Solutions to Exam in 2E1262 Nonlinear Control, April 24, 2003

- 1. We need to check the intersections between $G(i\omega)$ and -1/N(A), where $-\infty < -1/N(A) < -1$.
 - (a) No periodic solution since $-\pi/2 < \arg G(i\omega) < 0$.
 - (b) No periodic solution since $-\pi < \arg G(i\omega) < -\pi/2$.
 - (c) Im $G(i\omega) = 0$ gives $\omega = \sqrt{3}$. No periodic solution since $G(i\sqrt{3}) = -1/4$.
 - (d) From (c), it follows that $G(i\sqrt{3}) = -1/2$ and thus that there will be no periodic solution.
 - (e) No periodic solution since $|G(i\omega)| \leq 1$.
- 2. (a) With $z = (z_1, z_2) = (x, \dot{x})$ we have

$$\dot{z} = f(z, u) = \begin{pmatrix} z_2 \\ 2z_2^2 - z_1 + u - 1 \end{pmatrix}$$

(b) There is one equilibrium and it is given by $z^0 = (-1, 0)$. Linearizing the system in (a) about this point gives

$$\Delta \dot{z} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Delta z$$

which has characteristic polynomial $\lambda^2 + 1$. The roots are $\lambda = \pm i$, so hence we cannot conclude if the equilibrium of the nonlinear system is stable or not.

(c) The solution is satisfied since

$$\ddot{x} - 2(\dot{x})^2 + x = -\cos t - 2\sin^2 t + \cos t = -2 + 2\cos^2 t$$
$$= -2 + 1 + \cos(2t) = -1 + u$$

With the notation above, we have

$$\frac{\partial f}{\partial z} = \begin{pmatrix} 0 & 1\\ -1 & 4z_2 \end{pmatrix}, \quad \frac{\partial f}{\partial u} = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

The linearized system is hence

$$\delta \dot{z} = \begin{pmatrix} 0 & 1 \\ -1 & -4\sin t \end{pmatrix} \delta z + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \delta u$$

where

$$\delta z = z(t) - \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}, \quad \delta u = u(t) - \cos(2t)$$

(d) For example,

$$u(x, \dot{x}) = [-2(\dot{x})^2 + x + 1] - 2\dot{x} - x$$

gives the closed-loop system

$$\ddot{x} + 2\dot{x} + x = 0$$

which obviously is globally asymptotically stable.

3. (a) The equilibria are solutions to the equation

$$0 = -x_2$$
$$0 = x_1^3 + (x_1^2 - 1)x_2$$

Hence, $(x_1, x_2) = (0, 0)$ is the only one. Linearization yields

$$\Delta \dot{x} = \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix} \Delta x$$

which does not give any information about the stability of the original nonlinear system.

- (b) Phase portraits (small and large scale).
- (c) V(0,0) = 0 and $V(x_1, x_2) > 0$, for all $(x_1, x_2) \neq 0$. Moreover,

$$\frac{dV}{dt} = (4ax_1^3 \quad x_2) \begin{pmatrix} -x_2 \\ x_1^3 + (x_1^2 - 1)x_2 \end{pmatrix}
= -4ax_1^3x_2 + x_1^3x_2 + (x_1^2 - 1)x_2^2 = (x_1^2 - 1)x_2^2$$

if a = 1/4. Hence, dV/dt < 0 for $|x_1| < 1$ and $x_2 \neq 0$. Since small $x_1(0) \neq 0$ and $x_2(0) = 0$ gives $x_2(t) \neq 0$ for small t > 0, it follows that the origin is asymptotically stable.

- (d) Global asymptotic stability cannot be proved using V, because for large x_2 the term $(x_1^2 1)x_2^2$ of dV/dt in (c) is dominating. Hence, if $|x_1| > 1$, this term is positive and thus dV/dt > 0.
- 4. (a) The maximum of N(A) is given by

$$\max_{A>0} N(A) = \frac{2}{\pi a}$$

The Nyquist curve of G(s) intersects the negative real axis at $\omega = \sqrt{2}$ corresponding to $G(i\omega) = -2/3$. Hence, if

$$-\frac{\pi a}{2} < -\frac{2}{3}$$

there will probably be no oscillations. Hence, choose $a > 4/(3\pi) \approx 0.42$.

- (b) The response consists of one part from y = 2 to y = 1 and one from y = 1 to y = 0.
- (c) The system is asymptotically stable for $|y(0)| \le 1$, since in that case f(y(0)) = 0 and G(s) is stable. For y(0) > 1, it is easy to see that $e = r f(y) \le -1$, which thus drives y(t) towards -1. Then, at some instance τ , it must hold that $-1 < y(\tau) < 1$, so the previous stability argument applies. Since the case y(0) < -1 is similar, global asymptotic stability follows.
- 5. (a) With $u = \alpha$, we have $x(t) = x(0) + \alpha t = 1 + \alpha t$ and thus

2

$$J(u) = \int_0^1 (1 + \alpha^2 + 2\alpha t + \alpha^2 t^2) dt = 1 + \alpha + \frac{4}{3}\alpha^2$$

The minimum is attained for $\alpha^* = -3/8$, which yields $J(\alpha^*) = 13/16 \approx 0.81$.

(b) With u = -kx, we have $x(t) = e^{-kt}$ and thus

$$J(u) = \int_0^1 (1+k^2)e^{-kt}dt = \frac{1+k^2}{k} \left(1 - e^{-k}\right)$$

which has its minimum for $k^* \approx 1/4$. Moreover, $J(u^*) \approx 0.94$.

- (c) $J(u^*) = p(0) = -\tanh(-1) \approx 0.76$, which of course is lower than the values obtained in (a) and (b).
- (d) No, because $\dot{x} = -p(t)x(t)$ for large t>0 yields an unstable system since $p(t)\to -1$ as $t\to\infty$.