AUTOMATIC CONTROL
 Department of Signals, Sensors \& Systems, KTH

Nonlinear Control, 2E1262

Exam 14.00-19.00 December 15, 2005

Aid:
Lecture-notes from the nonlinear control course and textbook from the basic course in control (Glad, Ljung: Reglerteknik, or similar approved text). Mathematical handbook (e.g. Beta Mathematics Handbook). Other textbooks, exercises, solutions, calculators, etc. are not allowed.

Observandum:

- Name and social security number(personnummer) on every page.
- Only one solution per page.
- Do only write on one side per sheet.
- Each answer has to be motivated.
- Specify the total number of handed in pages on the cover.
- The exam consists of five 10 credit problems.

Grading:
Grade 3: ≥ 23
Grade 4: ≥ 33
Grade 5: ≥ 43
Results:
The results will be posted within 2006-01-13 on the department's board, Osquldas väg 10, second floor. If you want your result emailed, please state this and include your email address.

Responsible: Bo Wahlberg 7907242

Good Luck!
1.
(a) [4p] Which phase portrait in Figure 1 belongs to what system? Briefly motivate your answers (no extensive calculations needed).
(i)

$$
\begin{aligned}
& \dot{x}_{1}=-x_{2} \\
& \dot{x}_{2}=x_{2}-\sin \left(x_{1}\right)
\end{aligned}
$$

(ii) $\quad \dot{x}_{1}=x_{2}$
$\dot{x}_{2}=-x_{1}+\left(1-x_{1}^{2}\right) x_{2}$
(iii) $\quad \dot{x}_{1}=x_{2}$
$\dot{x}_{2}=-x_{1}+x_{2} x_{1}^{5}$
(iv) $\quad \dot{x}_{1}=x_{2}$
$\dot{x}_{2}=-x_{1}-x_{2}$

Figur 1: The phase portraits in Problem 1(a)
(b) $[4 \mathrm{p}]$ We want to study the stability properties of the nonlinear system defined by

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}\left(x_{1}^{2}+x_{2}^{2}-2\right)-4 x_{1} x_{2}^{2} \\
& \dot{x}_{2}=4 x_{1}^{2} x_{2}+x_{2}\left(x_{1}^{2}+x_{2}^{2}-2\right)
\end{aligned}
$$

around its equilibrium point at the origin. Use the Lyapunov function candidate

$$
V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

to perform such an analysis.
(c) [2p] Give two examples of fundamental differences between linear and nonlinear dynamical systems.
2.
(a) [5p] Consider the system

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}-x_{2}+\operatorname{sign}\left(-x_{1}-2 x_{2}\right) \\
& \dot{x}_{2}=x_{1}
\end{aligned}
$$

Find the sliding set and determine the sliding dynamics on/along the sliding set. (Hint: Use equivalent control and state in which region $u_{e q}$ is valid!)
(b) [5p] Consider the system

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}^{2}+x_{2} \\
& \dot{x}_{2}=u
\end{aligned}
$$

Compute a controller using back-stepping to globally stabilize the origin.
3. Consider the nonlinear system

$$
\frac{d}{d t}[\ddot{z}+\dot{z}+z]=-\frac{1}{3} z^{3}
$$

(a) $[2 \mathrm{p}]$ Show that the system can be separated into one linear and one nonlinear part as in the figure below. Determine the transfer function $G(s)$. Assume that $z(0)=$ $\dot{z}(0)=0$.

(b) $[4 \mathrm{p}]$ Calculate the describing function of $f(y)=\frac{1}{3} y^{3}$. Hint:

$$
\int_{0}^{2 \pi} \sin (x)^{4} d x=\frac{3 \pi}{4}
$$

(c) $[4 \mathrm{p}]$ Estimate the frequency and amplitude of possible limit cycles.
4. Consider the system

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+2 x_{2}+x_{1} x_{2} \\
& \dot{x}_{2}=-2 x_{1}-x_{1}^{2}
\end{aligned}
$$

The task is to analyze the stability of this system using Lyapunov's Linearization Method.
(a) $[2 \mathrm{p}]$ Show that the linear approximation around the origin is stable by using the function $V=x^{T} P x$, where

$$
P=\left(\begin{array}{rr}
1 & -\frac{1}{4} \\
-\frac{1}{4} & \frac{9}{8}
\end{array}\right)
$$

(b) [8p] Consider the set $D=\left\{x_{1}, x_{2}, \quad\left|x_{1}\right| \leq \gamma\right\}$. Use $V(x)$ from a) to give conditions on γ so that the nonlinear system is locally asymptotically stable for $x \in D$.
5. A system

$$
\begin{aligned}
\dot{x} & =f(x, u) \\
y & =h(x, u)
\end{aligned}
$$

is called output strictly passive if there exists a continuously differentiable positive semidefinite function $V(x)$ (called the storage function) such that

$$
u y \geq \dot{V}+\delta y^{2}, \quad \delta>0
$$

(a) [3p] Consider the system

$$
\begin{aligned}
\dot{x} & =-x+u \\
y & =x
\end{aligned}
$$

Show that this system is output strictly passive.
(b) [7p] Show that an output strictly passive system is BIBO stable. To simplify the proof assume that $x(0)=0$ and $V(0)=0$.

