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1. (a) For small x, xf(x) ≈ f(0)x + f ′(x)x2 < 0. Now take the Lya-
punov function V (x) = x2/2, for which

V̇ = xf(x) < 0, for small x

Hence, Lyapunov Stability Theorem shows that x = 0 is an
asymptotically stable equilibrium. The result also follows directly
from that the linearized system around x = 0 is asymptotically
stable.

(b)

dt =
−1

x2
dx ⇒ t =

1

x
−

1

x0

⇒

x(t) =
1

t + 1/x0

For x0 = 0.01 > 0 the solution tends to zero as t → ∞, while for
x0 = −0.01 < 0 we have a finite escape time at t = 100.

(c) Consider the system

ẋ1(t) = x2(t)

ẋ2(t) = −h(x1) + u(t)

The condition zh(z) > 0 ⇒ h(z) > 0 for z > 0 and h(z) < 0 for
z < 0, which implies that

∫ x1

0

h(z)dz > 0, x1 6= 0.

Hence V (0) = 0 and V (x) > 0. Furthermore

V̇ (x) = h(x1)ẋ1 + x2ẋ2

= h(x1)x2 + x2(−h(x1) − σ(x2)) = −x2σ(x2)

Hence V̇ (x) ≤ 0 if x2σ(x2) ≥ 0 ∀x2 6= 0, and the closed loop
system is stable.

2. (a) The describing function for an odd nonlinearity is given by

N(A) =
2

πA

∫ π

0

f(A sin φ) sin φ dφ
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In the integration interval sin φ ≥ 0. From the condition on f it
then follows that k1A sin φ ≤ f(A sin φ) ≤ k2A sin φ. Hence,

N(A) ≥
2

πA

∫ π

0

k1A sin φ sin φ dφ = k1

N(A) ≤
2

πA

∫ π

0

k2A sin φ sin φ dφ = k2

(b) The describing function analysis says that the Nyquist curve
G(iω) is not allowed to encircle or intersect −1/N(A), which lies
in the interval [−1/k1,−/k2], while the circle criterion postulates
that G(iω) is not allowed to encircle the disc going through the
point −1/k1 and −1/k2. Hence, stability analysis using describ-
ing function analysis is only indicative and does not give sufficient
conditions for closed loop stability.

3. (a) Write the system ẋ = f(x). Notice that x = 0 is an equilibrium
of the system since f(0) = 0. Linearization around the origin
gives

A =
d

dx
f(x)|x=0 =

(

0 1
−1 1

)

with eigenvalues 0.5+ /− 0.9i. Hence we have an unstable focus.
The origin is locally unstable, which means that trajectories move
away from the origin.

(b) Consider the unit circle γ(x) = x2

1
+ x2

2
− 1 = 0. We can then

show that γ(x) describes a limit cycle since,

d

dt
γ(x) = 2x1ẋ1 + 2x2ẋ2

= 2x1x2 + 2x2(−x1 − γ(x)x2) = −2x2

2γ(x)

Hence γ(x) is an invariant set (in this case a limit cycle). The
dynamics on γ(x) is given by

A =

(

0 1
−1 0

)

(c) Consider the function V (x) = (1 − x2

1
− x2

2
)2, which is positive,

except when γ(x) = 0, and radially unbounded. Then

V̇ = −2x2

2(x
2

1 + x2

2 − 1)2

which is zero on γ(x) = 0 or x2 = 0. If x2 = 0 we get the
dynamics ẋ1 = 0 and ẋ2 = −x1, which implies x1 = 0. We have
already proven that the set M = {x|γ(x) = 0} is an invariant set.
LaSalle’s invariant set theorem now gives that all trajectories (not
starting at x = 0) converge towards M .
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4. Notice that KP = 1.

(a) We see that without saturation

U(s) = Kp(E(s) −

(

1

F (s)
−

1

Kp

)

U(s)), ⇒ U(s) = F (s)E(s)

(b) Notice that 1/F (s) − 1/Kp = −1/(s + 1) is stable as has static
gain 1. Hence, V = E + 1/(s + 1)U and the steady state value
equals v = e + umax.

(c) With Kp = 1, Ts = 1

V = (E +
1

s
(E + U − V ) ⇒ V = E +

1

s + 1
U.

Hence, the steady state value equals v = e + umax.

5. (a) Integration of V̇ (x) ≤ γ2u2(t) − y2(t) gives

∫ t

0

y2(τ)dτ ≤ γ2

∫ t

0

u2(τ)dτ − [V (x(t)) − V (x(0))]

Now x(0) = 0 and V (0) = 0 and V (x) ≥ 0 imply that

∫ t

0

y2(τ)dτ ≤ γ2

∫ t

0

u2(τ)dτ

Let t → ∞ to prove that a bounded input gives a bounded output.

(b)

[

xT u
]

[

AT P + PA + CT C PB
BT P −γ2

] [

x
u

]

= xT (AT P + PA + CT C)x + 2xT PBu − γ2u2 ≤ 0

Identify y = Cx to rewrite it as

xT (AT P + PA)x + 2xT PBu ≤ γ2u2 − y2 = s(u, y)

Take V (x) = xT Px ≥ 0,

V̇ = ẋT Px + xT Pẋ = xT (AT P + PA)x + 2xT PBu

and hence V̇ ≤ s(u, y). Hence, the linear system is dissipative.
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