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1. Consider the nonlinear system

ẋ1 = kx1 − x2

ẋ2 = x1 − x3
2 + u

(a) The equilibriums are given by:

x1 − x2 = 0

x1 − x3
2 = 0,

which gives: (0, 0), (1, 1), (−1,−1). The Jacobian is

A(x1, x2) =

(

1 −1
1 −3x2

2

)

.

Insertion of the origin and calculation of the eigenvalues gives

det (λI − A(0, 0)) =

∣

∣

∣

∣

λ − 1 1
−1 λ

∣

∣

∣

∣

= λ2 − λ + 1 = 0

⇒λ =
1

2
± 1

2

√

12 − 4 =
1

2
±

√
3

2
i

The real part is not zero, so the equilibrium is hyperbolic and the linear analysis is valid
locally. Complex eigenvalues with positive real part implies that the origin is an unstable
focus. Insertion of (1, 1) and calculation of the eigenvalues gives

det (λI − A(1, 1)) =

∣

∣

∣

∣

λ − 1 1
−1 λ + 3

∣

∣

∣

∣

= λ2 + 2λ − 2 = 0

⇒λ =
−2

2
± 1

2

√

22 + 8 = −1 ±
√

3

One positive real and one negative real eigenvalue implies that the equilibrium is a saddle
point. Insertion of (−1,−1) gives the same Jacobian so it is also a saddle point.

(b) The general linear state feedback u = ax1 +bx2 yields u = 0 for x = (0, 0) and hence the origin
is still an equilibrium. We are only asked to make the origin locally asymptotically stable so we
can linearize the system at the origin and select a, b such that the real part of the eigenvalues
is smaller than zero. The Jacobian at the origin is

A(0, 0) =

(

1 −1
1 + a b

)

.

The eigenvalues are given by

det (λI − A(0, 0)) =

∣

∣

∣

∣

λ − 1 1
−1 − a λ − b

∣

∣

∣

∣

= λ2 − (1 + b)λb + a + 1 = 0

⇒λ =
1 + b

2
± 1

2

√

(1 + b)2 − 4(1 + a + b).

So we need to select b < −1, a > −1 − b, for example a = 2, b = −2 gives a stable focus.

1



(c) The Lyapunov function V (x) = 1

2
(x2

1 + x2
2) is continuously differentiable for x ∈ R

2, positive
semidefinite and zero only at the origin, as well as radially unbounded. Its time derivative

V̇ (x) = x1ẋ1 + x2ẋ2 = −x4
2 < 0 ∀x2 6= 0

is unfortunately zero on the whole x1-axis, so Lyapunovs theorem for global asymptotic sta-
bility is not fulfilled. Let us use LaSalle’s invariant set theorem. We can use the previous Lya-
punov function to define a compact positively invariant set Ωc = {(x1, x2) ∈ R

2|x2
1 + x2

2 ≤ c}.
This set is positively invariant since V̇ (x) ≤ 0 ∀x, i.e. the state change is directed inwards or
along the level curve for any c ∈ R, c ≥ 0. We select the same Lyapunov function and get the
set E = {(x1, x2) ∈ Ωc|x2 = 0}. On the x1-axis the system equations reduces to

ẋ1 = 0

ẋ2 = x1 6= 0 ∀x1 6= 0,

hence the origin constitutes the largest invariant set, M = (0, 0). LaSalle’s theorem now
guarantees that every solution x(0) ∈ Ωc approaches the origin as t → ∞. It is hence globally
asymptotically stable.

2. (a) Consider the dynamic system

ẋ = −y

ẏ = x + y3 − y

(i) We can for every c ∈ R view x2 + y2 = c, which defines the closure of the set E, as a level
curve of the Lyapunov function V (x, y) = x2 + y2. The time derivative of the Lyapunov
function is

V̇ (x, y) = 2xẋ + 2yẏ = 2y4 − 2y2.

This is negative semidefinite if 2y2(y2 − 1) ≤ 0, i.e. if y2 ≤ 1. This holds for all points on
every level curve with c ≤ 1, hence the set E is (positively) invariant for all c ≤ 1.
An alternative point of view, which gives exactly the same result, is to define γ := x2 +
y2 − c = 0 as the closure of the set. Calculate the gradient of the curve:

∇γ =

(

2x
2y

)

and make sure it points outwards from the set, so that it is the normal of the closure.
Then we project the change of the trajectory on the closure on the normal and check that
it is smaller or equal to zero, i.e. that the change points inwards:

γ̇ = ∇γ ·
(

ẋ
ẏ

)

= 2xẋ + 2yẏ = 2y4 − 2y2.

(ii) What can you conclude from the result in (i)? The set E, c ≤ 1 constitute a region of
attraction1 of some invariant set existing within E.Since V̇ (x, y) < 0 for all c ≤ 1, y 6= 0,
every level curve will define a region of attraction, so the invariant set must lie on the
x-axis. If we also determine the equilibrium points of the system then we see that the
origin is the only equilibrium on the x-axis and hence the largest invariant set in E. So
every solution x(0) starting in the set E, c ≤ 1 approaches the origin as t → ∞.

(b) A nonlinear system is described by

ẋ1 = 2x1 −
x2

1 + x2
2

+ u

ẋ2 =
x1

1 + x2
1

1Not necessarily the whole region of attraction though.
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The Lyapunov function V (x) = x2
1 + x2

2 is continuously differentiable for x ∈ R
2, positive

definite and only zero at the origin, as well as radially unbounded. So if we can choose u such
that its time derivative is negative except at the origin, then Lyapunovs theorem for global
asymptotic stability is fulfilled. The time derivative is

V̇ (x) = 2x1ẋ1 + 2x2ẋ2 = 4x2
1 −

2x1x2

1 + x2
2

+ 2x1u +
2x1x2

1 + x2
1

so let us select

u = −2.5x1 +
x2

1 + x2
2

− x2

1 + x2
1

then we have

V̇ (x) = −x2
1.

Unfortunately V̇ (x) = 0 on the whole x2-axis, so Lyapunovs theorem for global asymptotic
stability is not fulfilled. Let us instead use LaSalle’s theorem for global asymptotic stability,
i.e. we additionally need to show that the origin is the only invariant set on the x2-axis.
Alternatively we could do exactly like in 1c, since this theorem a special case of LaSalle’s
invariant set theorem. On the x2-axis the system equations reduces to

ẋ1 = −x2 6= 0 ∀x2 6= 0

ẋ2 = 0,

hence the origin constitutes the only invariant set on it. LaSalle’s theorem now guarantees
global asymptotic stability.

3. (a) We shall consider linearizing control of the nonlinear system

ẋ1 = −x1 + x2 + x2
2 + u

ẋ2 = x2 − x2
1

y = x2

(i) A standard choice for transformation is z1 = xi, z2 = ẋi. To avoid u being included in
the definition of our new state variables, we try z1 = x2, z2 = ẋ2 = x2 − x2

1. Then
x1 = ±√

z1 − z2, x2 = z1. The system can then be written as

ż1 = ẋ2 = z2

ż2 = ẋ2 − 2x1ẋ1 = x2 − x2
1 + 2x2

1 − 2x1x2 − 2x1x
2
2 − 2x1u

Now the state feedback

u =
x2 + x2

1 − 2x1x2(1 + x2) + v

2x1

will linearize the system by canceling out the nonlinearities giving

ż1 = z2

ż2 = v

The feedback linearization is only valid if x1 6= 0. When x1 → 0 then u → ∞, which
cannot be implemented in practice. Thus, we can only linearize either the left or right
half state-plane2.

2This may appear of little use since the origin is the equlibrium of the system for u = 0. However, nonlinear systems

are often operated with a non-zero input, i.e., away from the origin in the state-plane in this case, and hence linearization

of only one half plane can be relevant.
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(ii) Differntiating the output once yields

ẏ = ẋ2 = x2 − x2
1

and hence no appearance of the control input u. Differentiating once again yields

ÿ = ẋ2 − 2x1ẋ1

which is equal to ż2 in problem (i). Hence, the same controller as in (i) yields

ÿ = v

The same limitations as in (i) apply.
The limitations can also be seen by noting that the relative degree, given by the smallest
p such that LgL

p−1

f h(x) 6= 0, is not defined in all R
2. In particular,

LgLfh = ẍ2 = ẋ2 − 2x1ẋ1 = x2 + x2
1 − 2x1x2 − 2x1x

2
2 − 2x1u

which is non-zero except for x = 0. Thus, the relative degree is not well defined if we
include x1 = 0 in the considered domain.

(iii) For x1 6= 0 the relative degree is equal to the number of states, and hence no zero dynamics.

(b) A mechanical system with servo dynamics and no damping is described by the model

ẋ1 = x2

ẋ2 = −x3
1 + z

ż = −z + u

This system is on strict feedback form so the backstepping procedure can be used to stabilize
the states of the system one by one. Let us start by only considering the first state with
x2 = φ1(x1):

ẋ1 = φ1(x1).

If we for example select φ1(x1) = −x1, then this system can be shown to be globally asymp-
totically stable with Lyapunov function V1(x1) = 0.5x2

1. This Lyapunov function is clearly
continuously differentiable for x1 ∈ R, positive definite and only zero at the origin, as well as
radially unbounded. The derivative is

V̇1(x1) = x1ẋ1 = −x2
1 < 0 ∀x1 6= 0,

which proves global asymptotic stability.

Let us now do a backstep by doing a change of state variables, i.e. introduce ξ1 = x2−φ1(x1) =
x1 + x2, and study the two state system with z = φ2(x1, ξ1):

ẋ1 = φ1(x1) + x2 − φ1(x1) = −x1 + ξ1

ξ̇1 = ẋ2 − φ̇1(x1) = −x3
1 + φ2(x1, ξ1) + ẋ1 = −x3

1 + φ2(x1, ξ1) − x1 + ξ1.

If we for example select φ2(x1, ξ1) = x3
1 − 2ξ1, then this system can be shown to be globally

asymptotically stable with Lyapunov function V2(x1, ξ1) = V1(x1)+0.5ξ2
1 = 0.5x2

1+0.5ξ2
1 . This

Lyapunov function is clearly continuously differentiable for (x1 ξ1)
T ∈ R

2, positive definite and
only zero at the origin, as well as radially unbounded. The derivative is

V̇2(x1, ξ1) = x1ẋ1 + ξ1ξ̇1 = −x2
1 + x1ξ1 − ξ1x1 − ξ2

1 = −x2
1 − ξ2

1 < 0 ∀(x1 ξ1) 6= 0,

which proves global asymptotic stability.
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Let us do an additional backstep by doing a change of state variables, i.e. introduce ξ2 =
z − φ2(x1, ξ1) = 2x1 + 2x2 + z − x3

1, and study the complete three state system:

ẋ1 = −x1 + ξ1

ξ̇1 = −x3
1 − x1 + ξ1 + φ2(x1, ξ1) + z − φ2(x1, ξ1) = −x1 − ξ1 + ξ2

ξ̇2 = ż − φ̇2(x1, ξ1) = −z + u − 3x2
1ẋ1 + 2ξ̇1

= −z + u + 3x3
1 − 3x2

1ξ1 − 2x1 − 2ξ1 + 2ξ2.

This system can be made globally asymptotically stable if we design the controller u based
on the Lyapunov function V3(x1, ξ1, ξ2) = V2(x1, ξ1) + 0.5ξ2

2 = 0.5x2
1 + 0.5ξ2

1 + 0.5ξ2
2 . This

Lyapunov function is clearly continuously differentiable for (x1 ξ1 ξ2)
T ∈ R

3, positive definite
and only zero at the origin, as well as radially unbounded. The derivative is

V̇3(x1, ξ1, ξ2) = x1ẋ1 + ξ1ξ̇1 + ξ2ξ̇2 = −x2
1 + x1ξ1 − ξ1x1 − ξ2

1 + ξ1ξ2

+ ξ2(−z + u + 3x3
1 − 3x2

1ξ1 − 2x1 − 2ξ1 + 2ξ2),

so if we select the controller

u = +z − 3x3
1 + 3x2

1ξ1 + 2x1 + ξ1 − 3ξ2,

then

V̇3(x1, ξ1, ξ2) = −x2
1 − ξ2

1 − ξ2
2 < 0 ∀(x1 ξ1 ξ2) 6= 0

and the origin of the complete system is globally asymptotically stable. Note that when
x1 = 0, ξ1 = 0, ξ2 = 0 then it implies that the original state variables also are zero, so the
origin of the original state-space is mapped by the state transformations to the origin of the
new state-space.

4. (a) Denote the input of ∆ with v and the output with z. Then we get the transfer function from
z to v as

v = G2(1 − G1G3G2)
−1z = Gz,

since we have a SISO system with a positive feedback loop. The small gain theorem guarantees
close-loop stability for all ∆ such that

γ(∆)γ(G) < 1,

where γ denotes the gain. In this case we have

γ(G) = sup
ω

|G(iω)| = 4,

given by the lower left amplitude plot, so the system is guaranteed stable for all ∆ with
γ(∆) < K, K = 1/4. We need to assume that G is a BIBO stable linear SISO system.

(b) (i) Let us use describing function analysis to predict if the system will show sustained oscil-
lations. The describing function of a relay, u = −sgn(y), is

N(A) =
4

πA
.

The relay is an odd static non-linearity with infinite slope at the beginning so the describing
function will be real and go from infinity to zero as the amplitude A increases. We get
sustained oscillations if the loop-gain is one and phase −π:

G(iω)N(A) = −1,

i.e. if the Nyquist curve of the system intersects −1/N(A). In our case −1/N(A) covers the
negative real axis. The Nyquist curve of the system, shown in Fig. 1, clearly intersects the
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negative real axis at −1.25, with small A to the right and large to the left. The describing
function analysis therefore predicts stable oscillations. The frequency of the intersection
is given by

G(iω) =
−ωi

1 − ω2 + 0.8ωi
=

−ωi(1 − ω2 − 0.8ωi)

(1 − ω2)2 + 0.64ω2

=
−0.8ω2

ω4 − 1.36ω2 + 1
− (1 − ω2)ωi

ω4 − 1.36ω2 + 1
,

when the imaginary part is zero. This occur for ω0 = 0 and ω1 = 1. The first corresponds
to the origin and the later to the interesting intersection. The predicted period is T =
2π
ω1

= 2π. The predicted amplitude is given by

G(iω1) = − 1

N(A)
= −πA

4
⇒ A = −4G(iω1)

π
=

5

π
≈ 1.59.

Note that the describing function analysis does not provide sufficient nor necessary condi-
tions for sustained oscillations, hence this is only a prediction that needs to be verified by
for example simulations. Also note that the frequency and amplitude at the intersection
at the origin is zero so it does not correspond to any sustained oscillations, moreover, if it
did then they would be unstable.

Figure 1: The Nyquist curve of G(s) = −s
s2+0.8s+1

(blue) and the describing function of a relay (red line).

(ii) One can add an integration in the feedback loop, which gives an additional phase of −90o,
so that information about the frequency where arg(G(iω)) = −90o is obtained.

6



5. We shall consider sliding mode control of the system

ẋ1 = −2x1 −
x2

1 + x2
2

+ u

ẋ2 =
x1

1 + x2
1

(a) The dynamics on the sliding manifold is obtained by insertion of x1 = x2 in the second state
equation:

ẋ2 =
x2

1 + x2
2

.

This system is clearly unstable, since if x2 is positive then it will increase, while it will decrease
if x2 is negative. In other words, every trajectory that reaches the sliding manifold will diverge
away from the origin along the sliding manifold. The speed of divergence will however decrease
as |x2| increases.

(b) Let us introduce σ(x) := x1 + ax2, and not that (a) is a special case of this sliding manifold
with a = −1. The dynamics on the sliding manifold is obtained by insertion of x1 = −ax2 in
the second state equation:

ẋ2 =
−ax2

1 + a2x2
2

. (1)

Since sign(ẋ2) = −asign(x2), a < 0 implies that (1) is unstable and every trajectory reaching
the sliding manifold will diverge from the origin along it. If a = 0 then every point on the
sliding manifold is a stable equilibrium, i.e. every trajectory that reaches the sliding manifold
will remain at the point where it reached the sliding manifold. If a > 0 then (1) is stable
and every trajectory reaching the sliding manifold will approach the origin along it. Note that
since

ẋ1 =
−ax1

1 + x2
1

we get faster convergence (or divergence) for larger magnitudes of a.

(c) We want to make the sliding manifold S a globally attracting invariant set. This can be done
with the Lyapunov function V (x) = 0.5σ2, with σ(x) := x1 + ax2. This Lyapunov function
is clearly continuously differentiable for x ∈ R

2, positive definite and only zero on the sliding
manifold, σ(x) = 0, as well as radially unbounded. Let us now design a controller such that
V̇ < 0 ∀σ(x) 6= 0. The derivative is

V̇ (x) = σσ̇ = σ(ẋ1 + aẋ2) = σ(−2x1 −
x2

1 + x2
2

+ u +
ax1

1 + x2
1

),

so if we select the sliding mode controller

u = 2x1 +
x2

1 + x2
2

− ax1

1 + x2
1

− sign(x1 + ax2)

then

V̇ (x) = −σsign(x1 + ax2) = −|σ| < 0 ∀σ(x) 6= 0.

Hence the sliding manifold is globally asymptotically stable according to Lyapunovs theorem
for global asymptotic stability.

The equivalent control is computed from σ̇(x) = 0, with σ(x) = 0:

σ̇(x) = ẋ1 + aẋ2 = −2x1 −
x2

1 + x2
2

+ ueq +
ax1

1 + x2
1

= 0

⇒ ueq = 2x1 +
x2

1 + x2
2

− ax1

1 + x2
1

.
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