
AUTOMATIC CONTROL

KTH

Nonlinear Control, EL2620 / 2E1262

Exam 14.00–19.00 December 16, 2009

Aid:

Lecture-notes from the nonlinear control course and textbook from the ba-
sic course in control (Glad, Ljung: Reglerteknik, or similar approved text) or
equivalent basic control book if approved by the examiner beforehand. Math-
ematical handbook (e.g. Beta Mathematics Handbook). Other textbooks,
exercises, solutions, calculators, etc. are not allowed.

Observandum:

• Name and social security number (personnummer) on every page.

• Only one solution per page.

• Do only write on one side per sheet.

• Each answer has to be motivated.

• Specify the total number of handed in pages on the cover.

• The exam consists of five problems worth a total of 50 credits

Grading:

Grade A: ≥ 43, Grade B: ≥ 38

Grade C: ≥ 33, Grade D: ≥ 28

Grade E: ≥ 23, Grade Fx: ≥ 21

Results:

The results will be available 2010-01-15 at STEX, Studerandeexpeditionen,
Osquldasv. 10.

Responsible: Elling W. Jacobsen 0703 722 244

Good Luck!
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1. Consider an isolated island in which two species are introduced by the landowner.
One species is a plant eater, the other species is a meat eater which prey on the first
species. Denote the population of the plant eaters x1 and the population of meat
eaters x2. A simple model of the evolution of the two species is then

ẋ1 = x1(1 − x1 − x2)

ẋ2 = x2(x1 − x2) + u

(a) Assume u = 0. Find and classify all equilibria and determine if they are
unstable, stable or asymptotically stable. Can you say something about the
global stability of any of the equilibria? (6p)

(b) Discuss what will happen with the populations on the island after some time
when u = 0. (2p)

(c) One day the landowner decides that he wants to get rid of the meat eaters by
hunting them down. Propose a hunting strategy, corresponding to a linear feed-
back control law u = Kx, that will make the equilibrium (1, 0) asymptotically
stable. (2p)
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2. (a) A second order time-invariant system has a limit cycle as indicated in the figure
below.

x

x

A

B

x

x
2

1

(i) Assume that the limit cycle is stable and that the system is initiated in
point A. Is it possible for the system trajectory to pass through point B?
Motivate your answer! (2p)

(ii) Assume that the limit cycle is unstable. Is it then possible for the system
to move from point A to point B? Motivate! (1p)

(b) Consider the nonlinear system

ẋ1 = −x1(t)
2 + x2(t)

ẋ2 = −x1(t)x2(t) + u(t)

y(t) = x2(t)

(i) Determine a state transformation and a state feedback that results in a
linear state space system. (3p)

(ii) Determine a state feedback that makes the system linear from the input
u to the output y. Discuss whether there will be problems with unstable
zero dynamics with this control. (4p)
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3. (a) A mechanical system with two states is described by the model

ẋ1 = 5x1(t)x2(t)

ẋ2 = 2x1(t)
5 + 3u(t)

Use Lyapunov based methods to a find a feedback control law u = c(x) such
that the origin becomes globally asymptotically stable.

Hint: you may try V (x) = 1

2
(x2

1
+ x2

2
) as a Lyapunov function candidate. (5p)

(b) Consider the system

ẋ1 = (x1 − x2)
2 + (x1 − x2)x2 + u (= x2

1
− x1x2 + u)

ẋ2 = −x2 + u

We want to use the principle of backstepping to design a stabilizing controller.

(i) Explain why the method of backstepping does not apply directly to the
given system. (1p)

(ii) Introduce a state transformation so that backstepping can be applied, and
design a stabilizing control based on backstepping for the transformed
system.

Hint: note that ẋ1 − ẋ2 will not contain u(t). (4p)
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(a) Consider a feedback loop consisting of a stable linear system G(s) and a static
nonlinearity φ(·) as shown in the block diagram above. The Nyquist diagram
for G is shown on the next page.

(i) Assume that the static nonlinearity is sector bounded −k < φ(y)/y < k.
What is the largest k for which the small gain theorem guarantees closed-
loop stability? (2p)

(ii) Assume now that the sector bound is 0 < φ(y)/y < α. What is the largest
α for which the circle criterion guarantees closed-loop stability? (2p)

(iii) Consider the case where the nonlinearity provides a negative gain, i.e.,
β < φ(y)/y < 0. For which β will the circle criterion guarantee closed-
loop stability? (2p)

(b) Consider again the feedback loop above but assume now that

G(s) =
1

(s + 1)4

and that the nonlinear function φ(·) has the describing function

N(A) = A + 3A2

Will the describing function method predict a limit cycle? If so, determine the
predicted amplitude, period and stability of the limit cycle. (4p)
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Figure 1: Nyquist diagram for problem 4a.
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5. We shall consider optimal heating of a bakers oven. The aim is to raise the temper-
ature from 20◦C to 220◦C in 1 hour while keeping the total energy consumption as
small as possible. The dynamics of the oven can be described by a first order model

cP

dT

dt
= −ǫ(T (t) − 20) + Q(t)

where cP is the heat-capacity of the oven in [kJ/◦C], ǫ is the heat-loss coefficient in
kW/◦C and Q is the heating in kW . The heat-capacity is assumed constant and is
given by cP = 1 kJ/◦C.

In order to reduce the total energy consumption we aim to minimize
∫

Q2dt

(a) Formulate the heating problem given above as an optimal control problem.
(2p)

(b) What is the solution to the optimal control problem when there is no heat loss,
i.e., ǫ = 0. (2p)

(c) Assume the heat-loss coefficient ǫ = 0.01kW/◦C. Solve the optimal control
problem for this case. (5p)

(d) Consider that the maximum heating is Qmax = 2kW . Is the optimal control
problem feasible then? Assume ǫ = 0.01kW/◦C. (1p)
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