
AUTOMATIC CONTROL

KTH

Nonlinear Control, EL2620 / 2E1262

Exam 14.00–19.00 December 17, 2007

Aid:

Lecture-notes from the nonlinear control course and textbook from the basic
course in control (Glad, Ljung: Reglerteknik, or similar approved text). Math-
ematical handbook (e.g. Beta Mathematics Handbook). Other textbooks,
exercises, solutions, calculators, etc. are not allowed.

Observandum:

• Name and social security number (personnummer) on every page.

• Only one solution per page.

• Do only write on one side per sheet.

• Each answer has to be motivated.

• Specify the total number of handed in pages on the cover.

• The exam consists of five problems worth a total of 50 credits

Grading:

Grade A: ≥ 43, Grade B: ≥ 38

Grade C: ≥ 33, Grade D: ≥ 28

Grade E: ≥ 23, Grade Fx: ≥ 21

Results:

The results will be available 2008-01-15 at STEX, Studerandeexpeditionen,
Osquldasv. 10. If you want your result emailed, please state this and
include your email address.

Responsible: Elling W. Jacobsen 0703 722 244, Björn Johansson 790 7424

Good Luck!
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1. (a) The figure below shows phase portraits for four different systems. Pair each
phase portrait with one of the systems below, and briefly motivate your answer.
(4p)

(i) ẋ1 = −x2 + (1 − x2

2
)x1

ẋ2 = x1 + x2

2
x1

(ii) ẋ1 = (1 − x1)
2 − x2

ẋ2 = x1(1 − x1)

(iii) ẋ1 = x1 − x2

ẋ2 = x1

(iv) ẋ1 = x1 − x2 + x3

2

ẋ2 = −x2
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(b) Consider the nonlinear system

ẋ = −x2 + sin(x) + u

Determine a feedback control u(x, r) that makes the system linear from r to x
(1p)
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(c) Consider the nonlinear system

ẋ1 = x2 − x2

1

ẋ2 = −x2x
2

1
+ u

y = x1

(i) Determine a linearizing feedback control u(x, r) such that the system be-
comes a (linear) double integrator from r to y, i.e.,

ÿ = r

(4p)

(ii) Can there be problems with unstable zero dynamics when the controller
derived in (i) is used? Motivate briefly. (1p)
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2. (a) A biochemical system is described by

ẋ1 = k1x2

(

1 −
x1

1 + x2

2

)

ẋ2 = k2 − x2 −
4x1x2

1 + x2

2

where x1 and x2 are concentrations of biochemical components and k1 > 0 and
k2 > 0 are positive constants describing the reaction kinetics. We consider the
case with

k1 = 3, k2 = 10

The aim is to show that the system has a stable periodic solution, i.e., a stable
limit cycle.

(i) Determine the equilibrium point and use Lyapunov’s linearization method
to show that the equilibrium is unstable. To simplify calculations, recall

that a 2nd order polynomial s2 + as + c = 0 has all roots in the complex

left half plane if and only if a > 0 and c > 0. (2p)

(ii) Show that the region

K = {(x1, x2)|x1 ≥ 0, x2 ≥ 0, x1 ≤ 1 + k2

2
, x2 ≤ k2}

is invariant. (4p)

(iii) What can you conclude from the results in (i) and (ii) concerning the
existence of a limit cycle? Motivate briefly (1p)

(b) Consider the system

ẋ1 = x2

ẋ2 = −x1 − x3

2

(i) What can you conclude about the stability of the equilibrium using Lya-
punov’s linearization method? (1p)

(ii) Use the function V (x) = 1

2
(x2

1
+ x2

2
) and LaSalle’s theorem to show that

the equilibrium is globally asymptotically stable. (4p)
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3. (a) Consider the system

ẋ1 = −x1x2 + u

ẋ2 = x2

1
− x2

The aim is to make the equilibrium at the origin globally asymptotically stable.
Use the control Lyapunov function V (x) = 1

2
(x2

1
+ x2

2
) to find a linear control

law that makes the origin globally asymptotically stable. (4p)

(b) Use control design based on back-stepping to determine a stabilizing controller
for the origin x = 0 of the system

ẋ1 = −x2

1
+ x2

ẋ2 = 1/(1 + x2

1
) − x2 + u

(4p)
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4. Consider the nonlinear feedback system in the figure below.

f(u) G(s)K
r e u y

−

Here

G(s) =
1

(s + 1)2
; f(u) =

u

1 + u2

The static nonlinearity f(u) and the frequency response G(iω) are shown graphically
below
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We want to determine for which values of the controller gain K the closed loop
system is stable

(i) Use the small gain theorem to determine values of the gain K that guarantees
closed-loop stability. (3p)

(ii) Use the circle criterion to determine values of the gain K that guarantees
closed-loop stability. (3p)

(iii) For what values of K will the describing function method predict sustained
oscillations in the closed-loop system? Hint: you do not need to compute the

describing function for the nonlinearity to answer this question. It suffices to

observe some characteristic properties of the nonlinearity and hence the de-

scribing function. (3p)

(iv) Comment on the differences in the answers obtained with the three methods
above. (1p)
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5. We shall consider nonlinear control of a linear dynamic system

ẋ1 = −x1 + 2x2

ẋ2 = x1 − x2 + u

y = x1 − x2

The aim of the control is to drive the output y to zero in finite time. We consider
using sliding mode control and define the sliding manifold as

{x|y(x) = 0}

(a) Determine a sliding mode controller that makes the sliding manifold globally
attracting in finite time with Lyapunov function V (y) = 0.5y2. (3p)

(b) Sketch the response y(t) for an arbitrary initial condition x1(0) = a, x2(0) = b
when the controller in (a) is employed. (1p)

(c) Determine the equivalent control ueq on the sliding manifold and show that
the equivalent control corresponds to making the sliding manifold dynamics
unobservable. Does the unobservability pose any problem in this case? (3p)

(d) Discuss the feasibility of alternative approaches to driving the output y to zero
in finite time for the given system. (3p)
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