
Solutions to the exam in Nonlinear Control

2E1262, 2005-12-15

1. (a) (i)-D, (ii)-C, (iii)-A, (iv)-B

(b) V̇ = 2(x2
1

+ x2
2
)(x2

1
+ x2

2
− 2) < 0 if 0 < x2

1
+ x2

2
< 2. Hence, the

origin is a locally stable.

(c) The principle of superposition from linear system theory does not
hold for general nonlinear systems. Nonlinear may have several
distinct stationary point. Nonlinear system can be locally stable,
but not globally stable. Nonlinear systems can have finite escape
time.

2. (a) Rewriting the system as

ẋ1 = −x1 − x2 − u

ẋ2 = x1

u = −sgn(σ) σ = −x1 − 2x2

The switch curve is σ = −x1 − 2x2 = 0. Calculation of ueq gives
the sliding set.

σ = −x1 − 2x2 = 0 → x1 = −2x2

σ̇ = −ẋ1 − 2ẋ2 = −x1 + x2 + ueq = 0 → ueq = x1 − x2 = −3x2

ueq ∈ [−1, 1] so can only satisfy ueq = −3x2 on the interval
{x1 = −2x2, x2 ∈ [−1/3, 1/3]}

The sliding dynamics with the calculated ueq inserted in the sys-
tem

ẋ1 = −x1 − x2 − (x1 − x2) = −2x1

ẋ2 = x1 = −2x2

Thus the system is stable along the sliding set.

(b) Start with the system ẋ1 = x2
1

+ φ(x1) which can be stabilized
using φ(x1) = −x2

1
− x1. Notice that φ(0) = 0. Take V1(x1) =

x2
1
/2. To backstep, define z2 = (x2 − φ(x1)) = x2 + x2

1
+ x1, to

transfer the system into the form

ẋ1 = −x1 + z2

ż2 = u + (1 + 2x1)(−x1 + z2)

Taking V = V1(x1) + z2
2
/2 as a Lyapunov function gives

V̇ = x1(−x1 + z2) + z2(u + (1 + 2x1)(−x1 + z2)) = −x2

1 − z2

2

if
u = −2x1 − 2x2 − 2x1(x1 + x2

1 + x2)

Hence, the origin is globally asymptotically stable.
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3. (a)
...
z + z̈ + ż = −

1

3
z3 = u.

Take the Laplace transform on both sides

s3Z + s2Z + sZ = U

Z =
1

s(s2 + s + 1)
U

Let y = z then u = −1

3
y3 and Y = Z which gives

G(s) =
1

s(s2 + s + 1)

(b) The function is odd ⇒ a0 = a1 = 0.

b1 =
1

π

∫
2π

0

f(A sin(φ)) sin(φ)dφ =
A3

3π

∫
2π

0

sin(φ)4dφ =
A3

4

N(A) =
ia1 + b1

A
=

A2

4

(c) Possible limit cycles occur when

G(iw) = −
1

N(A)
.

Because N(A) is real we want to calculate the points were Im(G(iω)) =
0.

G(iω) =
−i

ω(−ω2 + iω + 1)
=

−i(1 − ω2 − iω)

ω((1 − ω2)2 + ω2)
so

ImG(iω) =
−(1 − ω2)

ω((1 − ω2)2 + ω2)
= 0

which gives w = ±1. The only valid solution is thus w = 1.

G(i1) = −1 = −
1

N(A)
= −

4

A2
⇒ A = ±2

So finally ω = 1 and A = 2.

4. (a) Using the proposed V (x) = xT Px and the linearization

ẋ1 = −x1 + 2x2

ẋ2 = −2x1

give
V̇ = xT (AP + PAT )x = −x2

1 − x2

2 = −||x||2

The matrix P has eigenvalues 0.8 and 1.3 and is thus positive
definite. Hence, the linear system is asymptotically stable
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(b) Let g(x) = (x1x2 − x2
1
)T Then ||g||2 = x2

1
x2

2
+ x4

1
= |x1|

2||x||2.
Hence, ||g|| ≤ γ||x|| for x ∈ D. We now have a similar setup as in
the proof of Lyapunov’s Linearization Method in Lecture 4, i.e.

V̇ = −||x||2 + 2xT Pg(x) ≤ −||x||2 + 2||xT Pg(x)||

≤ −||x||2 + 2γλmax(P )||x||2 = −(1 − 2γλmax(P ))||x||2

Hence the the nonlinear system is locally asymptotically stable if
γ < 1/(2λmax(P )) = 0.37.

5. (a) Setting V (x) = 0.5x2 and using the state equation give

uy = (ẋ + x)x = V̇ + x2 = V̇ + y2

Hence, we can take δ = 1.

(b)

V̇ ≤ uy − δy2 = −
1

2δ
(u − δy)2 +

1

2δ
u2 −

δ

2
y2 ≤

1

2δ
u2 −

δ

2
y2

Integrating both sides over [0, T ] gives

∫ T

0

y2(τ)dτ ≤
1

δ2

∫ T

0

u2(τ)dτ−
2

δ
(V (x(T ))−V (x(0))) ≤

1

δ2

∫ T

0

u2(τ)dτ

where we have used that V ≥ 0 and V (x(0)) = 0. By letting
T → ∞ we show BIBO stability.
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