Automatic Control
Department of Signals, Sensors & Systems

Nonlinear Control, 2E1262
Exam 14:00-19:00, Dec 16, 2003

Aid: e Lecture notes from nonlinear course and textbook from basic course
(“Reglerteknik” by Glad & Ljung or similar text approved by course
responsible). Mathematical handbook (e.g., “Beta Mathematics Hand-
book” by Rade & Westergren). Other textbooks, handbooks, exercises,
solutions, calculators etc. may not be used.

Observandum:

Name and social security number (personnummer) on every page.

Only one solution per page.

A motivation must be attached to every answer.

Specify number of handed in pages on cover.

Each subproblem is marked with its maximum credit.
Preliminary Grading:

Grade 3: > 20
Grade 4: > 30
Grade 5: > 40

Results: The results will be posted on the department’s board on second floor,
Osquldasvag 10.

Responsible: Karl Henrik Johansson, kal | ej] @3. kt h. se

Please, remember to fill in the course evaluation linked on the course homepage.

Good Luck!




1. Consider the following nonlinear system

X1 = —3x1+xf—xz+u
X2 = X1 —axp
(@) [3p] Determine the local stability properties of all equilibrium points to the
nonlinear system if u(t) =0and a= 1.
(b) [4p] Letu(t) =0and a= 0. Prove that every solution starting close to the
origin will approach the origin. You may use the function

1 1
V(X) = QX%JF Ex%

and LaSalle’s invariant set theorem.

(c) [3p] If a=1, determine a nonlinear state feedback control u = k(x) such
that the origin is globally asymptotically stable.



2.

(@) [3p] Consider the system depicted in the block diagram below. Here A de-
notes an unknown nonlinear system. Some relevant amplitude curves
are also shown below. Use these to find a bound > 0 such that the
closed-loop system is stable for all A with gain y(A) < B (with “gain

defined as in the lecture notes).
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(b) [4p] Four nonlinear systems are shown below together with their phase por-
traits. Match systems and phase portraits. Motivate your answer for

each pair.
X]_ = X2
® o
2= —sin(TXy) — X2
X]_ = X2
2
O
3) X1 = —2X1 — Sign(Xy + 2x2)
X2 = X1
X1 = —2X1 + 2X2
4 .
Xo = —2X1 — 3X2
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(c) [3p] Investigate the stability of the origin for the system

X1 = —X‘E—{—ZXZ

v 3
X2 = —X1 — X5,

by using a quadratic Lyapunov function.



3.
(@) [4p]

(b) [6p]

Show that the system

X=—X—X4+u
y =X

with x(0) = 0 describes a passive mapping from u to vy, that is, show
that

(y.upr = /0 " ytutydt > 0

forall T > 0.
Hint: You may find the function V (x) = x?/2 useful.

A sliding mode controller is to be designed to stabilize the origin of
the nonlinear system

X1 = —x%-i—xz-i—u

X2 = X1 + Xo.

Choosing a suitable sliding surface {x: o(x) = 0} is a crucial part of
the design. Consider three choices:

01(X) = X1 — X2
02(X) = X1 +4x2
03(X) = X2 — X

Determine the equivalent control ueq and the sliding mode dynamics
for each of the suggested switching surfaces (if possible). Is the equiv-
alent control well-defined for all sliding surfaces? Decide which one
is the most suitable to use, and specify the complete control law for
that one.



4.

(@) [6p] An exponentially stable linear system G(s) is in negative feedback
with a static nonlinearity W(-). The Nyquist diagram of G(s) is shown
below. What is the largest sector g € [0,] for which the circle cri-
terion guarantees stability for the closed loop? What is the largest
sector Y € [—k, k] for which the small gain theorem guarantees stabil-
ity for the closed loop? (The notation Y € [ki, ko] means that (Y(X) —
kaX) (W(X) — kzX) < 0.)

Nyquist diagram for G(s)
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X= XU (1)

where the u= u(X) is a state-feedback control. Does there exist a linear
control law u(x) = kx that ensures that (1) is asymptotically stable?
What about global asymptotic stability?

(c) [2p] Does there exist a quadratic control law u(x) = kx? that ensures that
(1) is asymptotically stable? What about global asymptotic stability?



5. Consider the system

1

with input u and output y. The system is controlled by the algorithm

u:{l’ y<O0 2
-1, y>0

(@) [4p] Show that among all controls with |u(t)| < 1, the controller (2) is the
one that drives the system to zero in the shortest amount of time.

Hint: You may solve this problem without applying Pontryagins Max-
imum Principle.

(b) [6p] Suppose the system is actually equal to

1
(s+1)(Tis+1)(Tos+1)

G(s) =

with Ty = To = 0.1. If the controller (2) still is applied, there will be an
oscillation. What is the amplitude and the frequency of the oscillation?
Is the oscillation stable?

Hint: The calculations might be simpler if you consider G—(iw).



