Automatic Control

Department of Signals, Sensors & Systems

Nonlinear Control, 2E1262
Exam 14:00-19:00, Dec 18, 2000

Aid: e Lecture notes. (Textbooks, exercises, solutions, calculators etc.
may not be used.)

Observandum:

e Name and social security number (personnummer) on every page.
e Only one solution per page.

e A motivation must be attached to every answer.

e Specify number of handed in pages on cover.

e Each subproblem is marked with its maximum credit.
Grading:

Grade 3: > 23

Grade 4: > 33

Grade 5: > 43
Results: The results will be posted on the department’s board on second
floor. If you want your result emailed, please, state this and
include your email address. The marked exams are available for

discussion Jan 16, 12:00-13:00, in S3’s seminar room, 6th floor, Osqul-
dasvig 10.

Responsible: Karl Henrik Johansson, kallej@s3.kth.se

Good Luck and Merry Christmas!




1.

(a) [2p]

(b) [3p]

(c) [3p]

(d) [2p]

Consider the system

1= 29 + f(z1)
it'QZU,,

(1)

where f(z;) is a C' function with f(0) = 0. Show that the coor-
dinate transformation

21 = 1
29 = T9 + f(a:l),

together with the control law
u=—z1 — 22— 22f"(21)

gives an asymptotically stable linear system z = Az.

Find a state feedback controller k : R? — R for (1) such that the
origin is asymptotically stable for the closed-loop system

&1 = 29 + f(21)

iy = K(x). @)

(You may use your result in (a).) Find a (Lyapunov) function V :
R? — R and use it to prove that z = 0 is a globally asymptotically
stable equilibrium for (2).

Consider the feedback system below with

and
f(y) = K arctan(y)

O 6(s)
L £0)

For what values of the uncertain (but constant) parameters A > 0
and K > 0 does BIBO stability for the feedback system follow
from the Circle Criterion?

For which values of A > 0 and K > 0 does the direct application
of the Small Gain Theorem prove BIBO stability for the feedback
system in (c)? (Hint: Is the Small Gain Theorem applicable?)



2. The ball-and-beam system is given by the equations

0=+ gsind + Br — ré?
7= (r* + 1)0 + 2ri0 + gr cos b,

(3)

where r is the position of the ball, # the angle of the beam, 7 the torque
applied to the beam, g > 0 the gravity constant, and 8 > 0 the viscous
friction constant.

(a) [1p]

(b) [2p]
(c) [2p]

(d) [2p]

(e) [3p]

Transform the system into first-order state-space form & = f(x, u),
where z = (r,7,6,0)” and u = 7.

Determine all equilibria of (3).

Some of the equilibria in (b) correspond to that the beam is upside-
down. Disregard these and linearize the system about one of the
appropriate equilibria.

Discuss how one can obtain a state feedback control law (r, 7, 0,9
are all measurable) that gives a locally asymptotically stable ball-
and-beam system. You don’t have to come up with an explicit
solution.

Consider only the first equation of (3) and assume that § = 6 = 0.
Show that (r,7) = (0,0) is globally stable. What about asymp-
totic stability? (Hint: V = (Br +7)%/2 +12/2.)



3.

(a) [3p] Consider a PID controller with anti-windup (see Lecture 7). The
following plots illustrate control of an integrator process with four
different choices of the tracking time constant 7;. The upper plot
shows the desired set-point (the straight line) together with four
curves for the output y (curves with more or less overshoot). The
lower plot shows four curves for the control signal u. Redraw the
curves in your solutions and combine 7; = 0.1, 1, 2, and 3 with
the corresponding curves. (Note that y for two of the choices are
almost identical.) Motivate.
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(b) [3p] Write down the equations describing the following system, where
the saturation blocks are defined as

—1, u—x < —1
sat(u — ) =S u —z, lu—z| <1
1 u—x > 1.

- -

X ‘

@ | =

The system is a jump and rate limiter: y is equal to u if u changes
slowly. If v makes an abrupt change, then y converges to u after
a while. Conclude this by simply deriving the equations for the
system for |u — z| <1 and for |u — x| > 1, when u makes a step
change.



(c) [4p]

The power output from a cellular phone is an important system
variable, since the power consumption should be kept as low as
possible to make the battery last longer. Information from the
base station about the received power is sent back to the trans-
mitting phone and is used to control the power output. A simple
model for such a power control system is as follows:

z(t) = au(t)
u(t) = —sgny(t — L)
y(t) = bx(?).

Here z is the power output of the cellular phone (normalized
around zero) and wu is the control signal, which either increase
or decrease the power at a fixed rate ¢ > 0. The measured power
y at the base station is proportional to z with proportional con-
stant b > 0. The measured power is being transmitted back to
the cellular phone after a time delay L > 0.

Draw a diagram illustrating the system. Use describing function
analysis to predict amplitude, frequency, and stability of possible
power oscillations.

4. The Clegg integrator was invented by J. C. Clegg in 1958. It is simply
an integrator with a state that is set to zero whenever the input crosses
zero. Let e be the input to the Clegg integrator and z the integrator
state. Then, the Clegg integrator can be described by the following
two equations:

z(t) = e(t)
z(t+) =0, if e(t) =0,

where the plus sign in z(¢+) indicates that z is set to zero directly after
e becomes zero.

(a) [1p]

(b) [6p]

(c) [3p]

Sketch the output of the Clegg integrator for a sinusoidal input
e(t) = Asinwt. Assume that z(0) = 0.

Show that the describing function for the Clegg integrator is

N(Aw) = 47
TW W
The describing function gives (as you know) the amplification and
phase shift of a sinusoidal input e(¢) = Asinwt. Draw the Nyquist
diagram for the ordinary integrator (G(s) = 1/s) together with
the describing function for the Clegg integrator. Comment on
similarities and differences in their gain and phase characteristics.
What is the main advantage of using the Clegg integrator instead
of an ordinary integrator (for example, in a PID controller) and
vice versa?



5. In this problem we study the linear quadratic optimal control problem

min /0 " [e(0)7Qu(t) + u(t)" Ru(t)] dt

u:[0,t ] >R™ 2
with
x(t) = Az(t) + Bu(t), z(0) = .

Suppose that t; > 0 and =z, are fixed and that the matrices Q@ = QT
and R = RT are positive definite. Then, the optimal control is given

by
u*(t) = —R'BTS(t)z(t), (4)
where the matrix S(t) = ST (¢) satisfies the differential equation
—S(t) = ATS(t) + S(t)A— S(t)BR'BTS(t) + Q, (5)
where S(t7) = Opxp IS an n X n zero matrix.

(a) [1p] Determine the Hamiltonian function H(x,u, \).

(b) [2p] Derive the adjoint equation for the optimal control problem, that
is, the differential equation for A(¢) (including the final condition

Altr))-
(c) [2p] Show that the optimal control can be written as

u*(t) = —R'BTA(1),
where A is the solution to the adjoint equation in (b). (Hint:
Derive the solution to 0H /0u = 0.)
(d) [2p] Show that (4) is the optimal control with S(¢) given by (5). Do
this by setting A(t) = S(¢)x*(t). Then derive
At) = Sz (t) + S(t)i*(t) = S(t)x(t) + S(t)[Az*(t) + Bu*(t)]
and use (b) together with (c). You will end up with an equation

—S(t)z*(t) = [ATS(t) + S(t)A — S(t)BR'BTS(t) + Qlz*(t)

from which you can conclude (5).

(e) [1p] What is the solution for the case t; = co?

(f) [2p] Show that H(z,u, ) is constant along every optimal trajectory
(z*(t),u*(t)). (Hint: Derive H(z*(t),u*(t), A(t)) and use that

9H (z*(t),u*(t), A(t)) = 0 since u* minimizes H.)



