Solutions to Exam in 2E1262 Nonlinear Control, April 24, 2003

1. We need to check the intersections between G(iw) and —1/N(A),
where —oo < —1/N(A) < —1.

(a)
(b)
()

No periodic solution since —7/2 < arg G(iw) < 0.

No periodic solution since —7 < arg G(iw) < —m/2.

Im G (iw) = 0 gives w = v/3. No periodic solution since G(iv/3) =
—1/4.

From (c), it follows that G(iv/3) = —1/2 and thus that there will
be no periodic solution.

No periodic solution since |G (iw)| < 1.

With z = (21, z2) = (z, %) we have

s . Z2
i=flzu) = <2z§—z1+u—1)

There is one equilibrium and it is given by 2% = (—1,0). Lin-
earizing the system in (a) about this point gives

. 0 1
AZ = <_1 0) Az

which has characteristic polynomial A24-1. The roots are A = =i,
so hence we cannot conclude if the equilibrium of the nonlinear
system is stable or not.

The solution is satisfied since

i —2(2)* +x = —cost —2sin’t + cost = —2 + 2cos? t
=—-2+1+cos(2t) =—1+u

With the notation above, we have

7= (5 ) 5 ()
0z \—1 4z)° 0ou \1

The linearized system is hence
. 0 1 0
02 = <_1 —4sint> 0z + <1> ou

cost
—sint

where

dz = 2(t) — . Ou=u(t) — cos(2t)
()

For example,
u(z, ) = [-2(2)* +2+1] - 22—z
gives the closed-loop system
2+2z2+2=0

which obviously is globally asymptotically stable.



3.

(a)

The equilibria are solutions to the equation

0:—.’13‘2
0=x%+ (23— 1)29

Hence, (z1,22) = (0,0) is the only one. Linearization yields

. 0 —1
Az = <0 _ 1) Ax
which does not give any information about the stability of the
original nonlinear system.

Phase portraits (small and large scale).
V(0,0) =0 and V (z1,22) > 0, for all (x1,z9) # 0. Moreover,

ﬂ = (4a:vi’ xg) 3 —2352
dt zi + (27 — 1)z

= —daxdzo + 23x0 + (23 — )23 = (27 — 1)23

if a = 1/4. Hence, dV/dt < 0 for |z1] < 1 and z9 # 0. Since
small z1(0) # 0 and z2(0) = 0 gives z5(t) # 0 for small ¢ > 0, it
follows that the origin is asymptotically stable.

Global asymptotic stability cannot be proved using V', because
for large w5 the term (2?2 — 1)z3 of dV/dt in (c) is dominating.
Hence, if |z1]| > 1, this term is positive and thus dV/dt > 0.

The maximum of N(A) is given by

2
max N(A4) = —
A>0 Ta
The Nyquist curve of G(s) intersects the negative real axis at

w = V2 corresponding to G (iw) = —2/3. Hence, if

ra_ 2
2 3

there will probably be no oscillations. Hence, choose a > 4/(37) =

0.42.

The response consists of one part from y = 2 to y = 1 and one
from y =1 toy=0.

The system is asymptotically stable for |y(0)| < 1, since in that
case f(y(0)) = 0 and G(s) is stable. For y(0) > 1, it is easy to
see that e = r — f(y) < —1, which thus drives y(¢) towards —1.
Then, at some instance 7, it must hold that —1 < y(7) < 1, so
the previous stability argument applies. Since the case y(0) < —1
is similar, global asymptotic stability follows.

With u = «, we have z(t) = 2(0) + ot = 1 + o and thus

1
4
J(U):/ (1+042+204t+042t2)dt:1+a+§a2
0

The minimum is attained for a* = —3/8, which yields J(a*) =
13/16 =~ 0.81.



(b) With u = —kz, we have z(t) = e ** and thus

1 1 k‘2
J(u) = / (1+EkYe *dt = 4];_ <1 - ek)
0

which has its minimum for k* ~ 1/4. Moreover, J(u*) =~ 0.94.

(¢) J(u*) =p(0) = —tanh(—1) =~ 0.76, which of course is lower than
the values obtained in (a) and (b).

(d) No, because © = —p(t)x(t) for large ¢ > 0 yields an unstable
system since p(t) — —1 as t — oo.



