
Solutions to Exam in 2E1262 Nonlinear Control, Apr 16, 2004

1. (a) The equilibria are given by x̄ = ( x̄1, x̄2) = kπ/2(1,−1), k ∈ Z. The
linearized system about x̄ is given by ż = Az with

A =
(

1 1
(−1)k (−1)k+1

)

which is unstable for every k, since

det(sI−A) = (s−1)(s− (−1)k+1)+(−1)k+1

is an unstable polynomial.

(b) The system is on strict feedback form because it can be written as

ẋ1 = f1(x1)+g1(x1)x2

ẋ2 = f2(x1,x2)+g2(x1,x2)u

see Lecture 10.

(c) Using the notation of Lecture 10, we can choose φ1(x1) = −2x1 and
V1(x1) = x2

1/2, and thus

u1 =
dφ1

dx1
(x1 + x2)− dV1

dx1
− (x2−φ1) = −5x1−3x2

Then, we choose

u = u1− sin(x1− x2) = −5x1−3x2− sin(x1− x2)

(d) Consider Lyapunov function candidate

V (x) = V2(x) =
x2
1

2
+

(2x1 + x2)2

2

as suggested by the back-stepping lemma. Then, with the control as
in (c), we have

V̇ =
dV
dx

f (x,u) = −15(x1 + x2/2)2− x2
2/4 < 0, ∀x �= 0

so since V is positive definite, the system is asymptotically stable.

2. (a) The equilibria are (0,0) and (1,1) with linearized systems given by

ż =
(

0 1
0 0

)
z, ż =

(−3 1
6 −3

)
z

respectively. Hence, the origin is not locally stable, while (1,1) is lo-
cally stable.

(b) Consider the banana shaped set Γ (draw a picture). For each initial
point x(0) on the left boundary of Γ, we have x2(0) = x2

1(0), and thus

ẋ1(0) = −x3
1(0)+ x2(0) = −x3

1(0)+ x2
1(0) > 0

ẋ2(0) = x6
1(0)− x3

2(0) = 0
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so the trajectory is directed inwards Γ. For each initial point x(0) on
the right boundary of Γ, we have x2(0) = x3

1(0), and thus

ẋ1(0) = −x3
1(0)+ x2(0) = 0

ẋ2(0) = x6
1(0)− x3

2(0) = x6
1(0)− x9

1(0) > 0

so the trajectory is again directed inwards Γ. Hence, Γ is invariant.

(c) Draw a trajectory illustrating how a trajectory starting in x(0)∈ Γ close
to the origin tends to the point (1,1).

3. (a) (i) corresponds to (b) because the origin is a stable focus for (i). (ii) cor-
responds to (d) because (ii) has an unstable equilibrium in the origin.
(iii) corresponds to (a) because the linearization of (iii) has a marginally
stable equilibrium in the origin (linearized system with eigenvalues in
±i). (iv) corresponds to (c) because (iv) has no equilibrium in the ori-
gin.

(b) For (i)–(iii), we have the linearized systems as

ż =
(

0 1
−1 −1

)
z, ż =

(
0 1
−1 1

)
z, ż =

(
0 1
−1 0

)
z

(c) The closed-loop system consists of a system with gain less than or
equal to a and a linear system with gain equal to one. Small Gain
Theorem hence gives the result.

4. (a) The describing function is given by Nf (A) = (b1 + ia1)/A, so we need
to show that a1 = 0. Recall that

a1 =
1
π

∫ 2π

0
y(φ)cosφdφ =

1
π

∫ π

−π
y(φ)cosφdφ

where y(φ) = f (Asinφ) is the output when the input is u(φ) = Asinφ.
Since f and sin are odd functions, we have

a1 =
1
π

∫ 0

−π
y(φ)cosφdφ+

1
π

∫ π

0
y(φ)cosφdφ

= −1
π

∫ π

0
y(φ)cosφdφ+

1
π

∫ π

0
y(φ)cosφdφ = 0

(b) The describing function is given by Nf (A)= (b1+ia1)/A where a1 = 0,
see (a), and

b1 =
1
π

∫ 2π

0
y(φ)sinφdφ =

1
π

∫ 2π

0
sin6 φdφ

= · · · = 5A5π
8

(c) The describing function represents an amplitude-depending gain N(A).
A rough sketch is shown below:
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N(A)

A

5. (a) The optimal control problem (on generalized form) is given by minu
∫ t f

0 Ldt =
minu t f with

ż1 = z2

ż2 = −z2− dg
dx

(z1)+u

ż3 = u2

and ψ(z(t f )) = 0, where ψ1(z) = z1 − 89 and ψ2(z) = z3 − 100. Here
z(0) = 0.

(b) The Hamiltonian is given by

H = n0L+λT f = n0 +λ1z2 +λ2(−z2−g′(z1)+u)+λ3u
2

(c) The adjoint equations are given by

λ̇(t) = −∂HT

∂z
(z∗(t),u∗(t),λ(t),n0)

λT (t f ) = n0
∂φ
∂z

(t f ,z
∗(t f ))+µT ∂ψ

∂z
(t f ,z

∗(t f ))

where φ = 0, µ = (µ1,µ2) and

∂ψ
∂z

=
(

1 0 0
0 0 1

)

Hence,

λ̇1 = λ2g
′′(z1)

λ̇2 = λ2 −λ1

λ̇3 = 0

with

λ1(t f ) = µ1

λ2(t f ) = 0

λ3(t f ) = µ2
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