Solutions to Exam in 2E1262 Nonlinear Control, December 19, 2002
1. (a) With z = (6,6, ¢, ¢)T, we have if sin # 0,

2
. 1'421 sinx1 cos 1 — sin x1
T = )
—2z914 cos z1/ sin 11

(b) Setting all derivatives in the original equation equal to zero, yields
sinf = 0. Hence, the equilibria are determined by 6; = km with
¢ taking any value. (Note that the equilibria cannot be obtained
directly from the first-order form in (a).)

(c) The solution (A(t), ¢(t)) = (7/3,1/2) fulfills the first pendulum

equation, since
—2sinm/3cos /3 +sinw/3 =0

The second equation is also satisfied.

(d) Denote the first pendulum equation by f1(2) = 0 and the second
by fa(z) = 0 where z = (0,0,0,¢,4,$)". To linearize these
equations, we write

0= fi(2(t) = f1(0(8) + 62(1)) ~ f1(2°(1)) + fli o
2=20(¢t
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and similar for fo. Deriving the partial derivatives and using the
definition of z (dz; = 06 etc.), we get
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2. (a) The system & = f(z) = zu(z) is locally asymptotically stable at
z=0if
daf

I =u(0) <0

=0

(b) u = kz gives # = kz?. If &k > 0 then 2 — oo for z(0) > 0
and if £ < 0 then z — —oo for z(0) < 0; hence the system is
unstable. For &k = 0, we have the equation £ = 0 which is not
asymptotically stable.

(c) k1 = 0 and k2 < O (e.g., k9 = —1) gives © = kox, which is
(globally) asymptotically stable.

(d) The Lyapunov function V(z) = 22/2 can be used to prove that
# = —x3 is globally asymptotically stable.
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Follows from the feedback system

T = Az + Bu
y=Cz
u=Ay
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See plot above.

The Nyquist curve of e™%/s intersects the negative real axis for
the first time at w = w/2. The intersection corresponds to a
stable oscillation. The period time estimate is thus 27/w = 4.

Any trajectory starting in z(0) # 0 will at some instance intersect
the switching surface £ = 0. Suppose that time instance is at
to = 0 and the intersection is from the positive side. Then at time
T the integrator shifts sign from £ = —1 to £ = +1. At 2T the
state intersects the switching surface from the negative side, and
the procedure repeats itself. Hence, the period is 27 + 2T = 4T.

—1/N(A) for the saturation sat(-) (without k) starts at (—1,0)
and follows the negative real axis towards —oco. The Nyquist
curve of ke */s intersects (—1,0) when ksinw/w = 1, see (b).
Hence, for k = 7/2. So the DF analysis predicts an oscillation
for k > m/2.

The sector in the Circle Criterion that specifies the nonlinearity
is given by k1 = 1 and k9 = 4. Hence, the system is BIBO stable
if P(iw) does not encircle or intersect the circle defined by the
two points (—1,0) and (—1/4,0). Since

1—w?

Re P(iw) = (e

which attain its minimum at w? = 3, we have that Re P(iw) >
—1/8. Therefore the system is BIBO stable.

The gain of the controller is equal to y(C) = 4, see Lecture 5 for
calculations. Since the gain of P is y(P) = 1, we cannot draw
any conclusions using the Small Gain Theorem.



(d)
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9 =—x1 — 229+ F(r — 1)

For small y, we see that the closed-loop system is linear. For
example, by using the state-space realization in (c), we get for
|z1| <1 that

Itl = T2

.’iL‘Q = —5.’1;‘1 — 2.’1;‘2

V(x) = 2T Pz is a Lyapunov function with PA+ A" P = —I. For
A as above, we have
1 /17 1
P_E<13>

Using this V', we can prove stability.

P(s) =c(sI —L)~'b
Follows from evaluating the integral of N for various constant
values of z.

The averaged system is a linear system with saturation. This
can be studied using the Circle Criterion, see for example the
previous problem.

When 0 = 0, the system becomes a relay feedback system. We
can then draw the Nyquist curve of P and check intersections with
—1/N(A) where N(A) is the describing function for the relay.

Large A leads to that the dither signal is present in y (which
might be undesirable if we want y to be close to r). Small p is
expensive to implement, since that means that we need a high-
frequency triangle-wave generator.



