Solutions to Exam in 2E1262 Nonlinear Control, Apr 16, 2004

1. (a) The equilibria are given by $\overline{x} = (\overline{x}, \overline{x}_2) = k\pi/2(1, -1), k \in \mathbb{Z}$. The linearized system about \overline{x} is given by $\dot{z} = Az$ with

$$A = \begin{pmatrix} 1 & 1 \\ (-1)^k & (-1)^{k+1} \end{pmatrix}$$

which is unstable for every k, since

$$\det(sI - A) = (s - 1)(s - (-1)^{k+1}) + (-1)^{k+1}$$

is an unstable polynomial.

(b) The system is on strict feedback form because it can be written as

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2
\dot{x}_2 = f_2(x_1, x_2) + g_2(x_1, x_2)u$$

see Lecture 10.

(c) Using the notation of Lecture 10, we can choose $\phi_1(x_1) = -2x_1$ and $V_1(x_1) = x_1^2/2$, and thus

$$u_1 = \frac{d\phi_1}{dx_1}(x_1 + x_2) - \frac{dV_1}{dx_1} - (x_2 - \phi_1) = -5x_1 - 3x_2$$

Then, we choose

$$u = u_1 - \sin(x_1 - x_2) = -5x_1 - 3x_2 - \sin(x_1 - x_2)$$

(d) Consider Lyapunov function candidate

$$V(x) = V_2(x) = \frac{x_1^2}{2} + \frac{(2x_1 + x_2)^2}{2}$$

as suggested by the back-stepping lemma. Then, with the control as in (c), we have

$$\dot{V} = \frac{dV}{dx} f(x, u) = -15(x_1 + x_2/2)^2 - x_2^2/4 < 0, \quad \forall x \neq 0$$

so since V is positive definite, the system is asymptotically stable.

2. (a) The equilibria are (0,0) and (1,1) with linearized systems given by

$$\dot{z} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} z, \qquad \dot{z} = \begin{pmatrix} -3 & 1 \\ 6 & -3 \end{pmatrix} z$$

respectively. Hence, the origin is not locally stable, while (1,1) is locally stable.

(b) Consider the banana shaped set Γ (draw a picture). For each initial point x(0) on the left boundary of Γ , we have $x_2(0) = x_1^2(0)$, and thus

$$\dot{x}_1(0) = -x_1^3(0) + x_2(0) = -x_1^3(0) + x_1^2(0) > 0$$

$$\dot{x}_2(0) = x_1^6(0) - x_2^3(0) = 0$$

1

so the trajectory is directed inwards Γ . For each initial point x(0) on the right boundary of Γ , we have $x_2(0) = x_1^3(0)$, and thus

$$\dot{x}_1(0) = -x_1^3(0) + x_2(0) = 0$$

$$\dot{x}_2(0) = x_1^6(0) - x_2^3(0) = x_1^6(0) - x_1^9(0) > 0$$

so the trajectory is again directed inwards Γ . Hence, Γ is invariant.

- (c) Draw a trajectory illustrating how a trajectory starting in $x(0) \in \Gamma$ close to the origin tends to the point (1,1).
- (a) (i) corresponds to (b) because the origin is a stable focus for (i). (ii) corresponds to (d) because (ii) has an unstable equilibrium in the origin. (iii) corresponds to (a) because the linearization of (iii) has a marginally stable equilibrium in the origin (linearized system with eigenvalues in ±i). (iv) corresponds to (c) because (iv) has no equilibrium in the origin.
 - (b) For (i)–(iii), we have the linearized systems as

$$\dot{z} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} z, \quad \dot{z} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} z, \quad \dot{z} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} z$$

- (c) The closed-loop system consists of a system with gain less than or equal to *a* and a linear system with gain equal to one. Small Gain Theorem hence gives the result.
- 4. (a) The describing function is given by $N_f(A) = (b_1 + ia_1)/A$, so we need to show that $a_1 = 0$. Recall that

$$a_1 = \frac{1}{\pi} \int_0^{2\pi} y(\phi) \cos \phi \, d\phi = \frac{1}{\pi} \int_{-\pi}^{\pi} y(\phi) \cos \phi \, d\phi$$

where $y(\phi) = f(A\sin\phi)$ is the output when the input is $u(\phi) = A\sin\phi$. Since f and \sin are odd functions, we have

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{0} y(\phi) \cos \phi \, d\phi + \frac{1}{\pi} \int_{0}^{\pi} y(\phi) \cos \phi \, d\phi$$
$$= -\frac{1}{\pi} \int_{0}^{\pi} y(\phi) \cos \phi \, d\phi + \frac{1}{\pi} \int_{0}^{\pi} y(\phi) \cos \phi \, d\phi = 0$$

(b) The describing function is given by $N_f(A) = (b_1 + ia_1)/A$ where $a_1 = 0$, see (a), and

$$b_1 = \frac{1}{\pi} \int_0^{2\pi} y(\phi) \sin \phi \, d\phi = \frac{1}{\pi} \int_0^{2\pi} \sin^6 \phi \, d\phi$$
$$= \dots = \frac{5A^5 \pi}{8}$$

(c) The describing function represents an amplitude-depending gain N(A). A rough sketch is shown below:

5. (a) The optimal control problem (on generalized form) is given by $\min_{u} \int_{0}^{t_{f}} L dt = \min_{u} t_{f}$ with

$$\dot{z}_1 = z_2$$

$$\dot{z}_2 = -z_2 - \frac{dg}{dx}(z_1) + u$$

$$\dot{z}_3 = u^2$$

and $\psi(z(t_f)) = 0$, where $\psi_1(z) = z_1 - 89$ and $\psi_2(z) = z_3 - 100$. Here z(0) = 0.

(b) The Hamiltonian is given by

$$H = n_0 L + \lambda^T f = n_0 + \lambda_1 z_2 + \lambda_2 (-z_2 - g'(z_1) + u) + \lambda_3 u^2$$

(c) The adjoint equations are given by

$$\dot{\lambda}(t) = -\frac{\partial H^T}{\partial z}(z^*(t), u^*(t), \lambda(t), n_0)$$

$$\lambda^{T}(t_f) = n_0 \frac{\partial \phi}{\partial z}(t_f, z^*(t_f)) + \mu^{T} \frac{\partial \psi}{\partial z}(t_f, z^*(t_f))$$

where $\phi = 0$, $\mu = (\mu_1, \mu_2)$ and

$$\frac{\partial \psi}{\partial z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Hence,

$$\dot{\lambda}_1 = \lambda_2 g''(z_1)$$

$$\dot{\lambda}_2 = \lambda_2 - \lambda_1$$

$$\dot{\lambda}_3=0$$

with

$$\lambda_1(t_f) = \mu_1$$

$$\lambda_2(t_f) = 0$$

$$\lambda_3(t_f) = \mu_2$$