Solutions to Exam in 2E1262 Nonlinear Control, Dec 20, 2001

- 1. (a) True. Suppose \hat{x} and \tilde{x} are two equilibria. A trajectory that starts in either point, stays there forever since $f(\hat{x}) = f(\tilde{x}) = 0$.
 - (b) False. As a counter example, take for instance the system from Lecture 3:

$$\dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2)$$

$$\dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2).$$

- (c) True. Follows from Lyapunov's linearization method (Lectures 3 and 4).
- (d) True. For example,

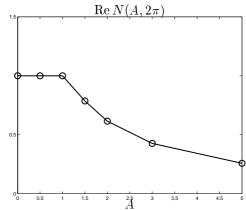
$$\dot{x} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} x$$

- (e) True. Suppose it was not true. Consider a solution of $\dot{x} = f(x)$ that starts in $x_0 \neq 0$ and ends at $x(T) = x_1 = 0$. Then, $\dot{x} = -f(x)$ has a solution that starts in $x_1 = 0$ and ends at $x_0 \neq 0$. However, $\dot{x} = -f(x)$ also has the solution x(t) = 0 for all $t \in (0,T)$, since $\dot{x} = 0$. This is a contradiction to that $\dot{x} = -f(x)$ has a unique solution, which holds because f is \mathbf{C}^1 (Lecture 1). Hence, the statement in the problem must be true.
- 2. (a)

$$\dot{x} = f(x, u) = \operatorname{sat}(u - x)$$
$$y = h(x, u) = x + \operatorname{sat}(u - x)$$

If u = 0 and x small then $\dot{x} = -x$, so obviously x = 0 is asymptotically stable.

(b) Re $N(A, 2\pi)$ is given below, while Im $N(A, 2\pi) \equiv 0$ (phase shift between u and first harmonic is equal to zero).



(c) From the Controllability Theorem in Lecture 12, we have that the system is controllable if $g_1(x)$, $g_2(x)$, and $[g_1(x), g_2(x)]$ span \mathbb{R}^3 . For the proposed example, this is the case because

$$g_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad g_2 = \begin{pmatrix} 0 \\ x_1 \\ 1 \end{pmatrix}, \qquad [g_1, g_2] = \frac{\partial g_2}{\partial x} g_1 - \frac{\partial g_1}{\partial x} g_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

(d) The control u(t) = 0 for all $t \in [0, 1]$ gives the cost

$$\frac{1}{2} \int_0^1 \left[x^2(t) + u^2(t) \right] dt = 0,$$

so u=0 must be the optimal control. (This also follows from the usual calculations.)

3. (a) The equilibria are given by $x_0 = (k\pi, 0), k \in \mathbb{Z}$ (integers). The linearized system is given by

$$\dot{z} = \begin{pmatrix} 0 & 1 \\ \mp c & -a \mp b \end{pmatrix} z,$$

where the choice of minus or plus sign depends on k. The characteristic polynomial is hence $s^2 + (a \pm b)s \pm c$. A second-order polynomial is asymptotically stable if and only if the coefficients are positive, which is not possible in this case since c > 0.

(b) We will apply LaSalle's Invariant Theorem (compare example in the end of Lecture 4). First note that V(x)

$$\dot{V}(x) = \frac{dV}{dx}f(x) = -ax_2^2 - bx_2^2 \cos x_1 < 0$$

if $x_2 \neq 0$. With the notation from the lectures, let $\Omega \subset \mathbb{R}^2$ be a small ball centered in the origin, let $E = \{x \in \Omega : \dot{V}(x) = 0\} = \{x : x_2 = 0\}$, and let $M \subset E$ denote the largest invariant set in E. Suppose there exists a point $\bar{x} = (\bar{x}_1, 0) \in M$ such that $\bar{x}_1 \neq 0$. A trajectory that starts in $x(0) = \bar{x}$ satisfies $\dot{x}_2(0) = -c \sin x_1(0) = -c \sin \bar{x}_1 \neq 0$, if Ω is sufficiently small. Hence, the trajectory must leave M. It follows that M is equal to the origin. The result now follows from LaSalle.

(c) Follows from Lecture 3, if we treat a(t) as an input. Then,

$$\begin{split} A(x^0(t),a^0(t)) &= \begin{pmatrix} 0 & 1 \\ x_2^0(t)\sin x_1^0(t) - \cos x_1^0(t) & -a^0(t) - \cos x_1^0(t) \end{pmatrix} \\ B(x^0(t),a^0(t)) &= \begin{pmatrix} 0 \\ -x_2^0(t) \end{pmatrix}. \end{split}$$

4. (a) The equilibria in the specified region are (0,0), (1,0), and (3/25,88/125). The linearizations are given by

$$\dot{z} = \begin{pmatrix} 5 & 0 \\ 0 & -6/10 \end{pmatrix} z, \qquad \dot{z} = \begin{pmatrix} -5 & -5/3 \\ 0 & 11/5 \end{pmatrix} z, \qquad \dot{z} = \begin{pmatrix} 21/20 & -3/4 \\ 11/5 & 0 \end{pmatrix} z.$$

- (b) There are no equilibria in the specified region.
- (c)

$$f(x,u) = \begin{pmatrix} 5x_1(1-x_1) - \frac{20x_1x_2}{2+10x_1} \\ \frac{16x_1x_2}{2+10x_1} - \frac{6x_2}{10} - \frac{x_2}{2}(1-u) \end{pmatrix}$$
$$u = -\operatorname{sgn}\sigma(x) = -\operatorname{sgn}(x_2 - 1).$$

¹Note that to be rigorous, it remains to show that Ω is invariant.

(d) The equivalent control $u_{\text{eq}} \in [-1, 1]$ follows from the equation $\dot{\sigma}(x) = 0$, that is,

$$\frac{16x_1}{2+10x_1} - \frac{6}{10} - \frac{1}{2}(1-u_{\text{eq}}) = 0, \tag{1}$$

where we used that $x_2 = 1$ at the sliding mode. Solving for $u_{eq} = u_{eq}(x_1)$ and plugging into the system dynamics yields the sliding dynamics

$$\dot{x}_1 = 5x_1(1-x_1) - \frac{20x_1}{2+10x_1}.$$

It follows from the constraint $u_{eq} \in [-1, 1]$ and Equation (1) that the sliding mode takes place at $\{x : x_1 > 3/25, x_2 = 0\}$ (compare the phase plane analysis).

The physical interpretation of the sliding mode is that the predator population x_2 is kept at the level $\alpha = 1$, while only the prey population x_1 may change. If the predator population increases above α , it decreases due to harvest. If the predator population decreases below α , it increases due to the excess of prey.

5. (a) The upper plots show y_{sp} (solid) and y (dashed). The middle plots show P (solid) and I (dashed). The lower plots show u (solid) and v (dashed).

From P in the middle plots we see that $K \approx 1.5$. From the left plots, it follows that the maximum of

$$I(t) = \frac{K}{T_i} \int_0^t [y_{\rm sp}(s) - y(s)] ds$$

is $\max_t I(t) \approx 1$ and attained at $t \approx 2$. From the upper left plot we have $\int_0^2 [y_{\rm sp}(s) - y(s)] \, ds \approx 1$. Hence, approximately $T_i = K = 1.5$. From the lower plots we see that the saturation level is equal to 0.5.

(b)
$$G(s) = -\frac{(KT_t - 1)T_i s + KT_t}{T_i s (T_t s + 1)}$$

(c) With notation from the lectures, the saturation satisfies $k_1 = 0$ and $k_2 = 1$. Note the negative feedback. The Circle Criterion is thus fulfilled if the Nyquist curve of -G is to the right of the line $\{z \in \mathbb{C} : \operatorname{Re} z = -1\}$. Here $\operatorname{Re} (-G(i\omega)) = -1/(\omega^2 + 1)$, so the criterion is fulfilled. Hence, the closed-loop system is BIBO stable for all K > 1.