1. (a) The equilibria are given by $\bar{x}=\left(\bar{x}, \overline{x_{2}}\right)=k \pi / 2(1,-1), k \in \mathbb{Z}$. The linearized system about \bar{x} is given by $\dot{z}=A z$ with

$$
A=\left(\begin{array}{cc}
1 & 1 \\
(-1)^{k} & (-1)^{k+1}
\end{array}\right)
$$

which is unstable for every k, since

$$
\operatorname{det}(s I-A)=(s-1)\left(s-(-1)^{k+1}\right)+(-1)^{k+1}
$$

is an unstable polynomial.
(b) The system is on strict feedback form because it can be written as

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}\right)+g_{1}\left(x_{1}\right) x_{2} \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)+g_{2}\left(x_{1}, x_{2}\right) u
\end{aligned}
$$

see Lecture 10 .
(c) Using the notation of Lecture 10 , we can choose $\phi_{1}\left(x_{1}\right)=-2 x_{1}$ and $V_{1}\left(x_{1}\right)=x_{1}^{2} / 2$, and thus

$$
u_{1}=\frac{d \phi_{1}}{d x_{1}}\left(x_{1}+x_{2}\right)-\frac{d V_{1}}{d x_{1}}-\left(x_{2}-\phi_{1}\right)=-5 x_{1}-3 x_{2}
$$

Then, we choose

$$
u=u_{1}-\sin \left(x_{1}-x_{2}\right)=-5 x_{1}-3 x_{2}-\sin \left(x_{1}-x_{2}\right)
$$

(d) Consider Lyapunov function candidate

$$
V(x)=V_{2}(x)=\frac{x_{1}^{2}}{2}+\frac{\left(2 x_{1}+x_{2}\right)^{2}}{2}
$$

as suggested by the back-stepping lemma. Then, with the control as in (c), we have

$$
\dot{V}=\frac{d V}{d x} f(x, u)=-15\left(x_{1}+x_{2} / 2\right)^{2}-x_{2}^{2} / 4<0, \quad \forall x \neq 0
$$

so since V is positive definite, the system is asymptotically stable.
2. (a) The equilibria are $(0,0)$ and $(1,1)$ with linearized systems given by

$$
\dot{z}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) z, \quad \dot{z}=\left(\begin{array}{cc}
-3 & 1 \\
6 & -3
\end{array}\right) z
$$

respectively. Hence, the origin is not locally stable, while $(1,1)$ is locally stable.
(b) Consider the banana shaped set Γ (draw a picture). For each initial point $x(0)$ on the left boundary of Γ, we have $x_{2}(0)=x_{1}^{2}(0)$, and thus

$$
\begin{aligned}
& \dot{x}_{1}(0)=-x_{1}^{3}(0)+x_{2}(0)=-x_{1}^{3}(0)+x_{1}^{2}(0)>0 \\
& \dot{x}_{2}(0)=x_{1}^{6}(0)-x_{2}^{3}(0)=0
\end{aligned}
$$

so the trajectory is directed inwards Γ. For each initial point $x(0)$ on the right boundary of Γ, we have $x_{2}(0)=x_{1}^{3}(0)$, and thus

$$
\begin{aligned}
& \dot{x}_{1}(0)=-x_{1}^{3}(0)+x_{2}(0)=0 \\
& \dot{x}_{2}(0)=x_{1}^{6}(0)-x_{2}^{3}(0)=x_{1}^{6}(0)-x_{1}^{9}(0)>0
\end{aligned}
$$

so the trajectory is again directed inwards Γ. Hence, Γ is invariant.
(c) Draw a trajectory illustrating how a trajectory starting in $x(0) \in \Gamma$ close to the origin tends to the point $(1,1)$.
3. (a) (i) corresponds to (b) because the origin is a stable focus for (i). (ii) corresponds to (d) because (ii) has an unstable equilibrium in the origin. (iii) corresponds to (a) because the linearization of (iii) has a marginally stable equilibrium in the origin (linearized system with eigenvalues in $\pm i$. (iv) corresponds to (c) because (iv) has no equilibrium in the origin.
(b) For (i)-(iii), we have the linearized systems as

$$
\dot{z}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) z, \quad \dot{z}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right) z, \quad \dot{z}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) z
$$

(c) The closed-loop system consists of a system with gain less than or equal to a and a linear system with gain equal to one. Small Gain Theorem hence gives the result.
4. (a) The describing function is given by $N_{f}(A)=\left(b_{1}+i a_{1}\right) / A$, so we need to show that $a_{1}=0$. Recall that

$$
a_{1}=\frac{1}{\pi} \int_{0}^{2 \pi} y(\phi) \cos \phi d \phi=\frac{1}{\pi} \int_{-\pi}^{\pi} y(\phi) \cos \phi d \phi
$$

where $y(\phi)=f(A \sin \phi)$ is the output when the input is $u(\phi)=A \sin \phi$. Since f and sin are odd functions, we have

$$
\begin{aligned}
a_{1} & =\frac{1}{\pi} \int_{-\pi}^{0} y(\phi) \cos \phi d \phi+\frac{1}{\pi} \int_{0}^{\pi} y(\phi) \cos \phi d \phi \\
& =-\frac{1}{\pi} \int_{0}^{\pi} y(\phi) \cos \phi d \phi+\frac{1}{\pi} \int_{0}^{\pi} y(\phi) \cos \phi d \phi=0
\end{aligned}
$$

(b) The describing function is given by $N_{f}(A)=\left(b_{1}+i a_{1}\right) / A$ where $a_{1}=0$, see (a), and

$$
\begin{aligned}
b_{1} & =\frac{1}{\pi} \int_{0}^{2 \pi} y(\phi) \sin \phi d \phi=\frac{1}{\pi} \int_{0}^{2 \pi} \sin ^{6} \phi d \phi \\
& =\cdots=\frac{5 A^{5} \pi}{8}
\end{aligned}
$$

(c) The describing function represents an amplitude-depending gain $N(A)$. A rough sketch is shown below:

5. (a) The optimal control problem (on generalized form) is given by $\min _{u} \int_{0}^{t_{f}} L d t=$ $\min _{u} t_{f}$ with

$$
\begin{aligned}
& \dot{z}_{1}=z_{2} \\
& \dot{z}_{2}=-z_{2}-\frac{d g}{d x}\left(z_{1}\right)+u \\
& \dot{z}_{3}=u^{2}
\end{aligned}
$$

and $\psi\left(z\left(t_{f}\right)\right)=0$, where $\psi_{1}(z)=z_{1}-89$ and $\psi_{2}(z)=z_{3}-100$. Here $z(0)=0$.
(b) The Hamiltonian is given by

$$
H=n_{0} L+\lambda^{T} f=n_{0}+\lambda_{1} z_{2}+\lambda_{2}\left(-z_{2}-g^{\prime}\left(z_{1}\right)+u\right)+\lambda_{3} u^{2}
$$

(c) The adjoint equations are given by

$$
\begin{aligned}
& \dot{\lambda}(t)=-\frac{\partial H^{T}}{\partial z}\left(z^{*}(t), u^{*}(t), \lambda(t), n_{0}\right) \\
& \quad \lambda^{T}\left(t_{f}\right)=n_{0} \frac{\partial \phi}{\partial z}\left(t_{f}, z^{*}\left(t_{f}\right)\right)+\mu^{T} \frac{\partial \psi}{\partial z}\left(t_{f}, z^{*}\left(t_{f}\right)\right)
\end{aligned}
$$

where $\phi=0, \mu=\left(\mu_{1}, \mu_{2}\right)$ and

$$
\frac{\partial \psi}{\partial z}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Hence,

$$
\begin{aligned}
& \dot{\lambda}_{1}=\lambda_{2} g^{\prime \prime}\left(z_{1}\right) \\
& \dot{\lambda}_{2}=\lambda_{2}-\lambda_{1} \\
& \dot{\lambda}_{3}=0
\end{aligned}
$$

with

$$
\begin{aligned}
& \lambda_{1}\left(t_{f}\right)=\mu_{1} \\
& \lambda_{2}\left(t_{f}\right)=0 \\
& \lambda_{3}\left(t_{f}\right)=\mu_{2}
\end{aligned}
$$

