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For small z, zf(x) ~ f(0)z + f'(x)z?> < 0. Now take the Lya-
punov function V(z) = x?/2, for which

V =xf(z) <0, for small z

Hence, Lyapunov Stability Theorem shows that x = 0 is an
asymptotically stable equilibrium. The result also follows directly
from that the linearized system around x = 0 is asymptotically
stable.
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For ¢y = 0.01 > 0 the solution tends to zero as t — oo, while for
xo = —0.01 < 0 we have a finite escape time at ¢t = 100.

Consider the system

21(t) = wa(t)
xo(t) = —h(x1) 4+ u(t)

The condition zh(z) > 0 = h(z) > 0 for z > 0 and h(z) < 0 for
z < 0, which implies that

Z1
/ h(z)dz >0, 1 #0.
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Hence V(0) = 0 and V(z) > 0. Furthermore

V(m) = h(ml)d:l + x2j}'2
= h(ml)xg + .CCQ(-h(LI?l) — U(xg)) = —xga(xg)

Hence V(z) < 0 if z90(29) > 0 Vo # 0, and the closed loop
system is stable.

The describing function for an odd nonlinearity is given by

N(A) = WiA/O f(Asin @) sin ¢ do



In the integration interval sin ¢ > 0. From the condition on f it
then follows that k1 Asing < f(Asin¢) < koAsin ¢. Hence,
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N(A) < 2 ko Asin ¢sin g do = ko
TA Jo
The describing function analysis says that the Nyquist curve
G(iw) is not allowed to encircle or intersect —1/N(A), which lies
in the interval [—1/k;, —/k2], while the circle criterion postulates
that G(iw) is not allowed to encircle the disc going through the
point —1/k; and —1/ke. Hence, stability analysis using describ-
ing function analysis is only indicative and does not give sufficient
conditions for closed loop stability.

Write the system & = f(z). Notice that z = 0 is an equilibrium
of the system since f(0) = 0. Linearization around the origin

gives
d 0 1
A—%f(l’)h:o— < 11 >

with eigenvalues 0.5+ / —0.9i. Hence we have an unstable focus.
The origin is locally unstable, which means that trajectories move
away from the origin.

Consider the unit circle y(x) = 22 + 23 — 1 = 0. We can then
show that ~(z) describes a limit cycle since,

d
a’y(x) = 2x121 + 2x2T9

= 2129 + 2xo(—x1 — y(x)22) = —2237(x)

Hence ~v(x) is an invariant set (in this case a limit cycle). The
dynamics on «(z) is given by
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Consider the function V(z) = (1 — 2% — 23)?, which is positive,
except when 7 (z) = 0, and radially unbounded. Then

V = —2235(z3 4 23 — 1)?

which is zero on y(x) = 0 or z3 = 0. If zo9 = 0 we get the
dynamics ©; = 0 and 9 = —x1, which implies 1 = 0. We have
already proven that the set M = {x|y(z) = 0} is an invariant set.
LaSalle’s invariant set theorem now gives that all trajectories (not
starting at « = 0) converge towards M.



4. Notice that Kp = 1.
(a) We see that without saturation

1 1

Us) = 5 E) ~ (55

ol E) U(s)), = U(s) = F(s)E(s)

(b) Notice that 1/F(s) —1/K, = —1/(s + 1) is stable as has static
gain 1. Hence, V = F 4+ 1/(s + 1)U and the steady state value
equals v = e + Umqz-

(c) With K, =1, T, = 1

U.

1 1
V=(E+-(E4+U-V) = V=E+

s s+1
Hence, the steady state value equals v = € 4+ Uz

5. (a) Integration of V(x) < y2u?(t) — y>(t) gives

/ yA(1)dr < 72/ u?(r)dr — [V (2(t) = V(2(0))]
0 0

Now z(0) =0 and V(0) = 0 and V(z) > 0 imply that

/Ot y?(1)dr < ~2 /Ot u?(t)dr

Let t — oo to prove that a bounded input gives a bounded output.

(2T u] ATp+PA+CTC PB T
v BTP —7? U
= 2T (ATP + PA+CTC)x + 227 PBu — 4?4 <0

Identify y = Cz to rewrite it as

zT(ATP + PA)x + 227 PBu < v*u? — 9 = s(u, y)
Take V(x) = 2T Pz > 0,

V =iTPr 42T Pi =27 (ATP + PA)z + 22T PBu

and hence V < s(u,y). Hence, the linear system is dissipative.



