Proposed solutions to the exam in Nonlinear Control 2E1262, 2006-12-18

1. (a) The equilibria x^{*} is given by

$$
\dot{x}=\binom{-x_{2}}{-x_{2}+\sin \left(x_{1}\right)-\operatorname{sat}\left(x_{2}\right)}=0,
$$

so we have $\left(x_{1}^{*}, x_{2}^{*}\right)=(n \pi, 0)$ for $n=0, \pm 1, \pm 2, \ldots$ Linearizing around the nth equilibria gives

$$
A_{n}=\left.\left(\begin{array}{cc}
0 & -1 \\
\cos \left(x_{1}^{*}\right) & -2
\end{array}\right)\right|_{x_{1}^{*}=n \pi}=\left(\begin{array}{cc}
0 & -1 \\
(-1)^{n} & -2
\end{array}\right) .
$$

Calculating the eigenvalues of A_{n} gives

$$
\begin{aligned}
\operatorname{det}\left(\lambda_{n} I-A_{n}\right) & =\lambda_{n}^{2}+2 \lambda_{n}+(-1)^{n}=0
\end{aligned} \quad \Rightarrow \quad \begin{array}{ll}
(-1,-1), & \text { if } n \text { even, } \\
\lambda_{n} & = \begin{cases}(-1-\sqrt{2},-1+\sqrt{2}), & \text { if } n \text { odd }\end{cases}
\end{array}
$$

with corresponding eigenvectors

$$
\binom{1}{1} \quad \text { and } \quad\binom{1}{1+\sqrt{2}},\binom{1}{1-\sqrt{2}} .
$$

We conclude that each "even equilibrium" is a stable node converging along the $(1,1)^{T}$ direction while each "odd equilibrium" is an saddle point, and hence unstable, where we will approach the equilibrium point along the $(1,1+\sqrt{2})^{T}$ direction and escape along the $(1,1-\sqrt{2})^{T}$. The phase plot for the two different types of equilibriums are displayed in Figure 1.

Even n

Odd n

Figure 1: Phase plot sketch for the two different types of equilibrium points.
(b) (i) We need to consider four different cases:

1. For $x<-5$, we have $\dot{x}<0$, so x will decrease towards $-\infty$.
2. For $-5<x<5$, we have $\dot{x}>0$, so x will increase towards $x_{0}=5$.
3. For $5<x<10$, we have $\dot{x}<0$, so x will decrease towards $x_{0}=5$.
4. For $x>10$, we have $\dot{x}>0$, so x will increase towards $+\infty$.
Thus x stays bounded for $-5 \leq x(0) \leq 10$.
(ii) Equilibrium points are given by $f(x)=0$, from Figure 1 we get $x_{0}=\{-5,5,10\}$.
(iii) Studying small perturbations δx around the equilibrium x_{0} we have

$$
\begin{aligned}
& \dot{x}=f(x)-K\left(x-x_{0}\right)=f\left(x_{0}+\delta x\right)-K \delta x \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \delta x+\mathcal{O}\left(\delta x^{2}\right)-K \delta x \approx\left(f^{\prime}\left(x_{0}\right)-K\right) \delta x .
\end{aligned}
$$

For local stability we need that $\dot{x}<0$ when $x>x_{0}$, and $\dot{x}>0$ when $x<x_{0}$. To fulfill this we need the slope K of the linear control to be greater than the slope of the nonlinearity. From Figure 2 we get an approximate slope of ≈ 150 at $x_{0}=-5$ and ≈ 80 at $x_{0}=10$. To dominate this with the linear control we thus need $K>150$ and $K>80$ respectively.
2. (a) We have that

$$
\dot{x}=A x, \quad A=\left(\begin{array}{cc}
-1 & 0 \tag{1}\\
-2 & -1
\end{array}\right) .
$$

Since A triangular it is to see that $\operatorname{eig}(A)=\{-1,-1\}$. Hence the system is stable (i.e A is Hurwitz).
(b) $V(0)=0, V(x)=x^{T} Q x=x^{T}\left(\begin{array}{cc}3 & -1 \\ -1 & 1\end{array}\right) x>0$ for all $x \neq$ 0 , since Q is positive definite. Furthermore, since $V(x)$ is a quadratic form we can conclude that $V(x)$ is radially unbounded. It remains to check if $\dot{V}(x)<0$,

$$
\dot{V}(x)=-2\left(x_{1}^{2}+x_{2}^{2}\right)<0 \text { for all } x \neq 0 \text { and } \lambda>0 .
$$

By invoking Lyapunov's theorem for global asymptotic stability we can conclude that the system is globally asymptotically stable.
(c) $V(0)=0, V(x)>0$ for all $x \neq 0, V(x)$ radially unbounded, and $\dot{V}(x)=2 x_{1} \dot{x_{1}}+2 x_{2} \dot{x_{2}}=-2\left(x_{1}+x_{2}\right)^{2} \leq 0$ Lyapunov's direct method now only gives local stability, since $\dot{V}=0$ if $x_{1}+x_{2}=0$. However, since $\dot{x_{1}}+\dot{x_{2}}=-3 x_{1}-x_{2} \neq 0$ if $x_{1}+x_{2}=0$, LaSalles Theorem for Global Asymptotically Stability can be applied to prove the same result as in b).
(d) We have that $x_{2}=\lambda=e^{-t}$, so $\dot{x}_{2}=-e^{-t}=-x_{2}$. Subsequently the extended state space becomes

$$
\begin{equation*}
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{-x_{1} x_{2}}{-x_{2}}, \tag{2}
\end{equation*}
$$

which is nonlinear due to the $x_{1} x_{2}$. The subsystem for x_{1} is however linear time varying.
3. (a) Consider the Lyapunov function candidate $V(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$. We have that

$$
\begin{aligned}
V(0,0) & =0, \\
V\left(x_{1}, x_{2}\right) & >0 \text { when }\left(x_{1}, x_{2}\right) \neq(0,0), \\
V\left(x_{1}, x_{2}\right) & \rightarrow \infty \text { when }\|x\| \rightarrow \infty .
\end{aligned}
$$

We need $\dot{V}\left(x_{1}, x_{2}\right)<0$ for global asymptotic stability:

$$
\dot{V}\left(x_{1}, x_{2}\right)=x_{1} \dot{x_{1}}+x_{2} \dot{x_{2}}=x_{2}\left(x_{1}^{2}+x_{1}^{5}+u\right) .
$$

By choosing

$$
u=-x_{1}^{5}-x_{1}^{2}-x^{2}
$$

we get

$$
\dot{V}\left(x_{1}, x_{2}\right)=-x_{2}^{2} \leq 0
$$

which implies stability, but not asymptotic stability. Obviously $\dot{V}=0$ along the line $x_{2}=0$. However we have that

$$
\dot{x}_{2}=x_{1}^{5}+u=x_{1}^{5}-x_{1}^{5}-x_{1}^{2}-x_{2}=-x_{1}^{2}
$$

along this line. Thus $\dot{x}_{2} \neq 0$ whenever $x_{1} \neq 0$, and we can hence conclude that a solution trajectory cannot stay on the x_{1}-axis except at the origin. This means that the only invariant subset of the line $x_{2}=0$ is the origin, and hence we have global asymptotic stability for the origin.
4. (a) The switching curve is given by $\tilde{S}=\left\{x \in \mathbb{R}^{2} \mid \sigma(x)=0\right\}$ where $u=-\operatorname{sign}(\sigma(x))$, so $\sigma(x)=x_{1}+x_{2}$ in our case. Hence the switching curve is a line with slope -1 in \mathbb{R}^{2}. The equivalent control is defined by $u_{\text {eq }}=\{u \in \mathbb{R} \mid-1 \leq u \leq 1, \dot{\sigma}(x)=0, \sigma(x)=$ $0\}$. Now

$$
\begin{aligned}
\dot{\sigma}(x) & =\dot{x}_{1}+\dot{x}_{2}=-x_{2}-2 x_{1}+u_{\mathrm{eq}}+x_{1}=0 \quad \Rightarrow \\
u_{\mathrm{eq}} & =x_{1}+x_{2}=0 \text { on } \tilde{S} .
\end{aligned}
$$

Since $u_{\text {eq }}=0 \in[-1,1]$ we have that the hole line $x_{1}+x_{2}=0$ belongs to the sliding set S, i.e. $S=\tilde{S}$.
On S we have the sliding dynamics

$$
\begin{aligned}
& \dot{x}_{1}=-x_{2}-2 x_{1}+u_{\mathrm{eq}}=-x_{1}, \\
& \dot{x_{2}}=x_{1}=-x_{2}
\end{aligned}
$$

Thus the system will be asymptotically stable and slide to the origin, see Figure 2.

Figure 2: The phase plot in Problem 4.
(b) The two systems have similar structure, a natural first approach is therefore $x_{1}=z_{1}$ and $x_{2}=z_{2}^{3}$ (compare e.g. the right hand sides of the equations for \dot{x}_{1} and \dot{z}_{1} respectively):

$$
x_{1}=z_{1} \Rightarrow \dot{x}_{1}=\dot{z}_{1}=-z_{2}^{3}-2 z_{1}-\operatorname{sign}\left(z_{1}+z_{2}^{3}\right)
$$

where direct comparison of terms matches. For the second state equation we have

$$
x_{2}=z_{2}^{3} \Rightarrow \dot{x}_{2}=3 z_{2}^{2} \dot{z}_{2} \Rightarrow \dot{z}_{2}=\frac{\dot{x}_{2}}{3 z_{2}^{2}}=\frac{x_{1}}{3 z_{2}^{2}}=\frac{z_{1}}{3 z_{2}^{2}}
$$

Thus, the proposed change of coordinates converts between the two system descriptions.
5. (a) Set $T=\infty$

$$
\begin{gathered}
\langle y, u\rangle=\int_{0}^{\infty} y(t) u(t) d t=\{\text { Parseval's theorem }\} \\
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} Y^{*}(i \omega) U(i \omega) d \omega=\{Y(i \omega)=G(i \omega) U(i \omega)\} \\
\frac{1}{2 \pi} \int_{-\infty}^{\infty} U^{*}(i \omega) U(i \omega) G(i \omega) d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|U(i \omega)|^{2} G(i \omega) d \omega \\
=\{\text { the integral must be real }\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|U(i \omega)|^{2} \operatorname{Re}(G(i \omega)) d \omega \\
\geq \frac{1}{2 \pi} \int_{-\infty}^{\infty}|U(i \omega)|^{2} \epsilon|G(i \omega)|^{2} d \omega=\epsilon \frac{1}{2 \pi} \int_{-\infty}^{\infty}|G(i \omega) U(i \omega)|^{2} d \omega \\
=\epsilon \frac{1}{2 \pi} \int_{-\infty}^{\infty}|Y(i \omega)|^{2} d \omega=\{\text { Parseval's theorem }\} \\
=\epsilon \int_{0}^{\infty}|y(t)|^{2} d t=\epsilon|y|^{2}
\end{gathered}
$$

(b) We have

$$
\begin{aligned}
\operatorname{Re}(G(i \omega)) & =\operatorname{Re}\left(\frac{1}{i \omega+1}\right)=\operatorname{Re}\left(\frac{-i \omega+1}{\omega^{2}+1}\right) \\
& =\operatorname{Re}\left(\frac{1}{\omega^{2}+1}-i \frac{\omega}{\omega^{2}+1}\right)=\frac{1}{\omega^{2}+1}=|G(i \omega)|^{2}
\end{aligned}
$$

Hence there exist an $\epsilon>0$ (actually all $\epsilon \in(0,1])$ such that

$$
\operatorname{Re}(G(i \omega)) \geq \epsilon|G(i \omega)|^{2}
$$

thus the system is output strictly passive according to problem (5a).
(c)

$$
\begin{array}{r}
\langle y, u\rangle=\int_{0}^{\infty} y(t) u(t) d t=\int_{0}^{\infty} f(u(t)) u(t) d t \geq \int_{0}^{\infty} \epsilon f^{2}(u(t)) d t \\
=\epsilon \int_{0}^{\infty}|y(t)|^{2} d t=\epsilon|y|^{2}
\end{array}
$$

(d) Here we have $x f(x)=(1+|x|) f(x)^{2} \geq \epsilon f(x)^{2}$ for all $\epsilon \in(0,1]$ thus the system is output strictly passive according to 5 c$)$.

