Solutions to Exam in 2E1262 Nonlinear Control, Apr 16, 2004

(a) The equilibria are given by x = (¥, %) = kn/2(1,—1), k € Z. The
linearized system about x is given by z = Az with

A= <<—11>k <—11>k+1>

which is unstable for every k, since
det(sI —A) = (s — 1) (s — (= 1)*T1) 4 (= 1)+

is an unstable polynomial.

(b) The system is on strict feedback form because it can be written as

X1 = f1(x1) +g1(x1)x2

X2 = fa(xr,x2) 4+ g2(x1,%2)u

see Lecture 10.

(c) Using the notation of Lecture 10, we can choose ¢;(x;) = —2x; and
Vi(xy) = x%/2, and thus
d dv
U = %(xl +x2) — d—xi — (%2 —01) = —=5x1 — 3x2

Then, we choose
u=u; —sin(x; —xp) = —5x; — 3xp — sin(x; —x2)
(d) Consider Lyapunov function candidate

V(x) = Va(x) = % + (’”%2)

as suggested by the back-stepping lemma. Then, with the control as
in (c), we have

V= fleu) = 1500 +20/27 ~B/4 <0, V0

so since V is positive definite, the system is asymptotically stable.

(a) The equilibria are (0,0) and (1,1) with linearized systems given by

. (01 . (=31
Z—OOZ, Z—6_3Z

respectively. Hence, the origin is not locally stable, while (1,1) is lo-
cally stable.

(b) Consider the banana shaped set I' (draw a picture). For each initial
point x(0) on the left boundary of T, we have x,(0) = x2(0), and thus

£1(0) = —x7(0) +x2(0) = —x7(0) +x7(0) > 0
%2(0) =x9(0) —x3(0) =0



so the trajectory is directed inwards I". For each initial point x(0) on
the right boundary of I, we have x,(0) = x3(0), and thus

11(0) = —x7(0) +x2(0) =0
%2(0) = x§(0) —x3(0) = x§(0) —13(0) > 0

so the trajectory is again directed inwards I'. Hence, I is invariant.

(c) Draw a trajectory illustrating how a trajectory starting in x(0) € I" close
to the origin tends to the point (1, 1).

(a) (i) corresponds to (b) because the origin is a stable focus for (i). (ii) cor-
responds to (d) because (ii) has an unstable equilibrium in the origin.
(iii) corresponds to (a) because the linearization of (iii) has a marginally
stable equilibrium in the origin (linearized system with eigenvalues in
=+i). (iv) corresponds to (c) because (iv) has no equilibrium in the ori-
gin.

(b) For (i)—(iii), we have the linearized systems as

(0 1 . (0 1 . (0 1
Tler —1)® Tl 1) T e o)f

(c) The closed-loop system consists of a system with gain less than or
equal to a and a linear system with gain equal to one. Small Gain
Theorem hence gives the result.

(a) The describing function is given by Ny(A) = (b; +ia1)/A, so we need
to show that a; = 0. Recall that

1 r2n 1 [m
a= [ y(@cosodo = [ y(@)cosods

TJo
where y(¢) = f(Asin0) is the output when the input is u(¢) = Asin¢.
Since f and sin are odd functions, we have

I 1 /"
ar= [ y(@eosodo+— [ y(@)cosodo
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(b) The describing function is given by N¢(A) = (b1 +ia1)/A where a; =0,
see (a), and

1 21 1 21
b= [ v(@)singdo = [ sin®odg
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(c) The describing function represents an amplitude-depending gain N(A).
A rough sketch is shown below:



A

5. (a) The optimal control problem (on generalized form) is given by min,, f(;f Ldt =
min, ¢y with

21=22

. dg
=-22 dx(Z1)+u
Z'3=u2

and y(z(r7)) = 0, where W (z) = z1 — 89 and y»(z) = z3 — 100. Here
z(0) =0.
(b) The Hamiltonian is given by
H=noL+AT f=ng+Mz+h(—22—g'(z1) +u) + Aau?
(c) The adjoint equations are given by

K(t) = —aaiz(z*(t),u* (t),A(t),n0)

0 0
W 17) = oS30 7.2 (07)) 4 S0 172 (1)

where ¢ =0, u = (u1,12) and

dy (100
oz \0 O 1

Hence,
M o=hg" (z1)
}\,2 =M — A
=0
with
Mi(ty) = m
Ma(tr) =0
A3(tf) = w2



