
Proposed solutions to the exam in Nonlinear Control
2E1262, 2006-12-18

1. (a) The equilibria x∗ is given by

ẋ =
( −x2

−x2 + sin(x1)− sat(x2)

)
= 0,

so we have (x∗1, x
∗
2) = (nπ, 0) for n = 0,±1,±2, . . . . Linearizing

around the nth equilibria gives

An =
(

0 −1
cos(x∗1) −2

)∣∣∣∣
x∗1=nπ

=
(

0 −1
(−1)n −2

)
.

Calculating the eigenvalues of An gives

det(λnI −An) = λ2
n + 2λn + (−1)n = 0 ⇒

λn =

{
(−1,−1), if n even,

(−1−√2,−1 +
√

2), if n odd,

with corresponding eigenvectors
(

1
1

)
and

(
1

1 +
√

2

)
,

(
1

1−√2

)
.

We conclude that each “even equilibrium” is a stable node con-
verging along the (1, 1)T direction while each “odd equilibrium”
is an saddle point, and hence unstable, where we will approach
the equilibrium point along the (1, 1+

√
2)T direction and escape

along the (1, 1−√2)T . The phase plot for the two different types
of equilibriums are displayed in Figure 1.

Even n Odd n

Figure 1: Phase plot sketch for the two different types of equilibrium points.
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(b) (i) We need to consider four different cases:
1. For x < −5, we have ẋ < 0, so x will decrease towards
−∞.

2. For −5 < x < 5, we have ẋ > 0, so x will increase towards
x0 = 5.

3. For 5 < x < 10, we have ẋ < 0, so x will decrease towards
x0 = 5.

4. For x > 10, we have ẋ > 0, so x will increase towards
+∞.

Thus x stays bounded for −5 ≤ x(0) ≤ 10.
(ii) Equilibrium points are given by f(x) = 0, from Figure 1 we

get x0 = {−5, 5, 10}.
(iii) Studying small perturbations δx around the equilibrium x0

we have

ẋ = f(x)−K(x− x0) = f(x0 + δx)−Kδx

= f(x0) + f ′(x0)δx +O(δx2)−Kδx ≈ (f ′(x0)−K)δx.

For local stability we need that ẋ < 0 when x > x0, and ẋ > 0
when x < x0. To fulfill this we need the slope K of the linear
control to be greater than the slope of the nonlinearity. From
Figure 2 we get an approximate slope of ≈ 150 at x0 = −5
and≈ 80 at x0 = 10. To dominate this with the linear control
we thus need K > 150 and K > 80 respectively.

2. (a) We have that

ẋ = Ax, A =
(−1 0
−2 −1

)
. (1)

Since A triangular it is to see that eig(A) = {−1,−1}. Hence the
system is stable (i.e A is Hurwitz).

(b) V (0) = 0, V (x) = xT Qx = xT

(
3 −1
−1 1

)
x > 0 for all x 6=

0, since Q is positive definite. Furthermore, since V (x) is a
quadratic form we can conclude that V (x) is radially unbounded.
It remains to check if V̇ (x) < 0,

V̇ (x) = −2(x2
1 + x2

2) < 0 for all x 6= 0 and λ > 0.

By invoking Lyapunov’s theorem for global asymptotic stability
we can conclude that the system is globally asymptotically stable.
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(c) V (0) = 0, V (x) > 0 for all x 6= 0, V (x) radially unbounded, and
V̇ (x) = 2x1ẋ1 + 2x2ẋ2 = −2(x1 + x2)2 ≤ 0 Lyapunov’s direct
method now only gives local stability, since V̇ = 0 if x1 + x2 = 0.
However, since ẋ1 + ẋ2 = −3x1 − x2 6= 0 if x1 + x2 = 0, LaSalles
Theorem for Global Asymptotically Stability can be applied to
prove the same result as in b).

(d) We have that x2 = λ = e−t, so ẋ2 = −e−t = −x2. Subsequently
the extended state space becomes

(
ẋ1

ẋ2

)
=

(−x1x2

−x2

)
, (2)

which is nonlinear due to the x1x2. The subsystem for x1 is
however linear time varying.

3. (a) Consider the Lyapunov function candidate V (x) = 1
2(x2

1 + x2
2).

We have that

V (0, 0) = 0,

V (x1, x2) > 0 when (x1, x2) 6= (0, 0),
V (x1, x2) →∞ when ‖x‖ → ∞.

We need V̇ (x1, x2) < 0 for global asymptotic stability:

V̇ (x1, x2) = x1ẋ1 + x2ẋ2 = x2(x2
1 + x5

1 + u).

By choosing

u = −x5
1 − x2

1 − x2

we get

V̇ (x1, x2) = −x2
2 ≤ 0

which implies stability, but not asymptotic stability. Obviously
V̇ = 0 along the line x2 = 0. However we have that

ẋ2 = x5
1 + u = x5

1 − x5
1 − x2

1 − x2 = −x2
1

along this line. Thus ẋ2 6= 0 whenever x1 6= 0, and we can hence
conclude that a solution trajectory cannot stay on the x1–axis
except at the origin. This means that the only invariant subset of
the line x2 = 0 is the origin, and hence we have global asymptotic
stability for the origin.
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4. (a) The switching curve is given by S̃ = {x ∈ R2 |σ(x) = 0} where
u = −sign(σ(x)), so σ(x) = x1 + x2 in our case. Hence the
switching curve is a line with slope -1 in R2. The equivalent
control is defined by ueq = {u ∈ R | −1 ≤ u ≤ 1, σ̇(x) = 0, σ(x) =
0}. Now

σ̇(x) = ẋ1 + ẋ2 = −x2 − 2x1 + ueq + x1 = 0 ⇒
ueq = x1 + x2 = 0 on S̃.

Since ueq = 0 ∈ [−1, 1] we have that the hole line x1 + x2 = 0
belongs to the sliding set S, i.e. S = S̃.
On S we have the sliding dynamics

ẋ1 = −x2 − 2x1 + ueq = −x1,

ẋ2 = x1 = −x2.

Thus the system will be asymptotically stable and slide to the
origin, see Figure 2.

x1 ' = - x2 - 2 x1 - sign(x1 + x2)
x2 ' = x1                         
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Figure 2: The phase plot in Problem 4.

(b) The two systems have similar structure, a natural first approach
is therefore x1 = z1 and x2 = z3

2 (compare e.g. the right hand
sides of the equations for ẋ1 and ż1 respectively):

x1 = z1 ⇒ ẋ1 = ż1 = −z3
2 − 2z1 − sign(z1 + z3

2)
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where direct comparison of terms matches. For the second state
equation we have

x2 = z3
2 ⇒ ẋ2 = 3z2

2 ż2 ⇒ ż2 =
ẋ2

3z2
2

=
x1

3z2
2

=
z1

3z2
2

.

Thus, the proposed change of coordinates converts between the
two system descriptions.

5. (a) Set T = ∞

〈y, u〉 =
∫ ∞

0
y(t)u(t)dt = { Parseval’s theorem }

=
1
2π

∫ ∞

−∞
Y ∗(iω)U(iω)dω = {Y (iω) = G(iω)U(iω) }

1
2π

∫ ∞

−∞
U∗(iω)U(iω)G(iω)dω =

1
2π

∫ ∞

−∞
|U(iω)|2G(iω)dω

= { the integral must be real } =
1
2π

∫ ∞

−∞
|U(iω)|2Re (G(iω)) dω

≥ 1
2π

∫ ∞

−∞
|U(iω)|2ε|G(iω)|2dω = ε

1
2π

∫ ∞

−∞
|G(iω)U(iω)|2dω

= ε
1
2π

∫ ∞

−∞
|Y (iω)|2dω = { Parseval’s theorem }

= ε

∫ ∞

0
|y(t)|2dt = ε|y|2

(b) We have

Re (G(iω)) = Re
(

1
iω + 1

)
= Re

(−iω + 1
ω2 + 1

)

= Re
(

1
ω2 + 1

− i
ω

ω2 + 1

)
=

1
ω2 + 1

= |G(iω)|2.

Hence there exist an ε > 0 (actually all ε ∈ (0, 1]) such that

Re (G(iω)) ≥ ε|G(iω)|2,
thus the system is output strictly passive according to problem
(5a).

(c)

〈y, u〉 =
∫ ∞

0
y(t)u(t)dt =

∫ ∞

0
f(u(t))u(t)dt ≥

∫ ∞

0
εf2(u(t))dt

= ε

∫ ∞

0
|y(t)|2dt = ε|y|2

(d) Here we have xf(x) = (1 + |x|)f(x)2 ≥ εf(x)2 for all ε ∈ (0, 1]
thus the system is output strictly passive according to 5c).
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