Solutions to the exam in Nonlinear Control 2E1262, 2005-03-17

1. (a) For small x, $xf(x) \approx f(0)x + f'(x)x^2 < 0$. Now take the Lyapunov function $V(x) = x^2/2$, for which

$$\dot{V} = xf(x) < 0$$
, for small x

Hence, Lyapunov Stability Theorem shows that x=0 is an asymptotically stable equilibrium. The result also follows directly from that the linearized system around x=0 is asymptotically stable.

(b)

$$dt = \frac{-1}{x^2}dx \Rightarrow t = \frac{1}{x} - \frac{1}{x_0} \Rightarrow$$

$$x(t) = \frac{1}{t + 1/x_0}$$

For $x_0 = 0.01 > 0$ the solution tends to zero as $t \to \infty$, while for $x_0 = -0.01 < 0$ we have a finite escape time at t = 100.

(c) Consider the system

$$\dot{x}_1(t) = x_2(t)$$

 $\dot{x}_2(t) = -h(x_1) + u(t)$

The condition $zh(z) > 0 \Rightarrow h(z) > 0$ for z > 0 and h(z) < 0 for z < 0, which implies that

$$\int_0^{x_1} h(z)dz > 0, \quad x_1 \neq 0.$$

Hence V(0) = 0 and V(x) > 0. Furthermore

$$\dot{V}(x) = h(x_1)\dot{x}_1 + x_2\dot{x}_2
= h(x_1)x_2 + x_2(-h(x_1) - \sigma(x_2)) = -x_2\sigma(x_2)$$

Hence $\dot{V}(x) \leq 0$ if $x_2\sigma(x_2) \geq 0 \ \forall x_2 \neq 0$, and the closed loop system is stable.

2. (a) The describing function for an odd nonlinearity is given by

$$N(A) = \frac{2}{\pi A} \int_0^{\pi} f(A\sin\phi) \sin\phi \, d\phi$$

In the integration interval $\sin \phi \ge 0$. From the condition on f it then follows that $k_1 A \sin \phi \le f(A \sin \phi) \le k_2 A \sin \phi$. Hence,

$$N(A) \ge \frac{2}{\pi A} \int_0^{\pi} k_1 A \sin \phi \sin \phi \, d\phi = k_1$$
$$N(A) \le \frac{2}{\pi A} \int_0^{\pi} k_2 A \sin \phi \sin \phi \, d\phi = k_2$$

- (b) The describing function analysis says that the Nyquist curve $G(i\omega)$ is not allowed to encircle or intersect -1/N(A), which lies in the interval $[-1/k_1, -/k_2]$, while the circle criterion postulates that $G(i\omega)$ is not allowed to encircle the disc going through the point $-1/k_1$ and $-1/k_2$. Hence, stability analysis using describing function analysis is only indicative and does not give sufficient conditions for closed loop stability.
- 3. (a) Write the system $\dot{x} = f(x)$. Notice that x = 0 is an equilibrium of the system since f(0) = 0. Linearization around the origin gives

$$A = \frac{d}{dx}f(x)|_{x=0} = \begin{pmatrix} 0 & 1\\ -1 & 1 \end{pmatrix}$$

with eigenvalues 0.5 + / - 0.9i. Hence we have an unstable focus. The origin is locally unstable, which means that trajectories move away from the origin.

(b) Consider the unit circle $\gamma(x) = x_1^2 + x_2^2 - 1 = 0$. We can then show that $\gamma(x)$ describes a limit cycle since,

$$\frac{d}{dt}\gamma(x) = 2x_1\dot{x}_1 + 2x_2\dot{x}_2$$
$$= 2x_1x_2 + 2x_2(-x_1 - \gamma(x)x_2) = -2x_2^2\gamma(x)$$

Hence $\gamma(x)$ is an invariant set (in this case a limit cycle). The dynamics on $\gamma(x)$ is given by

$$A = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

(c) Consider the function $V(x) = (1 - x_1^2 - x_2^2)^2$, which is positive, except when $\gamma(x) = 0$, and radially unbounded. Then

$$\dot{V} = -2x_2^2(x_1^2 + x_2^2 - 1)^2$$

which is zero on $\gamma(x)=0$ or $x_2=0$. If $x_2=0$ we get the dynamics $\dot{x}_1=0$ and $\dot{x}_2=-x_1$, which implies $x_1=0$. We have already proven that the set $M=\{x|\gamma(x)=0\}$ is an invariant set. LaSalle's invariant set theorem now gives that all trajectories (not starting at x=0) converge towards M.

- 4. Notice that $K_P = 1$.
 - (a) We see that without saturation

$$U(s) = K_p(E(s) - \left(\frac{1}{F(s)} - \frac{1}{K_p}\right)U(s)), \Rightarrow U(s) = F(s)E(s)$$

- (b) Notice that $1/F(s) 1/K_p = -1/(s+1)$ is stable as has static gain 1. Hence, V = E + 1/(s+1)U and the steady state value equals $v = e + u_{max}$.
- (c) With $K_p = 1, T_s = 1$

$$V = (E + \frac{1}{s}(E + U - V)) \implies V = E + \frac{1}{s+1}U.$$

Hence, the steady state value equals $v = e + u_{max}$.

5. (a) Integration of $\dot{V}(x) \leq \gamma^2 u^2(t) - y^2(t)$ gives

$$\int_{0}^{t} y^{2}(\tau)d\tau \leq \gamma^{2} \int_{0}^{t} u^{2}(\tau)d\tau - [V(x(t)) - V(x(0))]$$

Now x(0) = 0 and V(0) = 0 and $V(x) \ge 0$ imply that

$$\int_0^t y^2(\tau)d\tau \le \gamma^2 \int_0^t u^2(\tau)d\tau$$

Let $t \to \infty$ to prove that a bounded input gives a bounded output.

(b)

$$\left[\begin{array}{cc} x^T & u \end{array} \right] \left[\begin{array}{cc} A^TP + PA + C^TC & PB \\ B^TP & -\gamma^2 \end{array} \right] \left[\begin{array}{c} x \\ u \end{array} \right]$$

$$= x^T(A^TP + PA + C^TC)x + 2x^TPBu - \gamma^2u^2 \le 0$$

Identify y = Cx to rewrite it as

$$x^T(A^TP + PA)x + 2x^TPBu \le \gamma^2u^2 - y^2 = s(u, y)$$

Take $V(x) = x^T P x \ge 0$,

$$\dot{V} = \dot{x}^T P x + x^T P \dot{x} = x^T (A^T P + P A) x + 2x^T P B u$$

and hence $\dot{V} \leq s(u, y)$. Hence, the linear system is dissipative.