## Solutions to Exam in 2E1262 Nonlinear Control, April 5, 2002

1. (a) The describing function represents an amplitude depending gain $N(A)$. Note that $N(A)$ is real-valued (why?). A rough sketch is shown below:

(b) We need to choose $G$ such that its Nyquist curve intersects $-1 / N(A)$. Note that $-1 / N(A)$ belongs to the negative part of the real axis and that $\min N^{-1}(A)=1 / 2$. A suitable candidate is

$$
G(s)=\frac{2}{s(s+1)^{2}}
$$

(c) The gains are $\gamma(f)=2, \gamma(f \circ f)=4$, and $\gamma(f+f)=\gamma(2 f)=4$.
(d) The system is globally stable with Lyapunov function $V(x)=$ $x^{2}$ for all $K>0$. For example, note that $\dot{V}=-2 x f(x)=$ $-2|x f(x)| \leq 0$, for all $x \neq 0$, and that $V$ is radially unbounded.
2. (a) Introduce $f$ through the equation $\ddot{\theta}=f(\theta, \dot{\theta}, \beta, \dot{\beta})$ and let $c_{1}, c_{2}, c_{3}$ denote the (positive) constants in $f$. Linearizing $f$ around $\theta=$ $\beta=\dot{\beta}=0$ gives

$$
\begin{aligned}
f(\theta, \dot{\theta}, \beta, \dot{\beta}) & \approx \frac{\partial f}{\partial \theta} \theta+\frac{\partial f}{\partial \dot{\theta}} \dot{\theta}+\frac{\partial f}{\partial \beta} \beta+\frac{\partial f}{\partial \dot{\beta}} \dot{\beta} \\
& =c_{1} \theta+c_{2} \beta+c_{3} \dot{\beta}
\end{aligned}
$$

where $\dot{\beta}=u$. Hence, the linearized system is given by

$$
\ddot{\theta}=c_{1} \theta+c_{2} \beta+c_{3} u .
$$

It follows that in the Laplace domain

$$
s^{2} \theta=c_{1} \theta+c_{2} \beta+c_{3} u=c_{1} \theta+\left(c_{2} / s+c_{3}\right) u
$$

and thus

$$
G(s)=\frac{c_{3} s+c_{2}}{s\left(s^{2}-c_{1}\right)} .
$$

The poles are located in $0, \pm \sqrt{c_{1}}$ and the zero in $-c_{2} / c_{3}$. The bicycle is, as expected, unstable.
(b) See the minimum-time control example in Lecture 13. From that it follows that the optimal control is given by

$$
u^{*}(t)=-C \operatorname{sgn} \lambda_{2}(t)=C \operatorname{sgn}\left(c_{1} t-c_{2}\right)
$$

Hence, $p(t)=c_{1} t-c_{2}$ is a first-order polynomial.
3. (a) ICTools gives the phase portrait below:

(b)

$$
\dot{V}=\frac{d V}{d x} f(x)=\left(\begin{array}{ll}
2 x_{1} & 2 x_{2}
\end{array}\right)\binom{-x_{1}^{3}+u}{x_{1}}=-2 x_{1}^{4}+2 x_{1} u+2 x_{1} x_{2}
$$

If we choose $u=-x_{2}$, then $\dot{V}=-2 x_{1}^{4}$. Hence, $x_{1}$ will tend to zero. It follows from the equation $\dot{x}_{2}=x_{1}$ that $x_{2}$ will tend to a constant $\bar{x}_{2}$, say. Suppose $\bar{x}_{2} \neq 0$. Then, $\dot{x}_{1}=-x_{1}^{3}-x_{2}$ implies that $\dot{x}_{1} \rightarrow \bar{x}_{2} \neq 0$, which contradicts that $x_{1} \rightarrow 0$. Hence, $\bar{x}_{2}=0$. Global stability follows from that $V$ is radially unbounded.
(c) Choosing $u=x_{1}^{3}+v$ gives the system

$$
\begin{aligned}
& \dot{x}_{1}=v \\
& \dot{x}_{2}=x_{1},
\end{aligned}
$$

which is globally stabilized, for example, by $v=-2 x_{1}-x_{2}$. Hence,

$$
u=x_{1}^{3}-2 x_{1}-x_{2}
$$

is a possible control law.
4. (a) The equilibria are given by the equation

$$
\left(F+H u_{e}\right) x_{e}+G u_{e}=0 .
$$

If $F+H u_{e}$ is nonsingular, we have $x_{e}=-\left(F+H u_{e}\right)^{-1} G u_{e}$.
Introduce the deviation variables $\delta x(t)=x(t)-x_{s}$ and $\delta u(t)=$ $u(t)-u_{s}$. Then the linearization is given by

$$
\delta \dot{x}=\left(F+H u_{e}\right) \delta x+\left(G+H x_{e}\right) \delta u
$$

(b) Since $\dot{z}=F z+G u$ is asymptotically stable, we have that $F<0$. If $u_{e}=0$, it follows directly from (a) that the bilinear system is stable. If $u_{e} \neq 0$, then by choosing $|H|<|F| / u_{e}$, we have $F+H u_{e}<0$ and thus the bilinear system is asymptotically stable.
(c) Using the notation of Lecture 7, we get $a_{1}=0$ and $b_{1}=3 A^{3} / 4$. Hence,

$$
N(A)=\frac{b_{1}+i a_{1}}{A}=\frac{3 A^{2}}{4} .
$$

(d) $G(s)$ is passive if and only if $\operatorname{Re} G(i \omega) \geq 0$ for all $\omega>0$. Here,

$$
\begin{aligned}
G(i \omega) & =\frac{i \omega+a}{(i \omega+2)(i \omega+10)}=\frac{(i \omega+a)(-i \omega+2)(-i \omega+10)}{\left(\omega^{2}+4\right)\left(\omega^{2}+100\right)} \\
& =\frac{20 a+\omega^{2}(12-a)}{\left(\omega^{2}+4\right)\left(\omega^{2}+100\right)}+i \frac{\omega\left(20-\omega^{2}-12 a\right)}{\left(\omega^{2}+4\right)\left(\omega^{2}+100\right)} .
\end{aligned}
$$

Hence, $0 \leq a \leq 12$.
5. (a) The linearization is given by

$$
A=\frac{d f}{d x}(0,0)=\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)
$$

with characteristic polynomial $s^{2}+s+1$. Hence, the system is asymptotically stable.
(b)

$$
P=\left(\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right)
$$

(c)

$$
\dot{V}=\frac{d V}{d x} f(x)=2\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right) P\binom{-x_{2}}{x_{1}+\left(x_{1}^{2}-1\right) x_{2}}
$$

gives the expression.
(d) $c=4$ corresponds to that largest $\Omega_{c}$ contained in $\Pi$.

