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1. (a) Unique equilibrium x1 = 0, x2 = 0, with Jacobian A = [0 1;−1 1] and eigen-

values λ(A) = 1
2
± i

√
3
2

. Thus, unstable focus. The local phase portrait around
the origin is a outward directed spiral.

(b) We have

V̇ = 2x1ẋ1 + 2x2ẋ2 = 2x1x2 + 2x2(−x1 + x2(1− x21 − 2x22) = 2x22(1− x21 − 2x22)

At the level curve x21 + x22 = 0.5 we get V̇ = 2x22(0.5 − x22) and since x22 ≤ 0.5
we get that V̇ ≥ 0 and hence all trajectories point outwards or parallell to the
level curve. At the level curve x21 + x22 = 1 we get V̇ = −4x42 ≤ 0 and hence
all tjactories point inwards or parallell. Thus, we have shown that the region
is invariant.

(c) Since this is a planar system and the region in (b) is invariant and does not
contain any equilibrium points, according to (a), there must be a stable limit
cycle within the region

2. (a) (i) Introduce x1 = y, x2 = ẏ. The Jacobian becomes A = [0 1;−c − a − b].
The characteristic equation is λ2 + (a + b)λ + c = 0. The eigenvalues have
strictly negative real part if a > 0 or b > 0 and hence the equlibrium is stable
by Lyapunovs indirect method. For a = b = 0 we have purely imaginary
eigenvalues and we therefore employ Lyapunovs direct method and try the
proposed Lyapunov candidate. For c > 0 we have that V geq0 and zero only at
the equilibrium point, with V̇ = c sinx1x2 + x2(−(a + b cosx1)x2 − c sinx1) =
−x22(a + b cosx1) ≤ 0. Hence, the equilibrium is stable is a ≥ b ≥ 0.(ii) With
a > b ≥ 0 we can show asymptotic stability using Lyapunovs indirect method.
Alternatively it can be shown with the Lyapunov function above and LaSalle.

(b) To avoid differentiation of u we try the transformation z1 = x2, z2 = ẋ2. This
yields ż1 = z2 and ż2 = ẋ1− 6x22ẋ2 = −x21 +x2 +u− 6x22x1 + 12x52. Now choose
u = c(x, v) such that ż2 = v.

3. (a) The proposed Lyapunov candidate is strictly positive for K > 0 and all q, q̇
except at the equilibrium q = r, q̇ = 0 where V = 0. The time derivative of V
is

V̇ = q̇Mq̈ +
1

2
q̇2Ṁ +K(q − r)q̇

Inserting the expression for Mq̈ and the control law, and using Ṁ = 2C, we
get

V̇ = Kdq̇
2

1



which is strictly negative for Kd < 0 except for q̇ = 0. To show asymptotic
stability we consider the case when V̇ = 0, corresponding to q̇ = q̈ = 0. From
the equation of motion with the control law inserted we get K(r − q) = 0 and
hence the only invariant solution for which q̇ = 0 is the equilibrium point q = r,
and hence have asymptotic tracking according to LaSalle’s theorem.

(b) With a gravitational force g 6= 0 we get

V̇ = Kdq̇
2 − q̇g(q)

and we can no longer guarantee V̇ ≤ 0. By adding the gravitational term to
the control such that

τu = K(r − q) +Kdq̇ + g(q)

we can guarantee asymptotic tracking (but in a somewhat unrobust fashion
since we require exact cancellation of the gravitational term).

(c) To make the dynamics linear we specify the closed-loop

q̈ = τv

which implies the control law

τu = M(q)τv + C(q, q̇)q̇ + g(q)

4. (a)

G(s) =
1

s(s2 + s+ 1)
; φ =

1

3
z3

(b) The static nonlinearity is odd and hence the describing function is real. The
first Fourier coefficient

b1 =
A3

3π

∫ 2π

0

sin(θ)4dθ =
A3

4

and the describing function is

N(A) =
A2

4

(c) The describing function is real and hence −1/N(A) resides on the negative real
axis, with −1/N(A) → −∞ as A → 0 and −1/N(A) → 0 as A → ∞. Thus,
we seek frequencies for which G(iω) is real and negative. The imaginary part
of G is

Im G =
−(1− ω2)

ω((1− ω)2 + ω2

and hence ω = 1 gives crossing with negative real axis. We get G(i1) = −1, and
−1/N(A) = 1 yields A = 2. Thus, we predict an oscillation with amplitude 2
and period T = 2π/ω = 6.28. Since a descreasing A will move the −1/N(A)
point outside the Nyquist curve, the oscillation should be unstable.
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5. (a) Input-output linearization with y = x1,

ẏ = ẋ1 = −x21 + x1x2 + u

and hence the controller u = x21 = x1x2 + v yields

Y =
1

s
V

Now the P=controller V = K(R− Y ) yields

Y =
K

s+K
R

and hence K = 1/τ yields the desired closed-loop. Since the relative order is
1 and the state dimension is 2 we have zero dynamics, corresponding to the
dynamics when forcing y = 0. This corresponds to

ẋ2 = x2(x
2
2 − 1)

and we see that we get divergence, or instability, when |x2| > 1. Thus, we may
experience instability in the state x2 which furthermore is unobservable in the
output.

(b) On the sliding manifold σ = x1 +ax2 = 0 and ẋ1 = −aẋ2. Inserting this in the
differential equation for x2 yields

ẋ2 = x32 + (a− 1)x2

and the linear part is stable if a < 1. Thus, x2 (and hence x1) will not converge
to the origin if |x2| is sufficiently large. To avoid this problem we cancel the x32
term by employing

σ = x1 + ax2 + bx32

and choose b ≥ 1.

(c) The Lyapunov candidate V = 1
2
σ2 yields

V̇ = σ(ẋ1 + aẋ2 + b3x22ẋ2) = σ(−x21 + x1x2 + u+ (a+ 3bx22)(x
3
2 − x2 − x1))

The control law

u = x21 − x1x2 − (a+ 3bx22)(x
3
2 − x2 − x1)− sign(σ)

ensures V̇ < 0 when σ 6= 0 and hence will make the sliding manifold globally
attracting.
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