
Answers/solutions to the exam in Nonlinear Control
EL2620, 2010-12-17

1. (a) Equilibria for ẋ = 0, i.e., for x2 = 0 and sinx1 = 0, or x1 = kπ
where k is an integer. Linearization about equilibria x∗ yields

A =
(

0 1
− cos(x∗1) 4x3∗

2 − 3x2
2

)
and we get the characteristic equation λ2 = 1 when k is odd
and λ2 = −1 when k is even. Thus, we have eigenvalues −1, 1
for k odd, corresponding to a saddle point, and eigenvalues ±i
for k even, corresponding to a center for the linearized system.
The equilibria for k odd are hyperbolic with positive eigenvalues,
hence locally unstable, while we the equilibria for k even are non-
hyperbolic and hence we can not deduce the local stability from
the linearization.

(b) Let us consider some small region Ω around the origin, e.g. Ω =
{(x1, x2)|x2

1 + x2
2 < 1}. Within Ω we have that V ≥ 0 and V = 0

only at the origin. Furthermore

V̇ = sinx1ẋ1+x2ẋ2 = x2 sinx1−x2 sinx1+x4
2(x2−1) = x4

2(x2−1)

which is negative semidefinite in Ω and V̇ = 0 only when x2 = 0.
Thus, Ω is invariant. From the differential equation for x2 when
x2 = 0, ẋ2 = − sinx1 and hence the only invariant set within
x2 = 0 in Ω is the origin. Thus, according to LaSalle Invariant
Set Theorem the origin is locally asymptotically stable.

(c) The control law u = sinx1 − (x2 − 1)x3
2 − x1 − 2x2 will make

the system linear and with eigenvalues in −1. Hence, globally
asymptotially stable.

2. (a) (i) with u1 we can simply cancel the nonlinearity with u1 =
−r0/(K0 + xn2 ) + v. Note that the control becomes unbounded if
xn2 = −K0, and hence we can not make the system linear in this
point with the chosen control. (ii) With u2 we need to make a
state transformation first, and choose z1 = x1 and z2 = ẋ1, which
yields

ż1 = z2

ż2 =
−nxn−1

2 r0
(K0 + xn2 )2

(K2x1 −K3x2 + u2)−K1z1

Thus, by choosing u2 = −K2x1 +K3x2 we obtain a linear system
in the states z. Also, in this case is there a singularity for xn2 =
−K0.
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(b) (i) We have ẏ = ẋ2 = K2x1−K3x2, and since u1 does not appear
explicitly we have a relative degree two. Differentiating again
yields ÿ = K2ẋ1 −K3ẋ2 or

ÿ = K2
r0

K0 + xn2
−K2K1x1 +K2u1 −K3K2x1 +K2

3x2

and hence the control

u = − r0
K0 + xn2

+ (K1 +K3)x1 −
K32

K2
x2 +

v

K2

yields the linear system
ÿ = v

Since the relative degree is equal to the number of states there
are no zero dynamics.
(ii) We have ẏ = K2x1−K3x2 +u2 and hence the relative degree
is one in this case. The control u2 = −K2x1 + K3x2 + v yields
the linear system

ẏ = v

In this case the zero dynamics is of order one and is trivially
given by the dynamics of x1 since x2 is the output. From the
differential equation for x1 we see that, with x2 constant, x1 will
diverge exponentially if K1 < 0 while it will converge exponen-
tially if K1 > 0. Thus, there will be problems with unstable zero
dynamics if K1 < 0.

3. (a) Since G(s) and k are linear functions, γ(·) must contain all non-
linearities in the system, i.e., γ(·) = f(·). The input to γ is x3

and hence the output of G(s) is y = x3. The input to G(s) is
u = kf(x3). Hence we derive

G(s) =
1

s(s+ 1)2
; γ(y) =

y

1 + y2

(b) Since G(s) contains a pole in s = 0 it is not BIBO stable, and
hence the Small Gain Theorem can not be applied to deduce any
information on the stability of the loop as such (of course, one
may rewrite the system to apply the Small Gain Theorem, as
is done in the derivation of the Circle Criterion, but that is not
considered here).

(c) The nonlinearity γ is sector bounded with an upper bound k2 = 1
(slope at origin) and k1 = 0 (slope at infinity). Since G(s) is
marginally stable we can apply the Circle criterion. Note that
the Circle Criterion is based on a negative feedback loop, i.e.,
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with a −1 in the loop which is not present in the block-diagram
here. The results hence apply to −1 · k. The Circle Criterion
states that G(iω) should not have a real part less than −1/(k2).
We have

G(iω) =
−i/omega
−ω2 + 2iω + 1

=
−2 + i

ω (ω2 − 1)
4ω2 + (ω2 − 1)2

from which it is easily seen that the minimum real part of G
is obtained for ω = 0 for which <G = −2. Hence, the Circle
Criterion gives that the system is guaranteed stable if k > −0.5.

(d) Since the nonlinearity is static and odd, the describing function
N(A) is real valued. The maximum value of N(A) = 1 for small
A and then it decreases to N(A) = 0 for large A. Thus, since
G(s) is marginally stable, the method with describing functions
will predict a sustained oscillation if −kG(iω) crosses the real
axis between [−∞,−1]. From G(iω) in (c) above, we find that
G is real for ω = 1, for which −kG = k0.5, thus we find that
the Nyquist curve for G crosses −1/N(A), predicting sustained
oscillations, when k < −2

4. (a) The system can be written on the strict feedback form

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)u

with f1 = x2
1, g1 = x1, f2 = −2x2

2. Applying backstepping we
start with V1(x1) = x2

1 ⇒ V̇1 = x1ẋ1 = x3
1+x2

1φ(x1). By choosing
φ(x1) = −x1 − x2

1 we get V̇1 = −x4
1. Thus, with x2 = φ(x1) the

function V1 is a radially unbounded Lyapunov function for the
first equation. The Backstepping Lemma now yields

u1 = f2 + g2u =
dφ

dx1
(f1 + g1x2)− dV

dx1
g1 − (x1 − φ(x1))

which yields the control

u = −2x3
1 − 3x2

1 − x1x2 − 2x2
1x2 − x2 − x1 + 2x2

2

and the corresponding Lyapunov function showing global asymp-
totic stability of the origin is

V = V1 + (x2 − φ(x1))2/2 =
1
2

(2x2
1 + x2 + x1)

(b) (i) With x2 = −ax1 we get ẋ1 = x2
1 − ax2

1 = (1 − a)x2
1, which

will make x1 (and hence x2) diverge to infinity if (1− a) > 0 and
x1(0) > 0 or if (1− a) < 0 and x1(0) < 0.
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(ii) Considering ẋ1 = x1(x1 + x2), we see that we can choose
x2 = −x1 − x2

1 to make ẋ1 = −x3
1 which will converge to x1 = 0

for any initial condition. Furthemore, with x2 = −x1−x2
1 we get

that x2 will converge to the origin when x1 does so. Thus, the
sliding manifold

S = {(x1, x2)|σ(x) = x2 + x1 + x2
1 = 0}

is a suitable manifold to force the system onto.
(iii) We choose the Lyapunov candidate V = 1

2σ
2 ≥ 0 which

yields

V̇ = σσ̇ = σ(ẋ1(1+2x1)+ ẋ2) = σ((1+2x1)(x2
1 +x1x2)−2x2

2 +u)

To make V̇ < 0 except at σ = 0 we choose the control

u = −(1 + 2x1)(x2
1 + x1x2) + 2x2

2 −Ksign(σ)

where K > 0.

5. (a) The necessary conditions are given by Pontryagin’s maximum
principle (lec 12, slide 8). This is an infinite time problem where
the time is considered fixed. We introduce the Hamiltonian

H(x,w, u, λ) =
1
2

(xTQx+uTRu−γ2wTw)+λT (Ax+B1w+B2u).

(1)
The first condition is

min
w,u

H(x∗, w, u, λ) = H(x∗, w∗, u∗, λ), (2)

where the costate λ is given by the adjoint equation, which is the
second condition,

λ̇ = −∂H(x∗, w∗, u∗, λ)T

∂x
, λ(∞) = 0. (3)

The third condition is given by the system equation

ẋ = Ax+B1w +B2u.

We do not have any constraint on the disturbance or control
input, so the optimum is given by the first order conditions

∂H

∂u
= 0⇔ u = −R−1BT

2 λ

∂H

∂w
= 0⇔ w =

1
γ2
BT

1 λ.
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Insertion of these in the system equation, gives the closed-loop
system

ẋ = Ax+B1
1
γ2
B1B

T
1 λ−B2R

−1BT
2 λ,

while the adjoint equation is

λ̇ = −Qs−ATλ, λ(∞) = 0. (4)

These two together gives[
ẋ

λ̇

]
=

[
A 1

γ2B1B
T
1 −B2R

−1BT
2

−Q −AT

] [
x
λ

]
(5)

from which we can solve x and λ.

(b) Replace λ by Px, and λ̇ by Pẋ in (4). Multiply the first equation
by P and you get the requirement

PAx+ P (
1
γ2
B1B

T
1 −B2R

−1BT
2 )Px = −Qx−ATPx, (6)

which only is fulfilled for all x if

ATP + PA+Q+ P (
1
γ2
B1B

T
1 −B2R

−1BT
2 )P = 0.
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