y1)
fY (y2)
fY (y3)



 =





1− ε δ 0
ε δ γ
0 δ 1− γ









fX(x1)
fX(x2)
fX(x3)



 .
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It is well known that the entropy of a variable is maximum if the variable is uniformly
distributed. Can we in our case select fX(x) so that Y is uniform? This is equal to check
if the following linear equation system has (at least) one solution that satisfies fX(x1) +
fX(x2) + fX(x3) = 1,





1/3
1/3
1/3



 =





1− ε δ 0
ε δ γ
0 δ 1− γ









fX(x1)
fX(x2)
fX(x3)



 .

First we neglect the constraint on the solution and concentrate on the linear equation system
without constraint. The determinant of the matrix is

(1− ε)δ(1− γ)− (1− ε)γδ − δε(1− γ)

which is (check this!) zero in our case. The solution to the unconstrained system is thus not
unique. To see this add/subtract rows to obtain





1/3
1−2ε
3(1−ε)

1/3



 =





1− ε δ 0

0 δ(1−2ε)
1−ε γ

0 δ 1− γ









fX(x1)
fX(x2)
fX(x3)



 ,





1/3
1−2ε
3(1−ε)

0



 =





1− ε δ 0

0 δ(1−2ε)
1−ε γ

0 0 1−2γ−2ε+3γε
1−2ε









fX(x1)
fX(x2)
fX(x3)



 .

where we have assumed that ε += 1 and ε += 1/2. If we “plug” in the values given for the
transition probabilities the equation system becomes





1/3
1/6
0



 =





2/3 1/3 0
0 1/6 1/3
0 0 0









fX(x1)
fX(x2)
fX(x3)



 .

From the last equation system we obtain

fX(x1) = fX(x3) =
1− fX(x2)

2
.

If we note that

fX(x1) + fX(x2) + fX(x3) =
1− fX(x2)

2
+

1− fX(x2)

2
+ fX(x2) = 1,

we realize that the maximum entropy of the output variable Y is given by log2 3 and that
this entropy is obtained for the input probabilities characterized by

fX(x1) = fX(x3) =
1− fX(x2)

2
.

(b) As usual we apply the identity

H(Y |X) =
3
∑

k=1

fX(xk)H(Y |X = xk).

The entropy for Y , given X = xk, is in our case

H(Y |X = x1) = −
3
∑

l=1

fY |X(yl|x1) log2 fY |X(yl|x1)

= −(1− ε) log2(1 − ε)− ε log2 ε = Hb(ε)

H(Y |X = x2) = log2 3

H(Y |X = x3) = Hb(δ)

The answer to the question is thus

H(Y |X) = fX(x1)Hb(ε) + fX(x2) log2 3 + fX(x3)Hb(δ)
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(c)
C ≤ max

fX (x)
H(Y )− min

fX (x)
H(Y |X).

The first term in this expression has already been computed and is equal to log2 3. We now
turn to the second term

H(Y |X) = fX(x1)(Hb(ε)−Hb(δ)) + fX(x2)(log2 3−Hb(ε)) +Hb(δ),

where we have used the identity fX(x1) + fX(x2) + fX(x3) = 1. If we “plug” in the values
given for ε and δ we have

H(Y |X) = fX(x2)(log2 3−Hb(1/3)) +Hb(1/3).

From this expression we clearly see that H(Y ) is minimized when fX(x2) = 0 and the min-
imum is Hb(1/3). That is,

C ≤ log2 3−Hb(1/3)

That this upper bound is attainable is realized by noting that the maxima ofH(Y ) is attained
for fX(x1) = fX(x3) = 1/2 and fX(x2) = 0. The minima of H(Y |X) is obtained for the
same input probabilities and the bound is thus attainable. Finally, the channel capacity is

C = log2 3−Hb(1/3) =
2

3
log2 2 =

2

3
bits/symbol.

3–6 (a) Let X ∈ {0, 1} be the input to channel 1, and let Y ∈ {0, 1} be the corresponding output.
We get

pY |X(0|0) = 1/2 pY |X(1|0) = 1/2 pY |X(0|1) = 0 pY |X(1|1) = 1 .

To determine the capacity we need an expression for the mutual information I(X ;Y ). As-
sume that

pX(0) = q pX(1) = 1− q ,

then
pY (0) = q/2 pY (1) = 1− q/2 .

We have I(X ;Y ) = H(Y )−H(Y |X) where

H(Y |X) = H(Y |X = 0)pX(0) +H(Y |X = 1)pX(1) = Hb

(
1

2

)

q + 0 · (1− q) = qHb

(
1

2

)

H(Y ) = Hb (q/2)

Here Hb(ε) is the binary entropy function

Hb(ε) = −ε log2 ε− (1 − ε) log2(1− ε).

We get
I(X ;Y ) = H(Y )−H(Y |X) = Hb (q/2)− q

The capacity is, by definition

C = max
pX(x)

I(X ;Y ) = max
q

{

Hb (q/2)− q
︸ ︷︷ ︸

=f(q)

}

Differentiating f(q) gives

df(q)

dq
=

1

2
log2

2− q

q
− 1 = 0 → max

q
f(q) = f(2/5) = Hb(0.2)− 0.4 ≈ 0.3219
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(b) Consider first the equivalent concatenated channel. Let Z ∈ {0, 1} be the output from
channel 2. Then we get

pY Z|X =
pY ZX

pX
=

pY ZX

pX

pXY

pXY
=

pY ZX

pXY

pXY

pX
= pZ|XY pY |X = pZ|Y pY |X

where the last step follows from the fact pZ|YX = pZ|Y . Note that pZ|X =
∑

y pZY |X and
we get

pZ|X(0|0) =
∑

y=0,1

pZ|Y (0|y)pY |X(y|0) =
1

2
· 1 +

1

2
·
1

3
=

2

3

pZ|X(1|0) = pZ|X(0|1) =
1

3
pZ|X(1|1) =

2

3

The equivalent channel is illustrated below.

00000

1 111 1

1/2

1/2
1/3

1/3
1/3

2/3

2/3

2/3

=⇒

Channel 1 Channel 2 Channel 1+2

As we can see, this is the “Binary Symmetric Channel” with crossover probability 1/3.
Hence we know that

C = 1−Hb (1/3) ≈ 0.0817

3–7 Let {Ai}4i=1 be the 2-bit output of the quantizer. Then two of the possible values of Ai have
probabilities a2/2 and the other two have probabilities 1/2 − a2/2, where a = 1 − b. Since
the input process is memoryless, the output process of the quantizer hence has entropy rate
H̄ = 1/2(1 + Hb(a2)) [bits per binary symbol], where Hb(x) = −x log x − (1 − x) log(1 − x)
[bits]. The binary symmetric channel has capacity C = 1−Hb(0.02) ≈ 0.859 [bits]. In order for
the source-channel coding to be able to give asymptotically perfect transmission, it must hold
that H̄ < C. Hence, we must have Hb(a2) < 0.718, which gives (approximately) a2 < 0.198 or
a2 > 0.802 (c.f. the figure below). Hence we have that 1 − b < 0.4450 or 0.8955 < 1 − b, giving
that error-free transmission is possible only if

0 < b < 0.104, or 0.555 < b < 1,

which is the sought-for result.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3–8 The capacity of the described AWGN channel is

C = W log

(

1 +
P

WN0

)

= 1000 log 1.7 ≈ 765.53 [bits/s]
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The source can be transmitted without errors as long as its entropy-rate H , in bits/s, satisfies
H < C. Since the source is binary and memoryless we have

H =
1

Ts

(

− p log p− (1− p) log(1− p)
)

[bits/s]

Solving for p in H < C gives

−p log p− (1− p) log(1 − p) < CTs ≈ 0.7655 ⇒ b < p < 1− b

with b ≈ 0.2228.

3–9 Let p(x) be a possible pmf for X , then the capacity is

C = max
p(x)

I(X ;Y ) = max
p(x)

(

H(Y )−H(Y |X)
)

The output entropy H(Y ) is maximized when the Y ’s are equally likely, and this will happen if
p(x) is chosen to be uniform over {0, 1, 2, 3}. For the conditional output entropy H(Y |X) it holds
that

H(Y |X) =
∑

x

p(x)H(Y |X = x)

Since H(Y |X = x) has the same value for any x ∈ {0, 1, 2, 3}, namely

H(Y |X = x) = −ε log ε− (1− ε) log(1 − ε) = h(ε)

(for any fixed x there are two possible Y ’s with probabilities ε and (1− ε)), the value of H(Y |X)
cannot be influenced by chosing p(x) and hence I(X ;Y ) is maximized by maximizing H(Y ) which
happens for p(x) = 1/4, any x ∈ {0, 1, 2, 3} =⇒

C = log 4− h(ε) = 2− h(ε)

bits per channel use.

3–10 Let X denote the input and Y the output, and let π = Pr(X = 0). Then

p0 = Pr(Y = 0) = π(1− α) + (1 − π)β, p1 = Pr(Y = 1) = πα + (1− π)(1 − β)

and

I(X ;Y ) = H(Y )− πH(Y |X = 0)− (1 − π)H(Y |X = 1)

= −p0 log p0 − p1 log p1 − πg(α)− (1 − π)g(β)

where
g(x) = −x log x− (1− x) log(1− x)

is the binary entropy function. Taking derivative of I(X ;Y ) w.r.t π and putting the result to
zero gives

log
p1
p0

= g(α)− h(β) ⇐⇒ π =
β(1 + f)− 1

(α+ β − 1)(1 + f)

where f = 2g(α)−g(β). Using β = 2α gives

π =
2α(1 + f)− 1

(3α− 1)(1 + f)

with
f = 2g(α)−g(2α)

The capacity is then given by the above value for π used in the expression for I(X ;Y ).
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3–11 (a)

H =





1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1



 =
[

PT I
]

G =
[

I P
]

=







1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1







You can check that GHT = 0

(b) The weights of all codewords need to be examined to get the distance profile.

data codeword weight

0000 0000000 0
0001 0001011 3
0010 0010101 3
0011 0011110 4
0100 0100110 3
0101 0101101 4
0110 0110011 4
0111 0111000 3
1000 1000111 4
1001 1001100 3
1010 1010010 3
1011 1011001 4
1100 1100001 3
1101 1101010 4
1110 1110100 4
1111 1111111 7

The minimum Hamming weight is 3. The distance profile is shown below

Multiplicity

Hamming Weight

1

7

3 4 7

(c) This code can always detect up to 2 errors because the minimum Hamming distance is 3.

(d) This code always detects up to 2 errors on the channel and corrects 1 error. If there are 2
errors on the channel the correction may make a mistake although the detection will indicate
correctly that there was an error on the channel.

(e) The syndrome can be calculated using the equation given below:

s = eHT
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Error e Syndrome s

0000000 000
0000001 001
0000010 010
0000100 100
0001000 011
0010000 101
0100000 110
1000000 111

Syndrome Table

3–12 By studying the 8 different codewords of the code it is straightforward to conclude that the
minimum distance is 3.

3–13 Binary block code with generator matrix

G =





1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1





(a) The given generator matrix directly gives n = 7 (number of columns), k = 3 (number of
rows) and rate R = 3/7. The codewords are obtained as c = xG for all different x with
three information bits. This gives

C =
{

0000000, 1110100, 0111010, 1001110, 0011101, 1101001, 0100111, 1010011
}

Looking at the codewords we see that dmin = 4 (weight of non-zero codeword with least
number of 1’s)

(b) The generator matrix is clearly given in cyclic form and we can hence identify the generator
polynomial as

g(p) = p4 + p3 + p2 + 1

One way to get the parity check polynomial is to divide p7 + 1 with g(p). This gives

h(p) =
p7 + 1

g(p)
= p3 + p2 + 1

(c) The generator matrix in systematic form is obtained from the given G (in cyclic form) as

Gsys =





1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1





(Add 1st and 2nd rows and put the result in 1st row. Add 2nd and 3rd rows and put the
result in 2nd row. Keep the 3rd row.) The systematix generator matrix then gives the
systematic parity check matrix as

Hsys =







1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1







(d) The dual code has parity check matrix

Hdual =





1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1





and we see that this is the parity check matrix of the Hamming (7, 4) code. (All different non-
zero combinations of 3 bits as columns.) Hence we know that the dual code has minimum
distance 3 and can correct all 1-bit error patters and no other error patterns. Consequently

pe = Pr(> 1 error) = 1− Pr( 0 or 1 error) = 1− (1− ε)n − nε(1− ε)n−1 ≈ 0.002
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3–14 There are several possible solutions to this problem. One way is to encode the 16 species by four
bits. C picks four flowers first, which results in four words of four bits each. Put these in a matrix
as illustrated below, where each column denotes one flower.

Flower 4Flower 1 Flower 2 Flower 3

Now, use a systematic Hamming(7,4) block code to encode each row and store the three parity
bits in the three rightmost columns, resulting in

Flower 1

Code word 1

A makes his choice of flowers according to the Hamming(7,4) code. When C replaces one of the
flowers with a new one, i.e., changes one of the columns above, he introduces a (possible) single-bit
error in each of the code words. Since the code has a minimum distance of 3, the Hamming(7,4)
code can correct this and B can tell the original flower sequence.

Note that, by distributing the bits in a smart way, the total encoding scheme can recover from
a 4-bit error even though each Hamming code only can correct single bit errors. The idea of
reordering the bits in a bit sequence before transmitting them over a channel and doing a reverse
reordering before decoding is used in real communication systems and is known as interleaving.
This way, single bit error correcting codes can be used for correcting burst errors. Interleaving
will be discussed in more detail in the advanced course.

3–15 The inner code words, each consisting of three coded bits, are 000, 101, 011, 110, and the mutual
Hamming distance between any two code words is dH = 2. Hence, the squared Euclidean distance
is d2E = 4dHEc. The decoder chooses the code word closest (in the Euclidean sense) to the received
word. The word error probability for soft decision decoding of a block code is hard to derive,
but can be upper bounded by union bound techniques. At high SNRs, this bound is a good
approximation. Each code word has three neighbors, all of them at distance dE. Hence,

Pe,inner ≈ 3Q

(√

d2E/4

N0/2

)

= 3Q

(√

2dHEc

N0

)

.

If the wrong inner code word is chosen, with probability 2/3 the first information bit is in error
(similar for the other infomration bit). Hence,

p =
2

3
Pe ,

where p is the bit error probability after the inner decoder. After deinterleaving, all the bits are
independent of each other. The Hamming code has dmin = 3 and can correct at most one bit
error. The word error probability is thus

Pe,outer = 1− Pr{no errors}− Pr{one error} = 1− (1− p)7 −
(
7

1

)

p(1− p)6 .
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With the given SNR of 10 dB, Pe,inner ≈ 1.16 · 10−5, p ≈ 7.73 · 10−6, and Pe,outer ≈ 1.26 · 10−9

are obtained. The inner code chosen above is not a good one and in a practical application, a
powerful (convolutional) code would probably be used rather than the weak code above.

3–16 The code consists of four codewords: 000, 011, 110 and 101. Since the full ability of the code to
detect errors is utilized, an undetected error pattern must result in a different codeword from the
transmitted one.

Let c be the transmitted codeword. Then

Pr(undetected error|c = 000)

= Pr(r = 011|c = 000) + Pr(r = 110|c = 000) + Pr(r = 101|c = 000)

= 3ε2(1− ε)

Pr(undetected error|c = 011)

= Pr(r = 000|c = 011) + Pr(r = 110|c = 011) + Pr(r = 101|c = 011)

= (1− ε)γ2 + 2ε(1− γ)γ

Pr(undetected error|c = 101)

= Pr(r = 000|c = 101) + Pr(r = 011|c = 101) + Pr(r = 110|c = 101)

= γ2(1− ε) + 2γε(1− γ)

Pr(undetected error|c = 110)

= Pr(r = 000|c = 110) + Pr(r = 011|c = 110) + Pr(r = 101|c = 110)

= γ2(1− ε) + 2γε(1− γ)

That is, we get the average probability of undetected error as

Pr(undetected error) =
3

4

(

ε2(1− ε) + γ2(1 − ε) + 2γε(1− γ)
)

=
3

4

(

(ε2 + γ2)(1 − ε) + 2γε(1− γ)
)

3–17 (a) With the given generator polynomial g(x) = 1+x+x3 we obtain the following non-systematic
generator matrix

G =







1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1






.

To obtain the systematic generator matrix, add the fourth row to the first and second rows
to obtain

G1 =







1 0 1 0 0 1 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1






.

Now, to compute the systematic generator matrix add the third row to the first row

GSYS =







1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1






.
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The parity check matrix is given by

H =
[

PT I3
]

where P are the three last columns of GSYS, i.e.,

H =





1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1



 .

This matrix is already on a systematic form.

(b) We calculate the mutual information of X and Y with the formula

I(X ;Y ) = H(Y )−H(Y |X)

First, the entropy of Y given X is computed using the two expressions below.

H(Y |X) =
2∑

j=1

fX(xj)H(Y |X = xj)

H(Y |X = xj) = −
2
∑

i=1

fY |X(yi|xj) log(fY |X(yi|xj))

These expressions result in

H(Y |X = x1) = −
2
∑

i=1

fY |X(yi|x1) log(fY |X(yi|x1))

= −(1− ε) log(1− ε)− ε log(ε)

= h(ε)

H(Y |X = x2) = h(δ)

H(Y |X) = p(h(ε)− h(δ)) + h(δ)

To calculate the entropy of Y , we have to determine the probability density function.

fY (y1) =
2
∑

j=1

fX(xj)fY |X(y1|xj)

= p(1− ε) + (1 − p)δ = δ + p(1− ε− δ)

fY (y2) = 1− fY (y1)

With the function h(x) the entropy can now be written

H(Y ) = h(δ + p(1− ε− δ)).

Finally, the mutual information can be written

I(X ;Y ) = h(δ + p(1− ε− δ))− p(h(ε)− h(δ))− h(δ)

The channel capacity is obtained by first maximizing I(X ;Y ) with respect to p and then
calculating the corresponding maximum by plugging the maximizing p into the formula for
the mutual information. That is,

C = max
p

I(X ;Y )
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(c) According to the hint, there will be no block error as long as no more than t = (dmin−1)/2 =
(3− 1)/2 = 1 bit error occur during the transmission. This holds for exactly all code words.
We denote the bit error probability with pe and the block error probability with pb.

pb = Pr{block error} = 1− Pr{no block error} = 1− Pr{0 or 1 bit error}

Using well known statistical arguments pb can be written

pb = 1−
[(

7

0

)

(1− pe)
7 +

(
7

1

)

pe(1− pe)
6

]

= 1− (1 − pe)
7 − 7pe(1− pe)

6.

By numerical evaluation (Newton-Raphson) the bit error rate corresponding to pb = 0.001
is easily calculated to pe = 0.00698.

3–18 (a) The 4-AM Constellation with decision regions is shown in the figure below.

00 01 1011

bit1 = 1

bit2 = 1

−3
√

Es
5 3

√

Es
5−

√

Es
5

√

Es
5

The probability of each constellation point being transmitted is 1/4. the probability of noise
perturbing the transmit signal by a distance greater than

√

Es/5 in one direction is given
by

P = Q

(√

2Es

5N0

)

An error in bit1 is most likely caused by the 01 symbol being transmitted, perturbed by
noise, and the receiver interpreting it as 11 or vice versa. Hence the probability of an error
in bit1 is

Pb1 =
1

4
P +

1

4
P =

1

2
Q

(√

2Es

5N0

)

An error in bit2 could be cause by transmit symbol 00 being received as 01 or symbol 11
being received as 10 or 10 being received as 11 or 01 being received as 00. Hence bit2 has
twice the error probability as bit1

Pb2 = Q

(√

2Es

5N0

)

It has been assumed that the cases where there noise perturbs the transmitted signal by
more than 3

√

Es/5 are not significant.

(b) The probability of e errors in a block of size n is given by the binomial distribution,

Pe(e) =

(

n
e

)

P e
cb(1− Pcb)

n−e

where Pcb is the channel bit error probability.
When there are t errors or less then the decoder corrects them all. When there are more
than t errors it is assumed that the decoder passes on the systematic part of the bit stream
unaltered, so the output error rate will be e/n. The post decoder error probability Pd can
then be calculated as a sum according to

Pd =
n
∑

e=t+1

e

n
Pe(e)
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3–19 Assume that one of the 2k possible code words is transmitted. To design the system, the worst
case needs to be considered, i.e., probability of bit error is 1/2. Therefore, at the receiver, any
one of 2n possible combinations is received with equal likelihood. The three possible events at
the receiver are

• the received word is decoded as the transmitted code word (1 possibility)

• the received word is corrupted and detected as such (2n − 2k possibilities)

• the received word is decoded as another code word than transmitted, i.e., a undetectable
error (2k − 1 possibilities)

From this, it is deduced that the probability of accepting a corrupted received word is

Pfd =
2k − 1

2n
≈ 2−(n−k) ,

i.e., the probability of undetectable errors depends on the number of parity bits appended by the
CRC code. A probability of false detection of less than 10−10 is required.

Pfd ≈ 2−(n−k) < 10−10 ,

(n− k) log10(2) > 10 ,

k ≤ 94 .

3–20 QPSK with Gray labeling is illustrated below.

1011

01 00

The energy per symbol is given as Es. Let the energy per bit be denoted Eb = Es/2. Studying
the figure, we then see that the signaling is equivalent to two independent uses of BPSK with
bit-energy Eb. To convince ourselves that this is indeed the case, note that for example the first
bit is 0 in the first and fourth quadrant and 1 in the second and third. Hence, with ML-detection
the y-axis works as a “decision threshold” for the first bit. Similarly, the x-axis works as a decision
threshold for the second bit, and the two “channels” corresponding to the two different bits are
independent binary symmetric channels with bit-error probability

q ! Pr(bit error) = Q

(√

2Eb

N0

)

= Q

(√

Es

N0

)

= Q
(√

100.7
)

≈ 0.012587

(a) There exist codes that can achieve pe → 0 at all rates below the channel capacity C of
the system. Since we have discovered that the transmission is equivalent to using a binary
symmetric channel (BSC) with crossover probability q ≈ 0.0126 we have

C = 1−Hb(q) ≈ 0.9025 [bits per channel use]

where Hb(x) is the binary entropy function. All rates Rc < C ≈ 0.9 are hence achievable.
In words this means that as long as the fraction of information bits in a codeword (of a code
with very long codewords) is less than about 90 % it is possible to convey the information
without errors.

(b) The systematic form of the given generator matrix is

Gsys =







1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1






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and we hence get the systematic parity check matrix as

Hsys =





1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1





Since all different non-zero 3-bit patterns are columns of Hsys we see that the given code is
a Hamming code, and we thus know that it can correct all 1-bit error patterns and no other
error patterns. (To check this carefully one may construct the corresponding standard array
and note that only 1-bit errors can be corrected and no other error patterns will be listed.)
The exact block error rate is hence

pe = Pr(> 1 error) = 1− Pr(0 or 1 error) = 1− (1− q)n − nq(1− q)n−1 ≈ 0.0032

(c) The energy per information bit is E′
b = (n/k)Eb. With

q′ = Q





√

2E′
b

N0



 = Q(
√

7 · 100.7/4 ) ≈ 0.00153

the “block error probability” obtained when transmitting k = 4 uncoded information bits is

p′e = 1− Pr(all 4 bits correct) = 1− (1− q′)4 ≈ 0.0061 > pe

Hence there is a gain, in the sense that using the given code results in a higher probability
of transmitting 4 bits of information without errors.

3–21 (a) Systematic generator matrix

Gsys =













1 0 0 0 0 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1 1 1 0 0 1 1 0
0 0 0 0 0 1 0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 1 1 1 0 1 0 0 0 1













(b) Systematic parity-check matrix

Hsys =















1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 1















Minimum distance is dmin = 5 since < 5 columns in Hsys cannot sum to zero, while 5 can
(e.g., columns 1, 8, 9, 10, 12).

(c) The code can correct at least t = 2 errors, since dmin = 5 =⇒

Pr(block error) ≤ 1−Pr(≤ 2 errors) = 1−(1−ε)n−nε(1−ε)n−1−
(
n

2

)

ε2(1−ε)n−2 ≈ 0.0362

(d) The code can surely correct all erasure-patterns with less than dmin erasures, since such
patterns will always leave the received word with at least n− dmin + 1 correct bits that can
uniquely identify the transmitted codeword. Hence

Pr(block error) ≤ 1−
4
∑

i=0

(
n

i

)

αi(1− α)n−i ≈ 0.00061468
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3–22 We will need the systematic generator and parity check matrices of the (15, 7) code. Based on
g(x) we can derive the systematic H-matrix as

H =















1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 1















corresponding to the generator matrix

G =













1 0 0 0 0 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1 1 1 0 0 1 1 0
0 0 0 0 0 1 0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 1 1 1 0 1 0 0 0 1













(a) The output codeword from the (7, 4) code is

0011101

Via the systematic G-matrix for the (15, 7) code we then get the transmitted codeword

001110100010000

(b) Studying the H-matrix one can conclude that the minimum distance of the (15, 7) code is
dmin = 5 since at least 5 columns need to be summed up to produce a zero column.

Based on the H-matrix we can compute the syndrome of the received word for the (15, 7)
decoder as

sT = (00000011)

Since adding the last 2 columns from H to s gives a zero column, the syndrome corresponds
to a double error in the last 2 positions. Since dmin = 5 this error is corrected to the
codeword

000101110111111

Since the codeword is in systematic form, the corresponding input bits to the (15, 7) code
are

0001011

which is the codeword in the (7, 4) code corresponding to â = (0001).

(c) We know that the (7, 4) code is cyclic. From its G-matrix we get its generator polynomial
as

g1(x) = x3 + x+ 1

The generator polynomial of the overall code then is

(x8 + x7 + x6 + x4 + 1)(x3 + x+ 1) = x11 + x10 + x7 + x6 + x5 + x4 + x3 + x+ 1

and the cyclic generator matrix of the overall code is easily obtained as







1 1 0 0 1 1 1 1 1 0 1 1 0 0 0
0 1 1 0 0 1 1 1 1 1 0 1 1 0 0
0 0 1 1 0 0 1 1 1 1 1 0 1 1 0
0 0 0 1 1 0 0 1 1 1 1 1 0 1 1






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3–23 (a) The systematic generator matrix has the form G = [ I P], where the polynomial describing
the i:th row of P can be obtained from pn−i mod g(p), where n = 7 and i = 1, 2, 3.

p6 mod p4 + p2 + p+ 1 = p2p4 = p2(p2 + p+ 1) = p4 + p3 + p2 = p2 + p+ 1 + p3 + p2 = p3 + p+ 1

p5 mod p4 + p2 + p+ 1 = pp4 = p(p2 + p+ 1) = p3 + p2 + p

p4 mod p4 + p2 + p+ 1 = p2 + p+ 1

Hence, the generator matrix in systematic form is

G =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1





(b) To find the minimum distance we list the codewords.

Input Codeword

000 0000000
001 0010111
010 0101110
011 0111001
100 1001011
101 1011100
110 1100101
111 1110010

The minimum distance is dmin = 4.

(c) The received sequence consists of three independent strings of length 7 (y = [y1y2y3]),
since the input bits are independent and equiprobable and since the channel is memoryless.
Also the encoder is memoryless, unlike the encoder of a convolutional encoder. Hence, the
maximum likelihood sequence estimate is the maximum likelihood estimates of the three
received strings. If we call the three transmitted codewords [c1c2c3], the ML estimates of
[c1c2c3] are the codewords with minimum Hamming distances from [y1y2y3]. The estimated
codewords and corresponding information bit strings are obtained from the table above.

ĉ1 = 1011100

ĉ2 = 1100101

ĉ3 = 1110010

⇒
x̂1 = 101

x̂2 = 110

x̂3 = 111

To conclude, x̂ = [x̂1x̂2x̂3] = [101110111].

3–24 (a) The generator matrix is for example:

G =









1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 1 1 1
0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 1 1 1 1 1









(b) The coset leader is [0000000010]
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(c) The received vectors of weight 5 that have syndrome [0 0 0 1 0] are

1 0 0 0 0 1 1 1 1 0
1 0 1 0 0 1 1 0 0 1
0 1 1 0 0 0 1 0 1 1
0 0 0 0 1 1 1 1 0 1
0 1 0 0 1 1 0 0 1 1
0 0 1 0 1 1 1 0 1 0
1 0 1 0 1 0 0 1 1 0
0 1 1 0 1 1 0 1 0 0
1 1 1 0 1 0 1 0 0 0

The received vectors of weight 7 that have syndrome [0 0 0 1 0] are

1 1 1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1 1 1

(d) The syndrome is [1 0 1 0 1]. The coset leader is [0 0 0 1 0 0 0 1 0 0].

(e) For example
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
1 1 0 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0 0

The coset leaders should be associated to followed syndromes

0 0 1 0 1
1 1 0 0 1
1 0 0 1 1
1 1 0 1 0
0 1 0 1 1

3–25 For any m ≥ 2 the n = 2m, k = 2m −m− 1 and r = n− k = m+1 extended Hamming code has
as part of its parity check matrix the parity check matrix of the corresponding Hamming code in
rows 1, 2, . . . , r − 1 and columns 1, 2, . . . , n− 1. The presence of this matrix in the larger parity
check matrix of the extended code guarantees that all non-zero codewords have weight at least 3
(since the minimum distance of the Hamming code is 3). The zeros in column n from row 1 to
row r − 1 do not influence this result.

In addition, the last row of the parity check matrix of the extended code consists of all 1’s. Since
the length n = 2m of the code is an even number, this forces all codewords to have even weight.
(The sum of an even number of 1’s is 0 modulo 2.)

Hence the weight of any non-zero codeword is at least 4. Since the Hamming code has codewords
of weight 4 there are codewords of weight 4 also in the extended code ⇒ dmin = 4.

3–26 (a) Since the generator matrix is written in systematic form, the parity check matrix is easily
obtained as

H =





1 1 1 0 0
0 1 0 1 0
1 1 0 0 1





and the standard array, with the addition of the syndrome as the rightmost column, is given
by (actually, only the first and last columns are needed)
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00000 01111 10101 11010 000
00001 01110 10100 11011 001
00010 01101 10111 11000 010
00100 01011 10001 11110 100
01000 00111 11101 10010 111
10000 11111 00101 01010 101
00011 01100 10110 11001 011
00110 01001 10011 11100 110

Hard decisions on the received sequence results in x = 10100 and the syndrome is s = xHT =
001, which, according to the table above, corresponds to the error sequence e = 00001.
Hence, the decoded sequence is ĉ = x+ e = 10101.

(b) Soft decoding is illustrated in the figure below. The decoded code word is 10101, which is
identical to the one obtained using hard decoding. However, on the average an asymptotic
gain in SNR of approximately 2 dB is obtained with soft decoding.
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3–27 To solve the problem we need to compute Pr(r|x) for all possible x. Since c = xG we have
Pr (r|x) = Pr (r|c). The decoder chooses the information block x that corresponds to the code-
word c that maximizes Pr(r|c) for a given r. Since the channel is memoryless we get

Pr (r|c) =
7
∏

i=1

Pr (ri|ci) .
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With r = [1, 0, 1,3,3, 1, 0] we thus get

Information block Codeword Metric
x c Pr (r|c)

x1x2x3 c1c2c3c4c5c6c7
000 0000000 0.13 · 0.62 · 0.32
001 0101101 0.15 · 0.32
010 0010111 0.12 · 0.63 · 0.32
011 0111010 0.12 · 0.63 · 0.32
100 1100011 0.13 · 0.62 · 0.32
101 1001110 0.11 · 0.64 · 0.32
110 1110100 0.12 · 0.63 · 0.32
111 1011001 0.12 · 0.63 · 0.32

The “erasure symbols” give the same contribution, 0.12, to all codewords. Because of symmetry
we hence realize that these symbols should simply be ignored. Studying the table we see that the
codeword [1, 0, 0, 1, 1, 1, 0] maximizes Pr(r|c). The corresponding information bits are [1, 0, 1].

3–28 Based directly on the given generator matrix we see that n = 9, k = 3 and r = n− k = 6.

(a) The general form for the generator polynomial is

g(p) = pr + g2p
r−1 + · · ·+ grp+ 1

We see that the given G-matrix is the “cyclic version” generated based on the generator
polynomial, so we can identify

g(p) = p6 + p3 + 1

The parity check polynomial can be obtained as

h(p) =
pn + 1

g(p)
=

p9 + 1

p6 + p3 + 1
= p3 + 1

(b) We see that in this problem the cyclic and systematic forms of the generator matrix are equal,
that is, the given G-matrix is already in the systematic form. Hence we can immediately
get the systematic H-matrix as

Gsys =
[

Ik|P
]

⇒ Hsys =
[

PT |Ir
]

with

P =





1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





The codewords of the code can be obtained from the generator matrix as

000000000
100100100
010010010
001001001
110110110
011011011
101101101
111111111

Hence we see that dmin = 3.

(c) The given bound is the union bound to block-error probability. Since the code is linear,
we can assume that the all-zeros codeword was transmitted and study the neighbors to the
all-zero codeword. The Ni terms correspond to the number of neighboring codewords at
different distances. There are 3 codewords at distance 3, 3 at distance 6 and one at distance
9, hence N1 = N2 = 3 and N3 = 1. The Mi terms correspond to the distances according to
M1 = 3,M2 = 6,M3 = 9.
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3–29 First we study the encoder and determine the structure of the trellis. For each new bit we put
into the encoder there are two old bits. The memory of the encoder is thus 2 bits, which tells
us that the encoder consists of 22 states. If we denote the bits in the register with xk, xk−1 and
xk−2 with xk being the leftmost one, the following table is easily computed.

xk Old state of encoder (xk−1 and xk−2) c1 c2 c3 New state (xk and xk−1)
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 1 0 0 1 1 0 1
0 1 1 1 0 0 0 1
1 0 0 0 0 1 1 0
1 0 1 1 1 0 1 0
1 1 0 0 1 0 1 1
1 1 1 1 0 1 1 1

The corresponding one step trellis looks like

0(000)

1(010)

0(111)

1(001)

1(110)

0(011)

1(101)

0(100)

0 00 0

0 10 1

1 01 0

1 1 1 1

In the next figure the decoding trellis is illustrated. The output from the transmitter and the
corresponding metric is indicated for each branch. The received sequence is indicated at the top
with the corresponding hard decisions below. The branch metric indicated in the trellis is the
number of bits that differ between the received sequence and the corresponding branch.

(11-1);0

(1,1,-1)

(1.51,0.63,-0.04)

(1,1,-1)

(1.14,0.56,-0.57) (-0.07,1.53,-0.9)

(-1,1,-1)

(-1.68.,0.9,0.98) (-1.99,-0.04,-0.76)

(-1,1,1) (-1,-1,-1)

(111); 1 (111);2

(11-1);1

(-1-11);2

(1-1-1);2

(1-11);3

(-11-1);0

(-111);1

(-1-1-1);1

(-111);0

(1-1-1);3

(-1-1-1);2

(111);1 (111);3

(-1-1-1);0

(111);1

(11-1);0

(1-11);2

(1-1-1);1

Now, it only remains to choose the path that has the smallest total metric. The survivor paths
at each step are in the below figure indicated with thick lines. From this trellis we see that the
path with the smallest total metric is the one at the “bottom”.
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(-1.99,-0.04,-0.76)

1

2

0

1

0

1

0

1

3

1 3

0

3

0

2

1

2

2

1

2

(1.51,0.63,-0.04) (1.14,0.56,-0.57) (-0.07,1.53,-0.9) (-1.68,0.9,0.98)

Note that when we go down in the trellis the input bit is one and when we go up the input bit is
zero. Thus, the decoder output is {1, 1, 1, 0, 0}.

3–30 To check if the encoder generates a catastrophic code we need to check if the encoder graph
contains a circuit in which a nonzero input sequence corresponds to an all-zero output sequence.

Assume that the right-most bit in the shift register is denoted with x(0) and the input bit with
x(3). Then we obtain the following table for the encoder

x(3) x(2) x(1) x(0) y(0)(3) y(1)(3)
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 1 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 1 0 1
1 0 0 0 1 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 0 1 0 0
1 1 1 0 1 1
1 1 1 1 1 0

The corresponding encoder graph looks like:

000

001

010

011

100

101

110

1110/00

1/11

0/01

1/10

0/10

1/01

0/11

1/00

0/10

1/01

0/11

1/00 1/11

0/00 1/10

0/01
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We see that the circuit 011 → 101 → 110 → 011 generates an all-zero output for a nonzero input.
The encoder is thus catastrophic.

3–31 First we show that if we choose as partial path metric a(log(p(r(k)|c(k)) + b), a > 0, then the
estimate using this metric is still the maximum likelihood estimate. The ML-estimate is equal to
the code word that minimizes

log p(r|c) =
N
∑

k=0

log p(r(k)|ci(k)).

With the new path metric we have

N
∑

k=0

a(log p(r(k)|ci(k)) + b) = abN + a
N
∑

k=0

log p(r(k)|ci(k)),

which is easily seen to have the same minimizing/maximizing argument as the original ML-
function. Now choose a and b according to

a =
1

log γ − log(1− γ)
, b = − log(1− γ).

We now have the following for the partial path metric

a(log(p(r(k)|ci(k)) + b) r(k)=0 r(k)=1
c(k)=0 0 1
c(k)=1 1 0

This shows that the Hamming distance is valid as a path metric for all cross over probabilities γ.

3–32 (a) With
(

x(n− 1), x(n− 2)
)

defining a state, we get the following state diagram.

111/01000

10

01

0/000

1/100 1/111

0/1010/110

1/0010/011

The minimum free distance is the minimum Hamming distance between two different se-
quences. Since the code is linear we can consider all codewords that depart from the zero-
sequence. That is, we are interested in finding the lowest-weight non-zero sequence that
starts and ends in the zero state. Studying the state diagram we are convinced that this
sequence corresponds to the path 00 – 10 – 01 – 00 and the coded sequence 100, 011, 110, of
weight five.

(b) The received sequence is of length 12, corresponding to two information bits and two zeros
(“tail”) to make the encoder end in the zero state. ML decoding corresponds to finding
the closest code-sequence to the received sequence r = 001, 110, 101, 111. Considering the
following table

Info Codeword Metric
x c dH(r, c)

00 (00) 000,000,000,000 8
01 (00) 000,100,011,110 5
10 (00) 100,011,110,000 9
11 (00) 100,111,101,110 4

we hence get that the ML estimate of the encoded information sequence is x̂ = 1, 1, (0, 0).
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3–33 The state diagram of the encoder is obtained as

01

1100

10

10

00 11

0111

10 00

01

(a) Based on the state diagram, the transfer function in terms of the “output distance variable
D” can be computed as

T =
D4(2 −D)

1− 4D − 2D4 −D6
= 2D4 + · · ·

Hence there are two sequences of weight 4, and the free distance is thus 4. (This can also
be concluded directly from the state diagram by studying all the different ways of leaving
state 00 and getting back “as fast as possible.”)

(b) The codewords are of the form

c = (c11, c12, c21, c22, c31, c32, c41, c42, c51, c52)

where we note that c12 = x1, c22 = x2, c32 = x3. A generator matrix can thus be formed by
the three codewords that correspond to x1x2x3 = 100, 010, 001. Using the state diagram we
hence get

G =





1 1 1 0 1 0 0 0 0 0
0 0 1 1 1 0 1 0 0 0
0 0 0 0 1 1 1 0 1 0





From the G-matrix we can conclude that

c11 = x1

c12 = x1

c21 = x1 + x2

c22 = x2

c31 = x1 + x2 + x3

c32 = x3

c41 = x2 + x3

c42 = 0

c51 = x3

c52 = 0

These equations can be used to compute the corresponding H-matrix as

H =













1 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1













Note, e.g., that the first two equations give c11 + c12 = 0, reflected in the first row of H, and
the second, third and fourth equation give c12 + c21+ c22 = 0, as reflected in the second row
of H, and so on.
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3–34 The encoder has four states. A graph that describes the output weights of different state-
transitions in terms of the variable D, with state “00” split into two parts, is obtained as below.

11

011000 00
D3D3 D2

D2

DD

1

a
b c

d

a′

From the graph we get the following equations that describe how powers of D evolve through the
graph.

b = D3a+ c, c = D2b +Dd, d = Db+D2d, a′ = D3c

Solving for a′/a gives the transfer function

T (D) =
a′

a
=

2D8 −D10

1− 3D2 +D4
= 2D8 + 5D10 + 13D12 + 34D14 + · · ·

Hence,

(a) dfree = 8 (and there are 2 different paths of weight 8)

(b) See above

(c) There are 34 different such sequences

3–35 a) For each source bit the convolutional encoder produces 3 encoded bits. The puncturing
device reduces 6 encoded bits to 5. Hence, the rate of the punctured code is r = 2/5 = 0.4.

b) Soft decision decoding is considered. Thus the Euclidian distance measure is the appropriate
measure to consider. The trellis diagram of the punctured code is shown below. Note that

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

y1, y2, y3 y4, y5

since every 6th bit is discarded, the trellis structure will repeat itself with a periodicity equal
to two trellis time steps (corresponding to 5 sent BPSK symbols). During the first time step,
the detector is to consider the 3 first input samples, y1, y2, y3. In the second, the two last
i.e., y4, y5.

c) The correspondning conventional implementation of the punctured code is shown below.
From the figure we recognice the previously considered rate 1/3 encoder as the rightmost

D DD

1

2

3

P/S
Converter

4

5

xi

part of the new encoder. The output corresponding to the punctured part is generated by
the network around the first memory element. Note that in order for the conventional imple-
mentation to be identical to the 1/3 encoder followed by puncturing, two input samples must
be clocked into the delay line prior to generating the 5 output samples. The corrseponding
trellis diagram isshown below.
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0 0 0

0 1 0

1 0 0

1 1 0

0 0 1

0 1 1

1 0 1

1 1 1

0 0 0

0 1 0

1 0 0

1 1 0

0 0 1

0 1 1

1 0 1

1 1 1

y1, y2, y3, y4, y5

d) The representation in b) is better since in order to traverse the 2 time steps of the trellis
corresponding to the single time-step in c), we need to perform 16 distance calculation and
sum operations while considering the later trellis we need to carry out 32 operations.

3–36 For every two bits fed to the encoder, four bits result. Of those four bits, one is punctured.
Hence, two bits in results in three bits being transmitted and the code rate is 2/3.

First, the receiver depunctures the received sequence by inserting zeros where the punctured bits
should have appeared in absence of puncturing. Since the transmitted bits, {0, 1}, are mapped
onto {+1,−1} by the BPSK modulator, an inserted 0 in the received sequence of soft information
corresponds to no knowledge at all about the particular bit (the Euclidean distances to +1 and
−1 are equal). After depuncturing, the conventional Viterbi algorithm can be used for decoding,
which results in the information sequence being estimated as 010100, where the last two bits is
the tail.

Puncturing of convolutional codes is common. One advantage is that the same encoder can
be used for several different code rates by simply varying the amount of puncturing. Secondly,
puncturing is often used for so-called rate matching, i.e., reducing the number of encoded bits such
that the number fits perfectly into some predetermined format. Of course, excessive puncturing
will destroy the properties of the code and care must be taken to ensure a good puncturing
pattern. As a rule of thumb, up to approximately 20% of puncturing works fairly well.
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01.1     0.7 -0.8     0 0.7     0.1 0.8     -0.2 -0.3     0
0.1

7.3

4.34

11.54

1.14

8.34

5.24

2.44

8.44

4.84

3.48

9.08

3.48

5.88

4.96

4.16

5.65

0 1 0 1 0 0

depunctured (i.e., inserted by the receiver)

0 00.8

3–37 Since the two coded bits have different probabilities, a MAP estimator should be used instead of
an ML estimator. The MAP algorithm maximizes

M = Pr{r|c}Pr{c} =
4∏

i=1

Pr{ri,1|ci,1}Pr{ci,1}Pr{ri,2|ci,2}Pr{ci,2} .

The second equality above is valid since the coded bits are independent. In reality, it is more real-
istic to assume independent information bits, but with the coder used, this results in independent
coded bits as well. It is common to use the logarithm of the metric instead, i.e.,

M = log(M) =
∑

i

(

log
[

Pr{ri,1|ci,1}Pr{ri,2|ci,2}
]

+ log
[

Pr{ci,1}Pr{ci,2}
])

.

The probabilities are given by

Trans. Received ri,1ri,2 ri,1ri,2
si−1 si ci,1ci,2 00 01 10 11 00 01 10 11
0 0 00 (1 − ε)(1 − ε) (1 − ε)ε ε(1− ε) εε .81 .09 .09 .01
1 0 01 (1− ε)ε (1− ε)(1 − ε) εε ε(1− ε) .09 .81 .01 .09
1 1 10 ε(1− ε) εε (1− ε)(1− ε) (1− ε)ε .09 .01 .81 .09
0 1 11 εε (1 − ε)ε (1− ε)ε (1 − ε)(1 − ε) .01 .09 .09 .81

Initially (i = 1) Continously (i = 2, 3) Tail (i = 4)
ci,1 ci,2 Probability
0 0 p0 = .3
0 1 —
1 0 —
1 1 p1 = .7

ci,1 ci,2 Probability
0 0 p0p0 = .09
0 1 p0p1 = .21
1 0 p1p1 = .49
1 1 p1p0 = .21

ci,1 ci,2 Probability
0 0 p0 = .3
0 1 p1 = .7
1 0 —
1 1 —

The maximization of M (or, equivalently, the minimization of −M) is easily obtained by using
the Viterbi algorithm. The correct path has a metric given by M = (log .7 + log .09) + (log .21+
log .81) + (log .21 + log .81) + (log .7 + log .09) = −9.07, corresponding to the coded sequence
11 01 11 01 and the information sequence 1010. In summary:

• Alice’s answer is not correct (even if the decoded sequence by coincidence happens to be
the correct one). She has, without motivation, used the Viterbi algorithm to find the ML
solution. This does not give the best sequence estimate since the information bits have
different a priori probabilities. Since the answer lacks all explanation and is fundamentally
wrong, no points should be given.
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• Bob’s solution is correct. However, it is badly explained and therefore it warrants only four
points. It is not clear whether the student has fully understood the problem or not.

3–38 Letting
(

x(n− 1), x(n− 2)
)

determine the state, the following state diagram is obtained

11 1/011/0000

10

01

0/00

1/10

0/01

1/11

0/110/10

The mapping of the modulator is 00 → −3, 01 → −1, 10 → +1, 11 → +3, and this gives the trellis

21.75

00

01

10

11
-1

-3

+1

+1

-3

-1

+3

-3-3

+1+1

+3

-1

-3

+1

-3

+1

-1

+3

-1

+3 +3

+1 +1

+3

-1

-3 -3

r(n) -2.0 2.5 -4.0 -0.5 1.5 0.0

9

0 1 31.25

21.25

9.25

12.25

32.25

18.5

22.5 20.75

3.25

18.25

22.25

14.5

18.5

22.75

The sequence in the trellis closest to the received sequence is: +1,+3,−1,−1,+3,+1. This
corresponds to the coded sequence: 10 11 01 01 11 10. The corresponding data sequence is:
1, 1, 1, 1, 0, 0 .

3–39 First we study the encoder and determine the structure of the trellis. For each new bit we put
into the encoder there are two old bits. The memory of the encoder is thus 2 bits, which tells
us that the encoder consists of 22 states. If we denote the bits in the register with xk, xk−1 and
xk−2 with xk being the leftmost one, the following table is easily computed.

xk Old state of encoder (xk−1 and xk−2) c1 c2 c3 New state (xk and xk−1)
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 1 0 0 1 1 0 1
0 1 1 1 0 0 0 1
1 0 0 0 0 1 1 0
1 0 1 1 1 0 1 0
1 1 0 0 1 0 1 1
1 1 1 1 0 1 1 1

The corresponding one step trellis looks like
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0(000)

1(010)

0(111)

1(001)

1(110)

0(011)

1(101)

0(100)

0 00 0

0 10 1

1 01 0

1 1 1 1

In the next figure the decoding trellis is illustrated. The output from the transmitter and the
corresponding metric is indicated for each branch. The received sequence is indicated at the top.

(-1-1-1);  0.25

(-1-11);  11.25

(1-1-1);7.25
(-111);  5.25

(-1-1-1);  6.5

(1-1-1);  12.5

(1.5  0.5  0) (1  0.5  -0.5) (0  1.5  -1) (-1.5  0.5  1) (-1.5  -1  -1)

(-1-1-1);  7.25(11-1);  1.25
(11-1);  0.5

(111);  1.5

(11-1);  1.5

(111):  2.5

(1-1-1);  2.5

(1-1 1);   4.5 (1-11);  11.25

(-11-1);  1.25

(-111);  0.5

(111);  5.25 (111);  6.5 (111);  14.25

Now, it only remains to choose the path that has the smallest total metric. The survivor paths
at each step are in the below figure indicated with thick lines. From this trellis we see that the
path with the smallest total metric is the one at the “bottom”. Note that the two paths entering
the top node in the last but one step have the same total metric. When this happens choose one
of them at random, the resulting estimate at the end will still be maximum likelihood.

30

(1.5  0.5  0) (1  0.5  -0.5) (0  1.5  -1) (-1.5  0.5  1) (-1.5  -1  -1)

1.5

4

2

6

11.25

9.25

7.25

7.75

8

1.5 4

11.25

15.25
5.25

17.75

13.25

15.75

9.25 15.75

Note that when we go down in the trellis the input bit is one and when we go up the input bit is
zero. Thus, the maximum likelihood decoder output is {1, 1, 1, 0, 0}.

3–40 The encoder followed by the ISI channel can be viewed as a composite encoder where (⊕ denotes
addition modulo 2)

ri1 = di + α (di−1 ⊕ αdi−2)

ri2 = di ⊕ di−1 + αdi .

The trellis transitions, where the state vector is [di−1di−2], are given by
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0/[0, 0]

0/[0.5, 0]

0/[0.5, 1]

0/[0, 0.5]

1/[1, 1.5]

1/[1.5, 1.5]

1/[1.5, 0.5]

1/[1, 0.5]

[0, 0]

[0, 1]

[1, 0]

[1, 1]

ML-decoding of the received sequence yields 10100. Note that the final metric is zero, i.e., the
received sequence is noise free. Since there is no noise, the problem is somewhat degenerated. A
more realistic problem would have noise. If the noise is white Gaussian noise, the optimal metric
is given by the Euclidean distance.

[1, 1.5] [0.5, 1] [1.5, 1.5] [0.5, 1] [0.5, 0]
0 3.25 4.5 3.25 4.5 0

0 5 0

0 3.75 0

3.25 4.50

3–41 Letting
(

x(n− 1), x(n− 2)
)

define the states, we get the following state diagram.

0/000

0/011

01

10

11

1/001

0/1111/010

1/110

00 1/101

0/100

The rate of the code is 1/3. Hence 18 coded bits correspond to 6 information bits.

Implementing soft ML decoding is solved using the Viterbi algorithm and the trellis below.
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00
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+1,+1,+1
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+1
,-1

,-1
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,-1

,-1
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+1
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,-1
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-1,-1,-1 -1,-1,-1

r(n) -1.5,0.5,0 1,0.5,-0.5 0,1.5,-1 -1,0.5,1 1,1.5 ,0 -1,0,0.5

3.5

0 3.5 10.0

6.0

12.0

4.0 13.25

7.25

11.25

11.25

15.5

13.5

11.5

11.5 16.75

14.75

The transmitted sequence closest to the received sequence is

ˆ̄s = −1,−1, 1, 1, 1, 1, −1, 1, 1, −1,−1, 1, 1, 1, 1, −1, 1, 1 .

corresponding to the codeword

ˆ̄c = 001 111 011 001 111 011 .

and the information bits
ˆ̄x = 1, 0, 0, 1, 0, 0 .

3–42 (a) The rate 1
3 convolutional encoder may be drawn as below.

DD

1

2

3

From the state diagram the flow graph may be established as shown below.

00

10

11

01

A

B

C

D

1/111 1/100

1/1010/000

0/0100/011

0/0011/100

State diagram

A’ B C A"

D

Flow graph

D3NJ
D2NJ

D2NJ

D2J
DJ

DJ

The free distance corresponds to the smallest possible number of binary ones generated when
jumping from the start state A′ to the return state A′′. Thus, from the graph it is easily
verified that dfree = 6.

(b) The pulse amplitude output signal may be written:

s(t) =
∑

m

√

Ec(2xm − 1)p(t−mT ).

The signal part of y(t) = ys(t) + yw(t) is then given by ys(t) = (s 1 q)(t) =
∫

s(τ)q(t− τ)dτ .
Hence,

ys(t =
i

T
) =

√

Ec

∑

m

(2xm − 1)

∫

p(τ −mT )q(
i

T
− τ)dτ

=
√

Ec(2xi − 1)

∫

|p(τ − iT )|2dτ =
√

Ec(2xi − 1).
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The noise part of y(t) is found as yw(t) = (w 1 q)(t) =
∫

w(τ)q(t − τ)dτ . Since ei = yw(iT )
it follows directly that ei will be zero mean Gaussian. The acf is

E{eiei+k} = E{yw(iT )yw((i+ k)T )}

=

∫

τ

∫

γ
E{w(τ)w(γ)}q(iT − τ)q((i + k)T − γ)dγdτ

=
N0

2

∫

τ
q(iT − τ)q((i + k)T − τ)dτ

=

{
N0
2 k = 0
0 k += 0

Hence, α =
√
Ec, β = E{eiei} = N0

2 . ei is a temporally white sequence since E{eiei+k} = 0
for k += 0.

(c) i. The message sequence contains 5 unknown entries. The remaining two are known and
used to bring the decoder back to a known state. Hence, since there is only one path
through the flow graph generating dfree ones, there exist only 5 possible error events
with dfree = 5. (This may easily be verified drawing the trellis diagram!) Thus, the size
of the set I is 5.

ii. Given that i ∈ I it follows directly that

Pr{b̄i detected | b̄0 sent} = Q




dE(s̄i, s̄0)

2
√

N0
2



 = Q

(√

2Ecdfree
N0

)

≤
(

e−
2Ec
N0

) dfree
2

.

Since e−
2Ec
N0 is the Chernoff bound of the channel bit error probability we may thus

approximate

Pseq. error ≈ P
dfree

2
ch. bit error.

3–43 (a) The encoder is g1 = (1 1 1) and g2 = (1 1 0). The shift register for the code is:

c2 c1

k = 1

The state diagram is obtained by:
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old state new state

and
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00
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11

0/00

0/01

0/10

0/11

1/00

1/01

1/10

1/11

(b) The corresponding one step trellis looks like:

00 00

01 01

10 10

11 11

0/00

0/01

0/10

0/11

1/00

1/01

1/10

1/11

The terminated trellis is given in the followed figure and dfree = 4.

0000

00
0000000000

0101

01

01

101010

10

10

1111

111111

11

(c) The reconstruction levels of the quantizer are

{−1.75 − 1.25 − 0.75 − 0.25 0.25 0.75 1.25 1.75}
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−1,5

−1.75

−1.25

−0.75

−0.25

0.25

0.75

1.25

1.75

Input

Output

0.5−0.5 1−1 1.5

and the quantized sequence is

{1.25 0.75 0.25 1.25 − 0.25 − 0.75 0.25 − 0.25 − 0.75 0.25}

Minimum Euclidean distance is calculated as:

2
∑

k=1

|s(k) −Q(r)(k)|

where Q(r) is the quantized receiving bits. Decoding starts from and ends up at all zero
state.

00 00 00 00
00

00 00

00

−0.75 −0.75−0.25 −0.250.25 0.250.250.751.25 1.25

00001

4

4

4

7.5 3 5

5

5.5

6

0.5

1.5

6.5

6.501

01 01

01

10

10

10 10 10

11

11

11 11 11

11 11

The estimated message is ŝ = {1 0 0 0 0} and the first 3 bits are information bits Î = {1 0 0}

3–44 (a) To find the free distance, dF , the state transition diagram can be analyzed. The input bit,
si, and state bit, sD, are mapped to coded bits according to the following table.

si sD ai bi
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

The two-state encoder is depicted below, where the arrow notation is si/aibi and the state
is sD.

The free distance is equal to the minimum Hamming weight of any non-zero codeword, which
is obtained by leaving the ’0’-state and directly returning to it. This gives the free distance
dF = 3.
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0 1

1/11

0/01

0/00 1/10

(b) First consider the hard decoding. The optimal decision unit is simply a threshold device,
since the noise is additive, white and Gaussian. For ri ≥ 0, ĉi = 1, and otherwise, ĉi = 0.
For the particular received vector in this problem, ĉ = [11010100]. By applying the Viterbi
algorithm, we obtain the codeword [11010000] with minimum Hamming distance 1 from ĉ,
which corresponds to the incorrect information bits ŝh = [100].

Considering the soft decoder, we again use the Viterbi algorithm to find the most likely
transmitted codeword [1 1 0 1 1 1 0 1] with minimum squared Euclidean distance 3.73 from
r, which corresponds to the correct information bits ŝs = [101].

(c) Yes, it is possible. For example, if s = [101] and z = [0.0 0.0 0.9 −0.9 −0.9 −0.9 0.9 −11],
the hard decoder correctly estimates ŝh = [101] and the soft decoder incorrectly estimates
ŝs = [110].

3–45 Larry uses what is known as Link Adaptation, i.e., the coding (and sometimes the modulation)
scheme is chosen to match the current channel conditions. In a high-quality channel, less coding
can be used to increase the throughput, while in a noise channel, more coding is necessary to
ensure reliable decoding at the receiver. For a fixed Eb/N0, the block error rate is found from
the plots. From the plot, it is seen that the switching point between the two coding schemes, γ,
should be set to γ ≈ 6.7 dB as the uncoded scheme has a block error rate less than 10% at this
point. Since one of the objectives with the system was to provide as high bit rate as possible,
there is no need to waste valuable transmission time on transmitting additional redundancy if
uncoded transmission suffices. The average block error probability is found as

Pblock, LA = 0.1 · Pcod.(2 dB) + 0.4 · Pcod.(5 dB) + 0.5 · Punc.(8 dB) ≈ 5.2 · 10−2

and the average number of 100-bit blocks transmitted per information block is

nLA = 2 · 0.1 + 2 · 0.4 + 1 · 0.5 = 1.5 .

Irwin uses a simple form of Incremental Redundancy. Whenever an error is detected, a retransmis-
sion is requested and soft combining of the received samples from the previous and the current
block is performed before decoding. In case of a retransmission, this is identical to repetition
coding, i.e., each bit has twice the energy (+3 dB) compared to the original transmission (a
repeated bit can be seen as one single bit with twice the duration). Hence, for a fixed transmitter
power, the probability of error is Pe(Eb/N0) for the original transmission and Pe(Eb/N0 +3 dB)
after one retransmission. Hence, the resulting block error probability is, as a maximum of one
retransmission is allowed, given by

Pblock, IR = 0.1 ·Punc.(2 dB+3 dB)+0.4 ·Punc.(5 dB+3 dB)+0.5 ·Punc.(8 dB+3 dB) ≈ 4.8 ·10−2

(the last term hardly contributes) and the average number of blocks transmitted is

nIR = 0.1 · [1 · (1− Punc.(2 dB)) + 2 · Punc.(2 dB)]

+ 0.4 · [1 · (1− Punc.(5 dB)) + 2 · Punc.(5 dB)]

+ 0.5 · [1 · (1− Punc.(8 dB)) + 2 · Punc.(8 dB)]

≈ 1.27

The incremental redundancy scheme above can be improved by, instead of transmitting uncoded
bits, encode the information with a, e.g., rate 1/2 convolutional code, but only transmit half
the encoded bits in the first attempt (using puncturing). If a retransmission is required, the
second half of the coded bits are transmitted and used in the decoding process. Both incremental
redundancy and (slow) link adaptation are used in EDGE, an evolution of GSM supporting higher
data rates.
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3–46 The encoder and state diagram of the convolutional code are given below.

bn

c2n−1

c2n

0 1

1/11

0/10

0/00 1/01

Let b = (b1, . . . , b5) (where b1 comes before b2 in time) be a codeword output from the encoder
of the (5, 2) block code. One tail-bit (a zero) is added and the resulting 6 bits are encoded by the
convolutional encoder. Based on the state-diagram it is straightforward to see that this operation
can be described by the generator matrix

Gconv =









1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0









in the sense that c = bGconv where c = (c1, . . . , c12) is the corresponding block of output bits
from the encoder of the convolutional code. Consequently, since b = Gblocka, where a = (a1, a2)
contains the two information bits and where Gblock is the generator matrix of the given (5, 2)
block code, we get

c = aGblockGconv = aGtot

where

Gtot = GblockGconv =

[

1 1 1 0 1 1 1 0 0 0 0 0
0 0 1 1 0 1 0 1 0 1 1 0

]

is the equivalent generator matrix that describes the concatenation of the block and convolutional
encoders.

(a) Four information bits produce two 12-bit codewords at the output of the convolutional
encoder, according to

(c1, c2) =
(

(00)Gtot, (11)Gtot

)

= (000000000000, 110110110110)

(b) The received 12-bit sequence is decoded in two steps. It is first decoded using the Viterbi
algorithm to produce a 5-bit word b̂, as illustrated below

10 11 01 11 01 11
0

11

00 1

1

2

1
01

10

3

1

2

2

3

2

3

resulting in b̂ = (011110). Then b̂ is decoded by an ML decoder for the block code. Since
the codewords of the block code are

00000
10100
01111
11011

we see that the closest codeword to b̂ is (01111) resulting in â = (01).

(c) We have already specified the equivalent generator matrix Gtot. The simplest way to calcu-
late the minimum distance of the overall code is to look at the four codewords

000000000000
111011100000
001101010110
110110110110
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computed using Gtot. We see that the total minimum distance is six. Studying the trellis
diagram of the convolutional code, we see that its free distance is three (corresponding to
the state-sequence 0 → 1 → 0). Also, looking at the codewords of the (5, 2) block code we
see that its minimum distance is two. And since 6 = 2 ·3 we can conclude that the statement
is true.
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