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1. Consider the system

ẋ1 = x1(1− x1 − x2)

ẋ2 = x2(x1 − x2) + u

(a) The equilibriums are given by:

x1(1− x1 − x2) = 0

x2(x1 − x2) = 0,

which gives: (0, 0), (1, 0), (0.5, 0.5). The Jacobian is

A(x1, x2) =

(
1− 2x1 − x2 −x1

x2 −2x2 + x1

)
.

Insertion of the origin and calculation of the eigenvalues gives

det (λI − A(0, 0)) =

∣∣∣∣ λ− 1 0
0 λ

∣∣∣∣ = λ2 − λ = 0

⇒λ1 = 0, λ2 = 1

The real part of the first eigenvalue is zero, so the equilibrium is non-hyperbolic
and linear analysis is insufficient. Insertion of (ε, 0), with ε > 0 small yields
ẋ1 = ε− ε2 ≈ ε, so the origin is an unstable equilibrium.

Insertion of (1, 0) and calculation of the eigenvalues gives

det (λI − A(1, 0)) =

∣∣∣∣ λ+ 1 1
0 λ− 1

∣∣∣∣ = (λ+ 1)(λ− 1) = 0

⇒λ1 = 1, λ2 = −1

The real parts are not zero, so the equilibrium is hyperbolic and the linear
analysis is valid locally. The equilibrium is a saddle point, which is unstable.

Insertion of (0.5, 0.5) and calculation of the eigenvalues gives

det (λI − A(0.5, 0.5)) =

∣∣∣∣ λ+ 0.5 0.5
−0.5 λ+ 0.5

∣∣∣∣ = λ2 + λ+ 0.5 = 0

⇒λ =
−1

2
± 1

2

√
12 − 2 = −1

2
± i

2
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x ' = x (1 - x - y)
y ' = y ( - y + x) 
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Figure 1: The phase portrait for u = 0.

The real parts are not zero, so the equilibrium is hyperbolic and the linear anal-
ysis is valid locally. The equilibrium is a stable focus, which is asymptotically
stable.

Three equilibria exists, so none of them can be globally stable.

(b) Assuming that both species are introduced they will after some time converge
towards the equilibrium at (0.5, 0.5). If only the plant eater is introduced then
it will converge to the equilibrium (1, 0).

(c) Introduction of the general linear state feedback u = k1x1 + k2x2, gives the
system

ẋ1 = x1(1− x1 − x2)

ẋ2 = x2(x1 − x2 + k2) + k1x1.

In order to have an equilibrium the second equation gives the requirement
x2(x1 − x2 + k2) + k1x1 = 0. Insertion of (1, 0) in it gives k1 = 0, so we
must select k1 = 0, i.e. the landowner may only hunt meat eaters. We
henceforth only consider hunt of meat eaters. The system has four equilib-
ria: (0, 0), (1, 0), (0, k2), (1−k2

2
, 1+k2

2
). Global stability of (1, 0) is thus impos-

sible. We note that only the later two equilibria are affected by k2. They
need to be made physically impossible, i.e. negative, which gives the condition
k2 < −1. In addition (1, 0) should be made locally asymptotically stable and
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(0, 0) unstable. Let us use Lyapunov’s indirect method. The Jacobian is

A(x1, x2) =

(
1− 2x1 − x2 −x1

x2 −2x2 + x1 + k2

)
.

Insertion of (1, 0) and calculation of the eigenvalues gives

det (λI − A(1, 0)) =

∣∣∣∣ λ+ 1 1
0 λ− 1− k2

∣∣∣∣ = (λ+ 1)(λ− 1− k2) = 0

⇒λ1 = 1 + k2, λ2 = −1

The real parts are nonzero if k2 6= −1, so the equilibrium is hyperbolic and
the linear analysis is valid locally. If k2 < −1 then the equilibrium is a stable
node. Insertion of (0, 0) and calculation of the eigenvalues gives

det (λI − A(1, 0)) =

∣∣∣∣ λ− 1 0
0 λ− k2

∣∣∣∣ = (λ− 1)(λ− k2) = 0

⇒λ1 = k2, λ2 = 1

The real parts are nonzero if k2 6= 0, so the equilibrium is hyperbolic and the
linear analysis is valid locally and it is unstable. In particular, if k2 < −1
then the equilibrium is a saddle point. We can hence select any k2 < −1, for
example u = −2x2. Note that the region of attraction covers the physically
possible set {(x1, x2)|x1 ≥ 0, x2 ≥ 0} except for the origin.

2. (a) (i) No, it is impossible for any trajectory to go from the interior point A of the
stable limit cycle to the exterior point B, since the limit cycle constitutes
the closure of an invariant set.

(ii) No, it is impossible for any trajectory to go from the interior point A of the
unstable limit cycle to the exterior point B, since the limit cycle constitutes
the closure of an invariant set.

(b) Consider the nonlinear system

ẋ1 = −x2
1 + x2

ẋ2 = −x1x2 + u

y = x2

(i) A standard choice for transformation is z1 = xi, z2 = ẋi. To avoid u
being included in the definition of our new state variables, we try z1 = x1,
z2 = −x2

1 + x2. Then x1 = z1 and x2 = z2
1 + z2. The system can then be

written as

ż1 = ẋ2 = z2

ż2 = −2x1ẋ1 + ẋ2 = +2x3
1 − 3x1x2 + u (= −z3

1 − 3z1z2 + u).

Now the state feedback

u = −2x3
1 + 3x1x2 − v

v = l1z1 + l2z2
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will linearize the system by canceling out the nonlinearities giving

ż1 = z2

ż2 = −l1z1 − l2z2.

Note that this feedback linearization works everywhere in the state space.

(ii) We first differentiate the output until we encounter the input:

y = x2

ẏ = ẋ2 = −x1x2 + u.

The input

u = +x1x2 − v
v = l1x1 + l2x2

linearizes the input-output behaviour everywhere in the state space. The
input affects the first derivative of y everywhere in the state space, so
this system has a strong relative degree of 1. The relative degree is lower
than the number of states so unobservable zero dynamics exist. When the
output and all its derivatives are zero

y = x2 = 0 ⇒ x2 = 0

ẏ = v = 0 ⇒ v = 0.

then the zero dynamics is governed by

ẋ1 = −x2
1 < 0 ∀x1 6= 0

and thus unstable.

3. (a) Lyapunov redesign of the nonlinear system

ẋ1 = 5x1x2

ẋ2 = 2x5
1 + 3u

We need to design a state feedback such that the origin becomes globally
asymptotically stable. The Lyapunov function candidate V (x) = 1

2
(x2

1 + x2
2)

is continuously differentiable for x ∈ R2, positive definite and only zero at the
origin, as well as radially unbounded. So if we can choose u such that its time
derivative is negative except at the origin, then Lyapunovs theorem for global
asymptotic stability is fulfilled. The time derivative is

V̇ (x) = x1ẋ1 + x2ẋ2 = 5x2
1x2 + 2x5

1x2 + 3x2u

so let us select

u = − 1

3x2

(5x2
1x2 + 2x5

1x2 + x2
2) = −5

3
x2

1 −
2

3
x5

1 −
1

3
x2
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then we have

V̇ (x) = −x2
2.

Unfortunately V̇ (x) = 0 when x2 = 0, i.e. on the whole x1-axis, so Lyapunovs
theorem for global asymptotic stability is not fulfilled. Let us instead use
LaSalle’s theorem for global asymptotic stability, i.e. we additionally need to
show that the origin is the only invariant set on the x1-axis. On the x1-axis
the system, including the controller, reduces to

ẋ1 = 0

ẋ2 = −5x2
1 6= 0 ∀x1 6= 0,

hence the origin constitutes the only invariant set on it. LaSalle’s theorem now
guarantees global asymptotic stability. Note that we cannot add the additional

term − x2
1

3x2
needed to use Lyapunovs theorem to the controller, since we then

would have an infinite control signal at the origin. The selected controller is
finite and works in the whole state space.

(b) Consider the system

ẋ1 = (x1 − x2)2 + (x1 − x2)x2 + u (= x2
1 − x1x2 + u)

ẋ2 = −x2 + u

(i) Back stepping cannot be applied directly since the input affects both states
and this system is hence not on strict feedback form. The states need to
be selected such that the effect of the input is mediated through a cascade
of other states, except for one state.

(ii) We need to transform the system to strict feedback form so the backstep-
ping procedure can be used to stabilize the states of the system one by
one. Let us introduce z1 = x1− x2, since ż1 = ẋ1− ẋ2 then is independent
of the input, and z2 = x2, so that the system can be written as

ż1 = ẋ1 − ẋ2 = x2
1 − x1x2 + x2 = (x1 − x2)2 + (x1 − x2 + 1)x2

= z2
1 + (z1 + 1)z2 (1)

ż2 = −z2 + u.

The inverse state transformation is x1 = z1 + z2 and x2 = z2. Note
that the selected state transformation is clearly continuously differentiable
and invertible with a continuously differentiable inverse in x ∈ R2, so it
constitutes a diffeomorphism. The behaviour of the transformed system is
therefore identical to the behaviour of the original one.
Let us start by only considering the first equation, regarding z2 = φ1(z1)
as a input to be designed:

ż1 = z2
1 + (z1 + 1)φ1(z1). (2)

Let us now use our favourite Lyapunov function V1(z1) = 0.5z2
1 to design

φ1(z1) such that the system (2) becomes globally asymptotically stable.
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This Lyapunov function is clearly continuously differentiable for z1 ∈ R,
positive definite and only zero at the origin, as well as radially unbounded.
The derivative is

V̇1(z1) = z1ż1 = z3
1 + (z2

1 + z1)φ1(z1),

so if we for example select

φ1(z1) = − 1

z2
1 + z1

(z3
1 + z2

1) = −z1,

then V̇1(z1) = −z2
1 < 0 ∀z1 6= 0 and Lyapunovs theorem for global asymp-

totic stability is fulfilled.
The system (1) can now be rewritten as

ż1 = z2
1 + (z1 + 1)φ1(z1) + (z1 + 1)[z2 − φ1(z1)]

ż2 = −z2 + u.

Let us next do a backstep by introducing ξ1 = z2 − φ1(z1) as a new state
variable, and rewrite the system as

ż1 = z2
1 + (z1 + 1)φ1(z1) + (z1 + 1)ξ1

ξ̇1 = ż2 − φ̇1(z1) = −z2 + u+ φ̇1(z1) = v,

where we also introduced the new controller v = −z2 + u − φ̇1(z1). Here
we want to design v such that the whole system is globally asymptotically
stable. If we select the Lyapunov function V2(z1, ξ1) = V1(z1) + 0.5ξ2

1 ,
then the backstepping lemma ensures that a stabilizing state feedback law
exists. This Lyapunov function is clearly continuously differentiable for
[z1 ξ1]T ∈ R2, positive definite and only zero at the origin, as well as
radially unbounded. The derivative is

V̇2(z1, ξ1) =
dV1

dz1

ż1 + ξ1ξ̇1 =
dV1

dz1

(z2
1 + (z1 + 1)φ1(z1) + (z1 + 1)ξ1) + ξ1v

= V̇1(z1) +
dV1

dz1

(z1 + 1)ξ1 + ξ1v = −z2
1 + z1(z1 + 1)ξ1 + ξ1v,

so if we for example select

v = − 1

ξ1

(z1(z1 + 1)ξ1 + ξ2) = −z1(z1 + 1)− ξ1,

then V̇2(z1, ξ1) = −z2
1 − ξ2 < 0 ∀[z1 ξ1] 6= [0 0] and Lyapunovs theorem for

global asymptotic stability is fulfilled. The origin of (1) is hence globally
asymptotically stable with the state feedback control law

u = z2 + φ̇1(z1) + v = z2 + φ̇1(z1)− z1(z1 + 1)− ξ1

= −z1(z1 + 1) + φ1(z1) + φ̇1(z1)

== −z2
1 − ż1 = −2z2

1 − (z1 + 1)z2.

Note that the control signal remains finite for all z ∈ R2, so the origin
is indeed a globally asymptotically stable equilibrium of the closed-loop
system. The origin of the original state-space is mapped by the state
transformations to the origin of the new state-space, so we have actually
stabilized the origin of the original system.
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4. (a) We have a stable linear system G(s) with a negative feedback loop containing
a static nonlinearity with gain γ(φ).

(i) In this case γ(φ) = k. The small gain theorem then guarantees close-loop
BIBO stability for all k such that

γ(φ)γ(G) < 1.

In this case we have from the Nyquist diagram

γ(G) = sup
ω
|G(iω)| ≈ 3.35,

so the system is guaranteed stable for all k with k < 1
3.35
≈ 0.3.

(ii) In this case the static nonlinearity is bounded by 0 < φ(y)/y < α and G(s)
has no poles in the right half plane. The circle criterion then guarantees
closed-loop BIBO stability if the Nyquist curve of G(s) does encircle or
intersect the circle defined by −∞ and −1/α, i.e. it does not intersect the
line −1/α = −0.5. We must require α ≤ 2.

(iii) In this case the static nonlinearity is bounded by β < φ(y)/y < 0, which is
equivalent to 0 < −φ(y)/y < −β, so we actually have a positive feedback
loop. The linear system G(s) has no poles in the right half plane, so the
circle criterion then guarantees closed-loop BIBO stability if the Nyquist
curve of G(s) is enclosed by the circle defined by the points −∞ and
−1/β, i.e. it should not intersect the line −1/β. The right most point
of the Nyquist curve is approximately 3.25, so we must require 0 > β ≥
−1/3.25 ≈ −0.3.

(b) We are asked to use describing function analysis to predict if the system has a
limit cycle, i.e. sustained oscillations. The describing function is

N(A) = A+ 3A2,

so we are dealing with an odd static non-linearity and N(A) increases as the
amplitude A increases. We get sustained oscillations if the loop-gain is one and
phase −π:

G(iω)N(A) = −1,

i.e. if the Nyquist curve of the system intersects−1/N(A). In our case−1/N(A)
covers the negative real axis. The Nyquist curve of the system, shown in Fig.
2, clearly intersects the negative real axis at −0.245, with small A to the left
and large to the right (indicated by the arrow). The describing function anal-
ysis therefore predicts unstable oscillations. The frequency of the intersection
is given by

G(iω) =
1

(iω + 1)4
=

(−iω + 1)4

(ω2 + 1)4
=

(−ω2 − 2iω + 1)2

(ω2 + 1)4

=
ω4 − 6ω2 + 1

(ω2 + 1)4
+ i

4ω(ω2 − 1)

(ω2 + 1)4
,

7



when the imaginary part is zero. This occur for ω0 = 0 and ω1 = 1. The first
corresponds to the origin and the later to the interesting intersection. The
predicted period is T = 2π

ω1
= 2π. The predicted amplitude is given by

G(iω1) = − 1

N(A)
= − 1

A+ 3A2
⇒ 3G(iω1)A2 +G(iω1)A+ 1 = 0

with G(iω1) = −0.25

A2 +
1

3
A− 4

3
= 0⇒ A = −1

6
± 7

6

as A = 1. Note that the describing function analysis does not provide sufficient
nor necessary conditions for sustained oscillations, hence this is only a predic-
tion that needs to be verified by for example simulations. Also note that the
frequency at the intersection at the origin is zero and amplitude is −1±i

√
11

6
, so

it does not correspond to any sustained oscillations.
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Figure 2: The Nyquist curve of G(s) = 1
(s+1)4

(blue) and the describing function

−1/N(A) = −1
A+3A2 (red line).

5. Optimal control
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(a) Heating problem formulated as an optimal control problem, using given vari-
ables

min
Q(t)

∫ tf

0

Q(t)2dt

s.t.
dT

dt
(t) = − ε

cP
(T (t)− 20oC) +

1

cP
Q(t)

T (0) = 20oC, T (tf ) = 220oC, tf = 3600s.

It is however preferable to convert all variables and coefficients into dimension-
less quantities (no units), by scaling them with some suitable coefficients. Let
us select these scaling coefficients such that all stated initial value conditions
become zero and all stated final value conditions one. We therefore introduce
the coefficients tf = 3600s, Qf = 1kW , Ti = 20oC, Tf = 220oC and variables

τ = t
tf

u(τ) = Q(t)
Qf

x(τ) = T (t)−Ti

Tf−Ti

⇔
t = tfτ = τ3600s
Q(t) = Qfu(τ) = u(τ)1kW
T (t) = (Tf − Ti)x(τ) + Ti = x(τ)200oC + 20oC.

The heat equation can now be rewritten as

dx

dτ
(τ) =

1

Tf − Ti
dT

dt

dt

dτ
= −εtf

cP︸ ︷︷ ︸
=a

T (t)− Ti
Tf − Ti︸ ︷︷ ︸

=x(τ)

+
tfQf

cP (Tf − Ti)︸ ︷︷ ︸
=b

u(τ)

x(0) = 0, x(1) = 1,

where we introduced the new dimensionless coefficients a = − εtf
cP

= −36 and

b =
tfQf

cP (Tf−Ti)
= 1800. And the objective can be written as

Ξ = min
Q(t)

∫ tf

0

Q(t)2dt = min
u(τ)

∫ 1

0

u(τ)2Q2
f tfdτ = Q2

f tf min
u(τ)

∫ 1

0

u(τ)2dτ︸ ︷︷ ︸
=Θ

.

We may as well minimise Θ since the original objective merely is a constant
times it, i.e. Ξ = Q2

f tfΘ = Θ3600k2W 2s = ΘMW 2h. The optimal control
problem in dimensionless quantities is hence

min
u(t)

∫ 1

0

u(τ)2dτ

s.t.
dx

dτ
(τ) = ax(τ) + bu(τ) (3)

x(0) = 0, x(1) = 1.

(b) With no heat loss it is trivial to see that we need exactly Qtot = 200oC ·
1kJ/oC = 200kJ to bring the oven from 20oC to 220oC. When or how we heat
the oven would not matter if it was not for Q(t) being squared in the objectivity
function. The square implies that it is optimal to use constant heating with
Q(t) = Qtot/tf = 200kJ

3600s
= 1

18
kW .
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(c) We use the general Pontryagin’s maximum principle.

– First we identify the necessary functions from (3):

L(u(τ)) = u(τ)2, φ = 0

f(x(τ), u(τ)) = ax(τ) + bu(τ)

Ψ(x(τf )) = x(1)− 1.

– Second we form the Hamiltonian

H(x, u, λ, n0) = n0L(x, u) + λTf(x, u) = n0u(τ)2 + aλ(τ)x(τ) + bλ(τ)u(τ).

– Third we minimize the Hamiltonian in order to find the optimal u∗(τ)

H(x∗, u∗, λ, n0) = min
u(τ)

H(x∗, u, λ, n0).

We have no constraint on the input so we will find the optimum where the
derivative is zero

∂H

∂u
(x∗, u, λ, n0) = 2n0u(τ) + bλ(τ) ≡ 0 ⇒ u∗(τ) = −bλ(τ)

2n0

.

In order to ensure that we obtain a minimum we must require that the
second derivative is positive

∂2H

∂u2
(x∗, u, λ, n0) = 2n0 > 0 ⇒ n0 > 0.

Note that the requirement (n0, µ
T ) 6= 0 is hence already fulfilled and µ

may take any value.

– Fourth we solve the adjoint and system equations to obtain λ(τ) and x(τ).
The adjoint equations are

λ̇(τ) = −∂H
∂x

(x∗, u∗, λ, n0) = −aλ(τ)

λ(τf ) = µ.

with solution

λ(τ) = Ae−aτ , A = µeaτf = µea ⇒ λ(τ) = µea(1−τ).

Note that the final value condition merely enables us to express the con-
stant A using the other unknown constant µ.
The system equations are

dx

dτ
(τ) = ax(τ) + bu∗(τ) = ax(τ)− b2ea

2

µ

n0

e−aτ

x(0) = 0, x(1) = 1,

with solution

x(τ) =
b2ea

4a

µ

n0

e−aτ +Beaτ .
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Note that both µ and n0 are unknown at this point and that we only will
be able to determine the ratio of them from the initial and final value
conditions

b2ea

4a

µ

n0

+B = 0 ⇒ B = −b
2ea

4a

µ

n0

b2ea

4a

µ

n0

e−a +Bea = 1 ⇒ b2ea

4a

µ

n0

(
e−a − ea

)
= 1.

Let us now introduce

ξ =
1

e−a − ea
=

1

e36 − e−36
≈ 2.32 · 10−16,

since we then have µ
n0

= 4a
b2ea ξ ≈ −4.44 · 10−5 and B = −ξ. The optimal

scaled control signal is thus

u∗(τ) = −2
a

b
ξe−aτ = −2

a

b

e−aτ

e−a − ea
= 0.04

e36τ

e36 − e−36

and the optimal scaled temperature is

x∗(τ) = ξ(e−aτ − eaτ ) =
e−aτ − eaτ

e−a − ea
=
e36τ − e−36τ

e36 − e−36
.

(d) The heat loss when the temperature of the oven has reached 220oC is dx
dt

=
− ε
cP

200oC = −0.01kW/oC · 200oC = −2kW , so with Qmax = 2kW we can
barely maintain the required temperature. This temperature can therefore not
be reached in finite time and we conclude that the optimal control problem is
infeasible.

11


