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1. (a) All systems except (iv) have a unique equilibrium at the origin.
Thus, (iv) corresponds to D. System (i) has a Jacobain at the
origin with eigenvalues 2 and −1 and hence corresponds to an
unstable saddle; B. System (ii) has 2 eigenvalues at 1, while (iii)
has eigenvalues 0.5±

√
3/2. System (iii) is hence an unstable focus

at the origin, corresponding to C, while (ii) then corresponds to
A

(b)

u = x3 − 1
1 + x4

− x + r

(c) (i) Differentiating the output yields

ẏ = ẋ1 = 2x2 + x3
1 + u

Since u appears in ẏ we can now choose

u = −2x2 − x3
1 + v

to obtain ẏ = v.
(ii) For the closed loop system we obtain

ẋ1 = −Kpx1

ẋ2 = −x2 + 2x2 + x3
1 −Kpx1 = x2 −Kpx1 + x3
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The corresponding Jacobian at the origin will have eigenvalues
−Kp and 1 and will hence always be unstable. The reason is that
the zero dynamics are unstable, in this case reflected by x2 being
unstable when y = x1 = 0.

2. (a) The equilibria are (0, 0) and (1, 1). The Jacobians have eigen-
values λ1 = 0, λ2 = 0 and λ1 = −0.55, λ2 = −5.5, respectively.
The latter solution is thus stable, while conclusion about the sta-
bility origin can not be reached from the linearization since the
eigenvalues are in the closed left half plane with some on the
imaginary axis. There are several ways to show that the origin in
fact is unstable, but these have not been covered in the course.

(b) A sketch of the region traced out by Γ in the state plane shows a
banana shape. For each point on the left boundary of Γ x2 = x2

1

and thus
ẋ1 = −x3

1 + x2
1 > 0

ẋ2 = x6
1 − x3

2 = 0
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so the trajectory points inward Γ at every point at the left bound-
ary. At the right boundary x2 = x3

1, and

ẋ1 = 0

ẋ2 = x6
1 − x9

1 > 0

so the trajectory points inwards. Hence Γ is invariant.

(c) The equlibirum point is at the boundary of Γ. Draw a trajectory
illustrating how a trajectory starting close to the origin moves to
(1, 1).

3. With V = 0.5(x2
1 + x2

2) we have V (0, 0) = 0, V > 0 when x 6= 0, and
‖V ‖ → ∞ when ‖x‖ → ∞. It remains to show that V̇ < 0 for all
x 6= 0.

V̇ = x3
1 + x2

1x2 + x1u + x1x
3
2 + x1x2 = x1(x2

1 + x1x2 + u + x3
2 + x2)

By choosing
u = −x2

1 − x1x2 − x3
2 − x2 − x1

we get
V̇ = −x2
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This is a strictly negative function for all x except for at the line
x1 = 0, which includes the origin. It remains to be shown that the
equilibrium which is the only invariant set at the line where V̇ = 0.
For x1 = 0 we get

ẋ1 = −x3
2 − x2

which is zero only when x2 = 0. Thus, the origin is the only invariant
set for which the V̇ = 0 and hence the origin is globally asymptotically
stable.

4. (a) The describing function is the amplitude dependent gain, and
real valued in this case (why?). The gain will in this case have
a maximum N(A) = 2 for small input amplitudes A and then
drop off as A > 2, with further drops for A > 4 and A > 6. For
stability analysis it is usually the maximum amplification that
matters (for real valued functions).

(b) The linear system G must be chosen such that the Nyquist curve
intersects −1/N(A). In this case −1/N(A) covers the negative
real axis up to the point −0.5. Thus, the Nyquist curve of G
should cross the negative real axis to the left of −0.5. A possible
candidate is

G(s) =
4

(s + 1)3
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(c) The gains are γ(f) = 2, γ(f(f)) = 4, γ(f + f) = 4

(d) The system is globally stable with Lyapnuov function V (x) =
x2 for all K > 0. For example, note that V̇ = −2xf(x) =
−2|xf(x)| ≤ 0, for all x 6= 0, and that V is radially bounded.

5. (a) We seek a sliding mode controller using the Lyapunov function
V (x) = 0.5x2

2. Differentiation yields

V̇ = x2ẋ2 = −2x2
2 + x1x2 − 0.5ux2

By choosing
u = −4x2 + 2x1 + 2sign(x2)

we get V̇ = −x2sign(x2) which is strictly negative for all x2 6= 0.
Furthermore, with this controller

ẋ2 = −sign(x2)

which will take x2 to zero in finite time.

(b) Consider the dynamics of the state x1 on the manifold S.

ẋ1 = −x1 + x1x2 − 4x2 + 2x1 + 2sign(x2)

and with x2 = 0
ẋ1 = x1

which is exponentially unstable with eigenvalue 1. Thus, both x1

and u will blow up when forcing x2 = 0.
By letting x2 = 0 and ẋ2 = 0 in the state space equations we get

ẋ1 = −x1 + 2x1 = x1

which thus always results when forcing the system to stay on the
manifold S, independent of which controller is employed for the
task. The reason is that the system has unstable zero dynamics
when the output is y = x2.
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