
Solutions to Exam in 2E1262 Nonlinear Control, Dec 16, 2003

1. (a) All singular points are given by the solutions to

0 =−3x1 + x3
1− x2

0 = x1− x2,

or

0 = x1(x
2
1−4)

x1 = x2.

Hence, they are equal to (x1,x2) = (0,0) and±(2,2). The linearization
about the equilibria is given by

A(x1,x2) =

[

−3+3x2
1 −1

1 −1

]

so that

A(0,0) =

[

−3 −1
1 −1

]

, A(2,2) = A(−2,−2) =

[

9 −1
1 −1

]

.

The characteristic polynomial for A(0,0) is λ2 +4λ+4 and for A(2,2) =
A(−2,−2) is λ2− 8λ− 8, so (0,0) is locally (asymptotically) stable
while ±(2,2) are unstable.

(b) We have

V̇ = x1ẋ1 + x2ẋ2 =−3x2
1 + x4

1− x1x2 + x1x2 = x2
1(x

2
1−3) < 0

as long as |x1| <
√

3 and x1 6= 0. Consider LaSalle’s invariant set the-
orem (see lecture notes) with E = {x1 = 0, x2 ≤ R}, for some R > 0.
Then, the largest invariant set in E is M = (0,0), because for x(0) in E
but not in M we have from ẋ1 = −x2 that x(t) will leave E. The result
now follows from LaSalle’s invariant set theorem.

(c) With u(x) = −x3
1, the nonlinearity in the system is canceled, so the

closed-loop system is equal to

ẋ1 =−3x1− x2

ẋ2 = x1− x2.

This linear system is asymptotically stable (cf., A(0,0) in (a)), thus the
closed-loop system is globally asymptotically stable.

2. (a) Denote v the input of ∆ and u the output. Then, we have

v = G2G3(1+G1G2)
−1u =: Gu.

Small gain theorem guarantees closed-loop stability for all ∆ such that

γ(∆)sup
ω
|G(iω)|< 1.

Since supω |G(iω)|< 40, we can choose β = 1/40.
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(b) System (1): The equilibria points are at multiple locations, x0 = (n,0)
where n = 0,1,2, . . . . If n is even, the system is asymptotic stable and
if n is odd it is unstable. This corresponds to phase portrait C.
System (2): The equilibria are in the origin and in (±1,0). If the system
is linearized, the equilibrium in the origin can be shown to be unstable,
but no conclusions can be drawn from the other two equilibria. How-
ever, from the vector field we can draw the conclusions that the system
corresponds to phase portrait B.
System (3): The sign-term gives the system different character depend-
ing on the value of x1 + 2x2. All trajectories converge to this sliding
set, therefore the corresponding phase portrait is D.
System (4): This system has complex stable eigenvalues. The trajecto-
ries spiral therefore to the origin, which corresponds to A.

(c) Let V (x) = ax2
1 +bx2

2. Then,

V̇ =−2ax4
1 +4ax1x2−2bx1x2−2bx4

2.

Choose, for example, a = 1/2 and b = 1. Then,

V̇ =−x4
1−2x4

2 < 0, ∀(x1,x2) 6= 0,

so the origin is globally asymptotically stable.

3. (a) The time derivative of V is

V̇ =−x2(x2 +1)+ yu≤ yu

Integrating the left-hand and the right-hand sides gives

V (x(T ))−V (x(0))≤
∫ T

0
y(t)u(t)dt

Since V (x(T )) = x2(T )/2≥ 0 and V (x(0)) = 0, it follows that the sys-
tem is passive.

(b) For σ1 = x1− x2 = 0, we get the equivalent control ueq = x1 + x2
1 be-

cause then

σ̇1 = ẋ1− ẋ2 =−x2
1 + x2 +ueq− x1− x2 = 0

Inserted in the original system, this gives

ẋ1 =−x2
1 + x2 +ueq = x1 + x2 = 2x1

ẋ2 = x1 + x2 = 2x2

Along the sliding surface {σ1(x) = 0}, we have x1 = x2. The system is
obviously unstable along the sliding surface.
For σ2 = x1 +4x2 = 0, we get ueq =−4x1 + x2

1−5x2 because then

σ̇2 = ẋ1 +4ẋ2 =−x2
1 + x2 +ueq +4x1 +4x2 = 0

Inserted in the system, this gives

ẋ1 =−x2
1 + x2 +ueq =−4x1−4x2 =−3x1

ẋ2 = x1 + x2 =−4x2 + x2 =−3x2
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Along the sliding surface σ2(x) = 0, we have x1 = −4x2. Thus the
system is stable along the sliding surface.

For σ3 = x2
1− x2 = 0, we get (similarly as above)

ueq =
1

2x1
(x1 + x2)+ x2

1− x2,

which is not well-defined for x1 = 0.

Since σ2 yields the only stable surface, we choose that one. The sliding
mode controller can be written as (see lecture notes)

u =− pT f (x)
pT g(x)

− µ
pT g(x)

sgnσ2(x)

= x2
1−4x1−5x2−µsgn(x1 +4x2),

where µ is a arbitrary positive constant that determines the rate of con-
vergence to the sliding set.

4. (a) According to the circle criterion, the closed-loop system will be stable
for a nonlinearity in the sector [0,β] if the Nyquist curve stays to the
right of the vertical line −1/β. From the Nyquist curve we see that we
can take β≈ 1/0.25 = 4.

The maximum gain of the linear system is equal to the largest distance
from the origin of the Nyquist curve, which is about 2. The small gain
theorem thus allows the sector to have k ≈ 1/2.

(b) u = kx gives ẋ = kx3. If k < 0 then the Lyapunov function V (x) = x2/2
can be used to prove that ẋ = kx3 is globally asymptotically stable.

(c) u = kx2 gives ẋ = kx4. If k > 0 then x→ ∞ for x(0) > 0 and if k < 0
then x→−∞ for x(0) < 0; hence the system is unstable. For k = 0, we
have the equation ẋ = 0 which is not asymptotically stable.
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5. (a) In state-space form, the system 1/(s+1) is given by

ẋ =−x+u

y = x,

with x(0) = x0. First suppose x0 > 0. Since the system is of first or-
der, the state x is driven to the origin in minimum time by the control
u∗(t) = argmin|u|≤1 ẋ(t) = argmin|u|≤1−x(t) + u = −1. Similarly, if
x0 < 0, then u∗(t) = argmax|u|≤1 ẋ(t) = 1. Hence, the proposed control
algorithm u∗ = −sgny is time optimal. (Note that the control never
switches in the interval (0, t f ).)

(b) The control in (a) corresponds to a relay in negative feedback. The
describing function for the relay is equal to N(A) = 4/(πA). As usual,
we are looking for solutions to G(iω)N(A) =−1. Since

G−1(iω) =
100−21ω2

100
+ iω

120−ω2

100

intersects the negative real axis (that is, intersects −N(A)) for ω =√
120 with G−1(i

√
120) =−121/5, we get

4
πA

=
121
5

.

Hence, there will be an oscillation with frequency ω =
√

120 and am-
plitude A = 20/(121π). It follows from the same discussion as in the
lecture notes on describing function that the oscillation is stable.

4


