
Solutions to Exam in 2E1262 Nonlinear Control, April 5, 2002

1. (a) The describing function represents an amplitude depending gain

N(A). Note that N(A) is real-valued (why?). A rough sketch is

shown below:
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(b) We need to chooseG such that its Nyquist curve intersects�1=N(A).

Note that �1=N(A) belongs to the negative part of the real axis

and that minN�1(A) = 1=2. A suitable candidate is

G(s) =
2

s(s+ 1)2
:

(c) The gains are 
(f) = 2, 
(f Æ f) = 4, and 
(f + f) = 
(2f) = 4.

(d) The system is globally stable with Lyapunov function V (x) =

x2 for all K > 0. For example, note that _V = �2xf(x) =

�2jxf(x)j � 0, for all x 6= 0, and that V is radially unbounded.

2. (a) Introduce f through the equation �� = f(�; _�; �; _�) and let c1; c2; c3
denote the (positive) constants in f . Linearizing f around � =

� = _� = 0 gives

f(�; _�; �; _�) �
@f

@�
� +

@f

@ _�
_� +

@f

@�
� +

@f

@ _�
_�

= c1� + c2� + c3 _�

where _� = u. Hence, the linearized system is given by

�� = c1� + c2� + c3u:

It follows that in the Laplace domain

s2� = c1� + c2� + c3u = c1� + (c2=s+ c3)u

and thus

G(s) =
c3s+ c2

s(s2 � c1)
:

The poles are located in 0;�
p
c1 and the zero in �c2=c3. The

bicycle is, as expected, unstable.
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(b) See the minimum-time control example in Lecture 13. From that

it follows that the optimal control is given by

u�(t) = �C sgn�2(t) = C sgn(c1t� c2)

Hence, p(t) = c1t� c2 is a �rst-order polynomial.

3. (a) ICTools gives the phase portrait below:
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(b)

_V =
dV

dx
f(x) =

�
2x1 2x2

���x3
1
+ u

x1

�
= �2x4

1
+ 2x1u+ 2x1x2

If we choose u = �x2, then _V = �2x4
1
. Hence, x1 will tend to

zero. It follows from the equation _x2 = x1 that x2 will tend to a

constant �x2, say. Suppose �x2 6= 0. Then, _x1 = �x3
1
� x2 implies

that _x1 ! �x2 6= 0, which contradicts that x1 ! 0. Hence, �x2 = 0.

Global stability follows from that V is radially unbounded.

(c) Choosing u = x3
1
+ v gives the system

_x1 = v

_x2 = x1;

which is globally stabilized, for example, by v = �2x1 � x2.

Hence,

u = x31 � 2x1 � x2

is a possible control law.

4. (a) The equilibria are given by the equation

(F +Hue)xe +Gue = 0:
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If F +Hue is nonsingular, we have xe = �(F +Hue)
�1Gue.

Introduce the deviation variables Æx(t) = x(t) � xs and Æu(t) =

u(t)� us. Then the linearization is given by

Æ _x = (F +Hue)Æx+ (G+Hxe)Æu

(b) Since _z = Fz+Gu is asymptotically stable, we have that F < 0.

If ue = 0, it follows directly from (a) that the bilinear system

is stable. If ue 6= 0, then by choosing jHj < jF j=ue, we have

F + Hue < 0 and thus the bilinear system is asymptotically

stable.

(c) Using the notation of Lecture 7, we get a1 = 0 and b1 = 3A3=4.

Hence,

N(A) =
b1 + ia1

A
=

3A2

4
:

(d) G(s) is passive if and only if ReG(i!) � 0 for all ! > 0. Here,

G(i!) =
i! + a

(i! + 2)(i! + 10)
=

(i! + a)(�i! + 2)(�i! + 10)

(!2 + 4)(!2 + 100)

=
20a+ !2(12 � a)

(!2 + 4)(!2 + 100)
+ i

!(20� !2 � 12a)

(!2 + 4)(!2 + 100)
:

Hence, 0 � a � 12.

5. (a) The linearization is given by

A =
df

dx
(0; 0) =

�
0 �1
1 �1

�

with characteristic polynomial s2 + s + 1. Hence, the system is

asymptotically stable.

(b)

P =

�
3 �1
�1 2

�

(c)

_V =
dV

dx
f(x) = 2

�
x1 x2

�
P

�
�x2

x1 + (x2
1
� 1)x2

�

gives the expression.

(d) c = 4 corresponds to that largest 
c contained in �.
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