
Automatic Control

Department of Signals, Sensors & Systems

Nonlinear Control, 2E1262
Exam 14:00-19:00, Dec 16, 2003

Aid: • Lecture notes from nonlinear course and textbook from basic course
(“Reglerteknik” by Glad & Ljung or similar text approved by course
responsible). Mathematical handbook (e.g., “Beta Mathematics Hand-
book” by Råde & Westergren). Other textbooks, handbooks, exercises,
solutions, calculators etc. may not be used.

Observandum:

• Name and social security number (personnummer) on every page.

• Only one solution per page.

• A motivation must be attached to every answer.

• Specify number of handed in pages on cover.

• Each subproblem is marked with its maximum credit.

Preliminary Grading:

Grade 3: ≥ 20

Grade 4: ≥ 30

Grade 5: ≥ 40

Results: The results will be posted on the department’s board on second floor,
Osquldasväg 10.

Responsible: Karl Henrik Johansson, kallej@s3.kth.se

Please, remember to fill in the course evaluation linked on the course homepage.

Good Luck!
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1. Consider the following nonlinear system

ẋ1 =−3x1 + x3
1− x2 +u

ẋ2 = x1−ax2

(a) [3p] Determine the local stability properties of all equilibrium points to the
nonlinear system if u(t)≡ 0 and a = 1.

(b) [4p] Let u(t)≡ 0 and a = 0. Prove that every solution starting close to the
origin will approach the origin. You may use the function

V (x) =
1
2

x2
1 +

1
2

x2
2

and LaSalle’s invariant set theorem.

(c) [3p] If a = 1, determine a nonlinear state feedback control u = k(x) such
that the origin is globally asymptotically stable.
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2.

(a) [3p] Consider the system depicted in the block diagram below. Here ∆ de-
notes an unknown nonlinear system. Some relevant amplitude curves
are also shown below. Use these to find a bound β > 0 such that the
closed-loop system is stable for all ∆ with gain γ(∆) < β (with “gain”
defined as in the lecture notes).
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(b) [4p] Four nonlinear systems are shown below together with their phase por-
traits. Match systems and phase portraits. Motivate your answer for
each pair.

(1)
ẋ1 = x2

ẋ2 =−sin(πx1)− x2

(2)
ẋ1 = x2

ẋ2 = x1− x3
1

(3)
ẋ1 =−2x1− sign(x1 +2x2)

ẋ2 = x1

(4)
ẋ1 =−2x1 +2x2

ẋ2 =−2x1−3x2
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(c) [3p] Investigate the stability of the origin for the system

ẋ1 =−x3
1 +2x2

ẋ2 =−x1− x3
2,

by using a quadratic Lyapunov function.
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3.

(a) [4p] Show that the system

ẋ =−x3− x+u

y = x

with x(0) = 0 describes a passive mapping from u to y, that is, show
that

〈y,u〉T =
∫ T

0
y(t)u(t)dt ≥ 0

for all T > 0.

Hint: You may find the function V (x) = x2/2 useful.

(b) [6p] A sliding mode controller is to be designed to stabilize the origin of
the nonlinear system

ẋ1 =−x2
1 + x2 +u

ẋ2 = x1 + x2.

Choosing a suitable sliding surface {x : σ(x) = 0} is a crucial part of
the design. Consider three choices:

σ1(x) = x1− x2

σ2(x) = x1 +4x2

σ3(x) = x2
1− x2

Determine the equivalent control ueq and the sliding mode dynamics
for each of the suggested switching surfaces (if possible). Is the equiv-
alent control well-defined for all sliding surfaces? Decide which one
is the most suitable to use, and specify the complete control law for
that one.

5



4.

(a) [6p] An exponentially stable linear system G(s) is in negative feedback
with a static nonlinearity ψ(·). The Nyquist diagram of G(s) is shown
below. What is the largest sector ψ ∈ [0,β] for which the circle cri-
terion guarantees stability for the closed loop? What is the largest
sector ψ ∈ [−k,k] for which the small gain theorem guarantees stabil-
ity for the closed loop? (The notation ψ ∈ [k1,k2] means that (ψ(x)−
k1x)(ψ(x)− k2x)≤ 0.)
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Nyquist diagram for G(s)

(b) [2p] Consider the scalar nonlinear control system

ẋ = x2u (1)

where the u = u(x) is a state-feedback control. Does there exist a linear
control law u(x) = kx that ensures that (1) is asymptotically stable?
What about global asymptotic stability?

(c) [2p] Does there exist a quadratic control law u(x) = kx2 that ensures that
(1) is asymptotically stable? What about global asymptotic stability?
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5. Consider the system

G(s) =
1

s+1
with input u and output y. The system is controlled by the algorithm

u =

{

1, y < 0

−1, y > 0
(2)

(a) [4p] Show that among all controls with |u(t)| ≤ 1, the controller (2) is the
one that drives the system to zero in the shortest amount of time.

Hint: You may solve this problem without applying Pontryagins Max-
imum Principle.

(b) [6p] Suppose the system is actually equal to

G(s) =
1

(s+1)(T1s+1)(T2s+1)

with T1 = T2 = 0.1. If the controller (2) still is applied, there will be an
oscillation. What is the amplitude and the frequency of the oscillation?
Is the oscillation stable?

Hint: The calculations might be simpler if you consider G−1(iω).
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