Proposed solutions to the exam in Nonlinear Control
2E1262, 2006-12-18

1. (a) The equilibria z* is given by

i = 2 =0
- \—x2 +sin(z1) —sat(z) )

so we have (z7,z3) = (nm,0) for n = 0,£1,42,.... Linearizing
around the nth equilibria gives
- ( 0 —1>
Ti=nm (_1)” —2

A= (Cos(()m’f) 3)

Calculating the eigenvalues of A,, gives

detOMI —Ay) =X 420, +(-1)"=0 =

N = (-1,-1), if n even,
" (-1 —+/2,—1++/2), ifn odd,

with corresponding eigenvectors

(1) = (1) ()

We conclude that each “even equilibrium” is a stable node con-
verging along the (1,1)7 direction while each “odd equilibrium”
is an saddle point, and hence unstable, where we will approach
the equilibrium point along the (1,1++/2)7 direction and escape
along the (1,1 —+/2)”. The phase plot for the two different types
of equilibriums are displayed in Figure 1.
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Figure 1: Phase plot sketch for the two different types of equilibrium points.



2.

(b)

(a)

(i) We need to consider four different cases:
1. For x < —5, we have © < 0, so x will decrease towards
—00.
2. For —5 < x < 5, we have & > 0, so x will increase towards
Trog = 5.
3. For 5 < z < 10, we have & < 0, so « will decrease towards
Trog — 5.
4. For z > 10, we have & > 0, so x will increase towards
+00.
Thus z stays bounded for —5 < z(0) < 10.
(ii) Equilibrium points are given by f(z) = 0, from Figure 1 we
get o = {—5,5,10}.
(iii) Studying small perturbations dz around the equilibrium xg
we have

&= f(x) — K(z —x9) = f(xg+ dz) — Koz
= f(xo) + f'(z0)dx + O(62?) — Koz ~ (f'(x0) — K)dz.

For local stability we need that £ < 0 when x > xp, and 2 > 0
when x < x¢. To fulfill this we need the slope K of the linear
control to be greater than the slope of the nonlinearity. From
Figure 2 we get an approximate slope of ~ 150 at x9p = —5
and ~ 80 at g = 10. To dominate this with the linear control
we thus need K > 150 and K > 80 respectively.

We have that

b= Az, A= <:; _01> . (1)

Since A triangular it is to see that eig(A) = {—1, —1}. Hence the
system is stable (i.e A is Hurwitz).

3

V(0) =0, V(z) = 27Qz = xT< 1 _11>x > 0 for all  #

0, since @ is positive definite. Furthermore, since V(z) is a
quadratic form we can conclude that V' (z) is radially unbounded.
It remains to check if V(z) <0,

V(z) = —2(2? +23) < Oforallz # Oand A > 0.

By invoking Lyapunov’s theorem for global asymptotic stability
we can conclude that the system is globally asymptotically stable.



()

V(0) =0, V(xz) > 0 for all z # 0, V() radially unbounded, and

V(x) = 2m171 + 2m07s = —2(x1 + 12)? < 0 Lyapunov’s direct
method now only gives local stability, since V =0 if 1 +x9 = 0.
However, since 1 + 2o = —3x1 — x2 # 0 if x1 + 2o = 0, LaSalles

Theorem for Global Asymptotically Stability can be applied to
prove the same result as in b).

We have that 2o = A = e, so @0 = —e~! = —x9. Subsequently
the extended state space becomes

T —T1T2
2 T2
which is nonlinear due to the x1x2. The subsystem for z; is
however linear time varying.

Consider the Lyapunov function candidate V(z) = 3(z} + 23).
We have that

V(Ov 0) = 07
V(x1,22) > 0 when (21, 22) # (0,0),

V(x1,x2) — 0o when ||z| — oc.
We need V (1, x2) < 0 for global asymptotic stability:
V(x1,20) = 212 + Todiy = zo(zF 4 25 + u).
By choosing
u=-—-x]—r]—=T
we get
V(zy,z0) = —22 <0

which implies stability, but not asymptotic stability. Obviously
V = 0 along the line x5 = 0. However we have that

Zi‘gzl'?—Fu:l’?—l'?—:E%—:L‘Q:—l'%
along this line. Thus @2 # 0 whenever x; # 0, and we can hence
conclude that a solution trajectory cannot stay on the x;—axis
except at the origin. This means that the only invariant subset of
the line 29 = 0 is the origin, and hence we have global asymptotic
stability for the origin.



(a) The switching curve is given by S = {z € R?|o(z) = 0} where
u = —sign(o(z)), so o(x) = x1 + x2 in our case. Hence the
switching curve is a line with slope -1 in R?. The equivalent
control is defined by teq ={u € R| =1 <u <1,6(x) =0,0(x) =
0}. Now

d(a:)::i:1+:i:2:—x2—2x1+ueq+m120 =
Ueq = T1 +x2 =0 on S.

Since ueq = 0 € [—1,1] we have thatNthe hole line x1 + 29 = 0
belongs to the sliding set S, i.e. S = 8.

On S we have the sliding dynamics
Tl = —T9 — 211 + Ueq = —X1,
.%:2 =1 = —XT2.

Thus the system will be asymptotically stable and slide to the
origin, see Figure 2.

x1'=-x2-2x1-sign(x1 +x2)
x2"'=x1

x2

Figure 2: The phase plot in Problem 4.

(b) The two systems have similar structure, a natural first approach
is therefore 71 = 21 and z2 = z5 (compare e.g. the right hand

sides of the equations for 1 and Z; respectively):

1=z = %1 =% = —zg’ — 2z —sign(z + zg’)



where direct comparison of terms matches. For the second state
equation we have
3 . 2. . T2 T 21
To =25 > T2 =322 > =—"—"5=>"7="—5-.
2 2 2 272 2 32% 32% 323
Thus, the proposed change of coordinates converts between the
two system descriptions.

(a) Set T'= o0

(y,u) = / y(t)u(t)dt = { Parseval’s theorem }
0

= % Z Y*(iw)U (iw)dw = { Y (iw) = G(iw)U (iw) }
% o0 U* (iw)U (iw) G (iw)dw = % o0 U (i) 2 (i) dow

1 o
= { the integral must be real } = / |U (iw)|?Re (G(iw)) dw

2 J_ o
1 o . N2 N 1 o . . N2
> — —e—
> o [ WGwPdGw)Pd = e /_OO\G(M)U(M) d
1 oo
=eo |V (iw)|*dw = { Parseval’s theorem }
7T — 00
= [ wtoRa = dyf
(b) We have

. 1 —iw + 1
Re(G(iw)) = Re (iw ¥ 1> = Re <w2+1>
_ 1 . w R N
_Re<w2+1 Zw2+1> =2 |G (iw)]”.
Hence there exist an € > 0 (actually all € € (0,1]) such that
Re (G(iw)) > €|G(iw)|?,

thus the system is output strictly passive according to problem
(5a).

@@—Amwmwﬁ—fﬂwwm@ﬁz[iﬂwmﬁ

0
:wAmWﬁ=wP

(d) Here we have zf(x) = (1 + |z|)f(z)? > ef(z)? for all € € (0,1]
thus the system is output strictly passive according to 5c¢).



