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1. (a) All systems except (ii) have a unique equilibrium at the origin.
Thus, (ii) corresponds to A. System (iii) is linear and has complex
eigenvalues with real part in the RHP, thus an unstable focus cor-
responding to B. System (iv) also has a trivial linearization (all
parts linear except x3

2 which has no linear part) and the eigen-
valus are −1, 1 and hence an unstable saddle corresponding to C.
System (i) has the same linearization as (iii), hence an unstable
focus but the nonlinearity allows for the limit cycle in D.

(b)
u = x2 − sin(x)− x + r

(c) (i) Differentiating the output yields

ẏ = ẋ1 = x2 − x2
1

Since u does not appear, we differentiate once again

ÿ = ẋ2 − 2x1ẋ1 = −x2x
2
1 + u− 2x1(x2 − x2

1)

and setting ÿ = r yields

u = x2x
2
1 + 2x1(x2 − x2

1) + r

(ii) Since the relative degree in this case equals the order of the
system, there are no zero dynamics and hence unstable zero dy-
namics will not be a problem.

2. (a) (i) From the first equation with ẋ1 = 0 we get x2 = 0 or x1 =
1 + x2

2. Inserting this into the second equation with ẋ2 = 0
yields k2 = 0, which is not satisfied, and k2 − 5x2 = 0 or

x∗
2 = k2/5 = 2 , x∗

1 = 1 + x∗2
2 = 5

Linearization yields

A =
1

1 + x∗2
2

(
−k1x

∗
2 2k1x

∗2
2

−4x∗
2 −5 + 3x∗2

2

)
=

1
5

(
−6 24
−8 7

)
And the characteristic equation is given by

(5λ + 6)(5λ− 7) + 184 = 0 ⇔ 25λ2 − 5λ + 142 = 0

which has at least one root in the open complex right half
plane since the coefficients have different signs. Hence, the
equilibrium is unstable according to Lyapunov’s linearization
method.
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(ii) The region K is a rectangle in first quadrant of the state
plane, and invariance implies that all trajectories point in-
wards at the boundary of the rectangle.
∗ At the line x1 = 0, x2 > 0 we get ẋ1 = k1x2 > 0 and

hence all trajectories point inwards
∗ At the line x2 = 0, x1 > 0 we get ẋ2 = k2 > 0 and hence

all trajectories point inwards

∗ At the line x1 = 1+k2
2, x2 > 0 we get ẋ1 = k1x2

(
1− 1+k2

2

1+x2
2

)
<

0 since 0 < x2 < k2 and hence the trajectories point in-
wards.

∗ At the line x2 = k2 we get ẋ2 = −4x1k2

1+k2
2

< 0 since x1 > 0
and k2 > 0 and hence all trajectories point inwards

Thus, we have shown that all trajectories at the boundary of
K point inwards and hence K is invariant.

(iii) Since the only equilibrium is unstable and within K, there
must exist some other stable behavior within K. This must
be a limit cycle since the system is two-dimensional1.

(b) (i) The Jacobian at x = (0, 0) has eigenvalues λ1,2 = ±i and since
they are on the imaginary axis we can not deduce anything about
the local stability from Lyapunov’s linearization method.
(ii) Trivially, V (x) > 0 and V →∞ as ‖x‖ → ∞.

V̇ = x1ẋ1 + x2ẋ2 = x1x2 + x2(−x1 − x3
2) = −x4

2

Hence, V̇ ≤ 0 ∀x. Now, V̇ = 0 on the line x2 = 0. However,
with x2 = 0 we get ẋ2 = −x1 which is zero only if x1 = 0. Hence,
the equilibrium at the origin is the only invariant set on x2 = 0
and hence LaSalle theorem gives that the equilibrium is globally
asymptotically stable.

3. (a) Trivially V > 0 and V →∞ as ‖x‖ → ∞.

V̇ = x1ẋ1 + x2ẋ2 = −x2
1x2 + x1u + x2x

2
1 − x2

2 = x1u− x2
2

which is made strictly negative for all x 6= 0 if u = −kx1 with
k > 0.

(b) The system is on strict feedback form. Starting by stabilizing the
first equation using x2 = φ(x1) = x2

1 − x1, we get that V (x1) =
0.5x2

1 is a Lyapunov function. The stabilizing control is then
given by

u = (2x1 − 1)(−x2
1 + x2)− x1 − (x2 − x2

1 + x1) + x2 −
1

1 + x2
1

1For higher dimensional systems there exist other possible non-equilibrium stable be-
haviors; quasi-periodic and chaotic solutions, but that is out of the scope of this course.
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or
u = −2x1(x2

1 − x1 − x2 + 1)− x2 −
1

1 + x2
1

with corresponding Lyapunov function

V (x1, x2) = 0.5x2
1 + (x2 − x2

1 + x1)2

4. The system corresponds to a feedback loop with a static nonlinearity
f(u) and a stable linear system KG(s).

(i) The small gain states that the loop is stable if the loop-gain
γ < 1. The nonlinearity has f(u)/u = 1/(1 + u2) which has
a maximum γf = 1 (at u = 0). The linear system has gain
γG = supω |KG(iω)| = |K|. Hence, the loop-gain γ < 1 if
|K| < 1, or −1 < K < 1, which then guarantees closed-loop
BIBO stability.

(ii) The sector of the nonlinearity has k1 = 0 and k2 = 1 and hence
the circle criterion yields closed-loop stability if ReKG(iω) > −1.
We have ReG(iω) = (1 − ω2)/((1 − ω2)2 + 4ω2) which has a
minimum ReG = −0.125 which yields K < 8. The maximum
of ReG(iω) = 1 which yields K > −1. Thus, the closed-loop is
guaranteed stable if −1 < K < 8.

(iii) The static nonlinearity is odd, i.e., f(−u) = −f(u) and hence the
describing function N(A) is real. Since f(u)/u > 0, N(A) > 0.
Thus, −1/N(A) is located on the negative real axis in the complex
plane. Since the linear system frequency response KG(iω) never
crosses the negative real axis for K > 0, the describing function
method do to predict oscillations for any K > 0.

(iv) The methods in (i) and (ii) are both based on the small gain
theorem and hence conservative, that is, sufficient but not neces-
sary. The circle criterion is in general less conservative than the
direct application of the SGT to the loop, as can also be seen by
the prediction. The describing function method do not provide
neither sufficient nor neccessary conditions for the existence or
absence of an oscillation. However, the result may be taken as an
indication that the system is stable for all K > 0. However, this
needs to be verified by some more rigorous method, e.g., using
Lyapunov theory.

5. (a) Trivially V (y) > 0 and

V̇ = yẏ = y(−x1 + 2x2 − x1 + x2 − u) = y(−2x1 + 3x2 − u)

To satisfy V̇ < 0 we employ the control

u = −2x1 + 3x2 + βsign(y), β > 0
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With this controller ẏ = −βsign(y) which hence brings the out-
put to zero in finite time ts = |y(0)|/β.

(b) We have y(0) = a−b and if a−b > 0 we get dy/dt = −β, i.e., y(t)
is a straight line with slope −β, untill y = 0 at ts = (a− b)/β. If
a − b < 0, dy/dt = β untill y = 0 at ts = (b − a)/β. The sketch
is not shown here.

(c) At the sliding mode y = 0 we require ẏ = 0 and hence

−x1 + 2x2 − x1 + x2 − ueq = 0 ⇒ ueq = −2x1 + 3x2

With u = ueq we get

ẋ1 = −x1 + 2x2

ẋ2 = −x1 + 2x2

y = x1 − x2

and the observability matrix becomes

O =
(

1 −1
0 0

)
which is rank deficient and hence the system is unobservable. The
unobservable subspace equals kerO = [1 1]T , i.e., x1 = x2 which
corresponds to y = x1−x2 = 0, i.e., the states at the sliding mode.
The sliding mode dynamics correspond to x1 = x2 and hence
ẋ1 = −x1 + 2x1 = x1 which is unstable. The same applies to x2.
Thus, the dynamics on the sliding mode are unobservable and
unstable, which is unacceptable since it implies that the states
and the control input grows exponentially while y = 0.

(d) The fact that the system is unstable when we keep y = 0 implies
that the system has unstable zero dynamics, or since this is a
linear system, zeros in the complex right half plane. This again
implies that it is not possible to force y to 0 without also forc-
ing both states to 0, and this can this can only be achieved in
exponential time for a linear system with a single control input.
This means that not even a time-optimal controller can take the
output to zero in finite time for this system.
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