Solutions to Exam in 2E1262 Nonlinear Control, April 5, 2002

1. (a) The describing function represents an amplitude depending gain
N(A). Note that N(A) is real-valued (why?). A rough sketch is
shown below:
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(b) We need to choose G such that its Nyquist curve intersects —1/N(A).
Note that —1/N(A) belongs to the negative part of the real axis
and that min N~'(A4) = 1/2. A suitable candidate is

2

G(s) = NEFEIER

(c) The gains are y(f) =2, y(f o f) = 4, and y(f + f) = 7(2f) = 4.
(d) The system is globally stable with Lyapunov function V(z) =
22 for all K > 0. For example, note that V = —2zf(z) =
—2|zf(z)] <0, for all z # 0, and that V' is radially unbounded.

2. (a) Introduce f through the equation 6 = 10, 9, 3, ﬁ) and let cq, co, 3
denote the (positive) constants in f. Linearizing f around 6 =

6= =0 gives

.. 9f Of. Of of .
10.0.6.0) = G0+ Zi+ Lo+ L

=10 4 2 + e3f8
where ﬁ = u. Hence, the linearized system is given by
0 =ci6+ cof3 + c3u.
It follows that in the Laplace domain
520 = 10 + c36 4 c3u = 10 + (ca/s + c3)u
and thus

st
Gls) = s(s2—c1)

The poles are located in 0,4/c; and the zero in —cy/c3. The
bicycle is, as expected, unstable.



(b) See the minimum-time control example in Lecture 13. From that
it follows that the optimal control is given by

u*(t) = —C'sgn \o(t) = C'sgn(eit — ca)
Hence, p(t) = c1t — co is a first-order polynomial.

(a) ICTools gives the phase portrait below:
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(b)

—x% +u
1

. d
V = d_vf(x) = (2351 2352) ( ) = —2:16‘1l + 221U + 22122
€T

If we choose . = —zo, then V = —221. Hence, z; will tend to
zero. It follows from the equation 9 = x; that z9 will tend to a
constant Zo, say. Suppose o # 0. Then, #; = —27 — 2o implies
that £1 — Zo # 0, which contradicts that z; — 0. Hence, Z5 = 0.

Global stability follows from that V is radially unbounded.

(c) Choosing u = z} + v gives the system

Z.El =7
:.EQ =1,
which is globally stabilized, for example, by v = —2z; — 5.

Hence,
u = xi’ — 21 — x9

is a possible control law.

(a) The equilibria are given by the equation

(F + Hue)ze + Gue = 0.



If F + Hu, is nonsingular, we have z, = —(F + Hu,) ' Gu,.
Introduce the deviation variables dz(t) = z(t) — zs and du(t) =
u(t) — us. Then the linearization is given by

0% = (F + Hue)oz + (G 4+ Hze)ou

(b) Since z = Fz + Gu is asymptotically stable, we have that F' < 0.
If ue = 0, it follows directly from (a) that the bilinear system
is stable. If u, # 0, then by choosing |H| < |F|/u., we have
F + Hue < 0 and thus the bilinear system is asymptotically
stable.

(c) Using the notation of Lecture 7, we get a; = 0 and b; = 343%/4.

Hence,

by tia;  3A
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(d) G(s) is passive if and only if Re G(iw) > 0 for all w > 0. Here,

N(A)

Glin) — iw+a _ (iw + a)(—iw + 2)(—iw + 10)
(i) = G T 2w +10) — (w2 + 4)(w2 +100)
_ 20a+w?(12—a) . w(20 —w? — 12a)

T (@2 D@ +100) (@2 +4)w? 1 100)°

Hence, 0 < a < 12.

(a) The linearization is given by

df 0 —1

with characteristic polynomial s> + s + 1. Hence, the system is
asymptotically stable.
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gives the expression.

(d) ¢ =4 corresponds to that largest €2, contained in II.



