Solutions to Exam in 2E1262 Nonlinear Control, Dec 20, 2001

1. (a)
(b)

True. Suppose Z and Z are two equilibria. A trajectory that
starts in either point, stays there forever since f(z) = f(z) = 0.

False. As a counter example, take for instance the system from
Lecture 3:

iy =31 — 29 — 1 (27 + T3)
To =x1 +T9 — mg(:v% +x§)

True. Follows from Lyapunov’s linearization method (Lectures 3

and 4).
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True. For example,

True. Suppose it was not true. Consider a solution of & = f(x)
that starts in 9 # 0 and ends at z(T) = z; = 0. Then, z =
—f(z) has a solution that starts in 1 = 0 and ends at zy # 0.
However, & = —f(x) also has the solution z(¢) = 0 for all ¢ €
(0,T), since £ = 0. This is a contradiction to that & = —f(z)
has a unique solution, which holds because f is C' (Lecture 1).
Hence, the statement in the problem must be true.

z = f(z,u) = sat(u — x)
y = h(z,u) = z + sat(u — x)
If u = 0 and 2 small then £ = —z, so obviously x = 0 is asymp-

totically stable.

Re N(A,2n) is given below, while Im N(A,27) = 0 (phase shift
between u and first harmonic is equal to zero).
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From the Controllability Theorem in Lecture 12, we have that
the system is controllable if g;(z), go(x), and [g1(x), g2(x)] span
R3. For the proposed example, this is the case because
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(d) The control u(t) =0 for all ¢ € [0, 1] gives the cost

1
% /0 [%(t) +w*(t)] dt = 0,

so v = 0 must be the optimal control. (This also follows from the
usual calculations.)

3. (a) The equilibria are given by zq = (k=,0), k € Z (integers). The
linearized system is given by

: <0 1 >
Z= z,
Fc —aFb

where the choice of minus or plus sign depends on k. The char-
acteristic polynomial is hence s? + (a £ b)s £+ c¢. A second-order
polynomial is asymptotically stable if and only if the coefficients
are positive, which is not possible in this case since ¢ > 0.

(b) We will apply LaSalle’s Invariant Theorem (compare example in
the end of Lecture 4). First note that V(z)

V(z) = %f(x) = —az2 —bricosz; <0

if zo # 0. With the notation from the lectures, let Q C R? be a
small ball centered in the origin, let E = {z € Q: V(z) =0} =
{z : 9 = 0}, and let M C E denote the largest invariant set
in E. Suppose there exists a point Z = (Z1,0) € M such that
Z1 # 0. A trajectory that starts in 2(0) = Z satisfies ©9(0) =
—csinz1(0) = —csinzy # 0, if Q is sufficiently small. Hence, the
trajectory must leave M. It follows that M is equal to the origin.
The result now follows from LaSalle.!

(c) Follows from Lecture 3, if we treat a(¢) as an input. Then,

0 1
A(mo(t),ao () = <mg(t) sinz{(t) — coszV(t) —a’(t) — cos :v(l)(t))
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4. (a) The equilibria in the specified region are (0, 0), (1,0), and (3/25, 88/125).
The linearizations are given by

i= (8 —6310) 5 2= <_05 If//g) 5 2= <2111//250 _?())/4) i

(b) There are no equilibria in the specified region.
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u=—sgno(zx) = —sgn(zy —1).

'Note that to be rigorous, it remains to show that Q is invariant.



(d)

The equivalent control ueq € [—1,1] follows from the equation
o(z) =0, that is,
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where we used that z9 = 1 at the sliding mode. Solving for

Ueq = Ueq(z1) and plugging into the system dynamics yields the
sliding dynamics

20$1

P =52y (1 — 1) — — P
#1 = 5z1(1 —m) 2+ 10z,

It follows from the constraint ueq € [—1,1] and Equation (1) that
the sliding mode takes place at {z : 1 > 3/25, 29 = 0} (compare
the phase plane analysis).

The physical interpretation of the sliding mode is that the preda-
tor population zy is kept at the level a = 1, while only the prey
population z; may change. If the predator population increases
above «, it decreases due to harvest. If the predator population
decreases below «, it increases due to the excess of prey.

The upper plots show ys, (solid) and y (dashed). The middle
plots show P (solid) and I (dashed). The lower plots show u
(solid) and v (dashed).

From P in the middle plots we see that K ~ 1.5. From the left
plots, it follows that the maximum of

t
1(t) = ? /0 lyep (5) — y(s)] ds

is max; I(t) ~ 1 and attained at ¢ ~ 2. From the upper left
plot we have f02[ysp(s) — y(s)]ds =~ 1. Hence, approximately
T, = K = 1.5. From the lower plots we see that the saturation
level is equal to 0.5.
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With notation from the lectures, the saturation satisfies k; = 0
and ks = 1. Note the negative feedback. The Circle Criterion
is thus fulfilled if the Nyquist curve of —G is to the right of the
line {z € C: Rez = —1}. Here Re (—G(iw)) = —1/(w? + 1), so
the criterion is fulfilled. Hence, the closed-loop system is BIBO
stable for all K > 1.



