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1. (a) Unique equilibrium z; = 0,29 = 0, with Jacobian A = [0 1; —1 1] and eigen-

values A\(A) = % + z‘/Tg Thus, unstable focus. The local phase portrait around
the origin is a outward directed spiral.

(b) We have
V = 2mydy + 2m9diy = 22129 + 209(—xy + 2o(1 — 22 — 222) = 222(1 — 22 — 222)

At the level curve 22 4+ 23 = 0.5 we get V = 223(0.5 — 23) and since 23 < 0.5
we get that ¥V > 0 and hence all trajectories point outwards or parallell to the
level curve. At the level curve 22 + 22 = 1 we get V = —4a < 0 and hence
all tjactories point inwards or parallell. Thus, we have shown that the region
is invariant.

(c) Since this is a planar system and the region in (b) is invariant and does not
contain any equilibrium points, according to (a), there must be a stable limit
cycle within the region

2. (a) (i) Introduce =1 = y,x2 = ¢. The Jacobian becomes A = [0 1;—c — a — b).
The characteristic equation is A + (a 4+ b)A + ¢ = 0. The eigenvalues have
strictly negative real part if @ > 0 or b > 0 and hence the equlibrium is stable
by Lyapunovs indirect method. For a = b = 0 we have purely imaginary
eigenvalues and we therefore employ Lyapunovs direct method and try the
proposed Lyapunov candidate. For ¢ > 0 we have that V geq0 and zero only at
the equilibrium point, with V = csinzyz5 + xo(—(a+beosxy)ry — csinxy) =
—x3(a + beoszy) < 0. Hence, the equilibrium is stable is @ > b > 0.(ii) With
a > b > 0 we can show asymptotic stability using Lyapunovs indirect method.
Alternatively it can be shown with the Lyapunov function above and LaSalle.

(b) To avoid differentiation of u we try the transformation z; = xs, 25 = @5. This
yields 2, = 2y and 2y = &y — 62309 = —2% + 29 +u — 6232, + 1225. Now choose
u = ¢(z,v) such that z, = v.

3. (a) The proposed Lyapunov candidate is strictly positive for K > 0 and all ¢, ¢
except at the equilibrium ¢ = r,¢ = 0 where V' = 0. The time derivative of V'
is

. 1 ..
V= M+ 5N + K(g— )i

Inserting the expression for M¢ and the control law, and using M = 2C, we
get .
V == qu2



which is strictly negative for K; < 0 except for ¢ = 0. To show asymptotic
stability we consider the case when V=0, corresponding to ¢ = ¢ = 0. From
the equation of motion with the control law inserted we get K (r — ¢) = 0 and
hence the only invariant solution for which ¢ = 0 is the equilibrium point ¢ = 7,
and hence have asymptotic tracking according to LaSalle’s theorem.

With a gravitational force g # 0 we get

V = Kui® — 49(q)

and we can no longer guarantee V < 0. By adding the gravitational term to
the control such that

Tu = K(r —q) + Kag + 9(q)
we can guarantee asymptotic tracking (but in a somewhat unrobust fashion

since we require exact cancellation of the gravitational term).

To make the dynamics linear we specify the closed-loop
Gg="y
which implies the control law

7w = M(q)7, + C(q,4)q + 9(q)

1 1
G = = — 3
(5) s(s24+s+1)"7 ¢ 3°
The static nonlinearity is odd and hence the describing function is real. The
first Fourier coefficient

AS 2m 3

A
_ 1 4 —_
by = 3 ), sin(0)*do 1

and the describing function is

A2

N(A) =5

The describing function is real and hence —1/N(A) resides on the negative real
axis, with —1/N(A) - —oo0 as A — 0 and —1/N(A) — 0 as A — oco. Thus,
we seek frequencies for which G(iw) is real and negative. The imaginary part

of G is

—(1-w?)
Im G =
T (I —w)? + o2
and hence w = 1 gives crossing with negative real axis. We get G(il) = —1, and

—1/N(A) = 1 yields A = 2. Thus, we predict an oscillation with amplitude 2
and period 7" = 27 /w = 6.28. Since a descreasing A will move the —1/N(A)
point outside the Nyquist curve, the oscillation should be unstable.



D.

(a)

Input-output linearization with y = xy,
y:.i'l :—$%+$1$2+u

and hence the controller u = xf = 1129 + v yields

y = 1v

S

Now the P=controller V = K(R —Y) yields

K
s+ K

and hence K = 1/7 yields the desired closed-loop. Since the relative order is
1 and the state dimension is 2 we have zero dynamics, corresponding to the
dynamics when forcing y = 0. This corresponds to

Ztg = ZEQ(JI% — 1)

and we see that we get divergence, or instability, when |zs| > 1. Thus, we may
experience instability in the state x5 which furthermore is unobservable in the
output.

On the sliding manifold ¢ = 1 + azs = 0 and &7 = —aZ,. Inserting this in the
differential equation for x5 yields

iy =25+ (a — 1)y

and the linear part is stable if @ < 1. Thus, 3 (and hence x;) will not converge
to the origin if |z5| is sufficiently large. To avoid this problem we cancel the z3
term by employing

0:x1+ax2+bx§

and choose b > 1.

The Lyapunov candidate V = %(72 yields
V = 0@ + aby + b322iy) = o(—2% + 2129 +u + (a + 3bx3) (25 — 29 — 21))
The control law
u =13 — 1179 — (a + 3bx3) (73 — 19 — 1) — sign (o)

ensures V < 0 when o # 0 and hence will make the sliding manifold globally
attracting.



