
AUTOMATIC CONTROL

Department of Signals, Sensors & Systems, KTH

Nonlinear Control, 2E1262

Exam 14.00–19.00 Dec 17, 2004

Aid:

Lecture-notes from the nonlinear control course and textbook from the basic
course in control (Glad, Ljung: Reglerteknik, or similar approved text). Mathe-
matical handbook (e.g. Beta Mathematics Handbook). Other textbooks, exer-
cises, solutions, calculators, etc. are not allowed.

Observandum:

• Name and social security number(personnummer) on every page.

• Only one solution per page.

• Do only write on one side per sheet.

• Each answer has to be motivated.

• Specify the total number of handed in pages on the cover.

• The exam consists of five 10 credit problems.

Grading:

Grade 3: ≥ 23

Grade 4: ≥ 33

Grade 5: ≥ 43

Results:

The results will be posted within 2005-01-12 on the department’s board, Os-
quldas väg 10, second floor. If you want your result emailed, please state

this and include your email address.

Responsible: Bo Wahlberg 790 7242, Alberto Speranzon 790 73 26

Good Luck and Merry Christmas!
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1.

(a) [2p] A scalar nonlinear system is described by the differential equation

ẋ(t) = f(x(t)), x ∈ R

where the nonlinear function satisfies

f(0) = 0

f(x) < 0, x > 0

f(x) > 0, x < 0

Show that x = 0 is a globally asymptotically stable equilibrium point.

(b) [2p] Consider the scalar differential equation

ẋ(t) = 1 + x2(t), x(0) = 0

Show that x(t) = tan(t) is a solution. What happens as t → π/2?

(c) [6p] It is sometimes possible to do exact input/output feedback linearization. Con-
sider the system

ẋ1(t) = u(t)

ẋ2(t) = 2 + sin x1(t)

y(t) = x2(t)

Design a control law u(t) = h(x(t), r(t)) such that the relation between reference
signal r(t) and output signal y(t) becomes

ÿ(t) + 2ẏ(t) + y(t) = r(t)

(Hint: Calculate ẏ(t) and ÿ(t) and then design u(t) to give the specified reference
to output differential equation.)
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2.[10p] Consider a logarithmic quantizer with two levels:

1
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4
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u

y

This means that the output equals

y =























0, −0.5 ≤ u ≤ 0.5
1, 0.5 < u ≤ 2

−1, −2 ≤ u < −0.5
4, u > 2

−4, u < −2

Calculate the describing function N(A) for this quantizer.
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3.

A plant can be described by

ẋ1(t) = −x1(t) − x2(t) + x3(t) + u(t)

ẋ2(t) = x1(t)

ẋ3(t) = x2(t)

and let the control law be

u(t) = x1(t) − x3(t) − (2x1(t) + x3(t))
3

(a) [6p] Show that x = 0 is a global asymptotically stable equilibrium point for the
closed loop system.
(Hint: Use

V (x) = x2
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(b) [4p] In order to evaluate the gain margin of the closed loop system, study the control
law

u(t) = Am(x1(t) − x3(t) − (2x1(t) + x3(t))
3)

where Am ≥ 0 is a gain. Decide for which Am the closed loop system is stable
or unstable.
(Hint: Study the stability properties of the linearized closed loop system.)
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4.

Given the double integrator system

ẋ1(t) = x2(t)

ẋ2(t) = u(t),

we have seen that the time optimal control is “bang-bang” type control. The
task is now to show that this control can be written as

u(t) = −sign{σ(x(t))}

(a) [3p] Draw the phase plane diagram for the case u = 1, i.e. for the differential equation

ẋ1(t) = x2(t)

ẋ2(t) = 1

Next, draw the phase plane diagram for the case u = −1, i.e. for the differential
equation

ẋ1(t) = x2(t)

ẋ2(t) = −1

Determine and mark the trajectories which goes through x = 0.

(b) [1p] From the optimal control theory we know that the time optimal control switches
sign at most once. Combine the phase plane diagrams from (a) to sketch the
control strategy which brings the state of the double integrator to the origin by
switching control at most once.

(c) [3p] Show that the optimal control can be written in feedback form

u(t) = −sign{σ(x(t))}, σ(x) = x1 + sign{x2}
x2

2

2

(d) [3p] Calculate the time it takes to bring the state from x(0) = (2, −2)T to zero using
the optimal control strategy. Then calculate how long time it takes to bring it
from x(0) = (2, −2 − ε)T to zero, where ε > 0.
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5.[10p] A nonlinear system is given by the state space model

ẋ1(t) = x2(t)

ẋ2(t) = −2x2(t) − f(x1(t))

The function f(·) satisfies

R

R + 1
≤

f(y)

y
≤

R

R − 1
, R > 1

Determine condition on R > 1, which guarantees that the system is stable.
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