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EL2620 Nonlinear Control

Lecture 14

• Summary and repetition

• Spring courses in control

• Master thesis projects
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Exam

• Regular written exam (in English) with five problems

• Sign up on course homepage

• You may bring lecture notes, Glad & Ljung “Reglerteknik”, and
TEFYMA or BETA
(No other material: textbooks, exercises, calculators etc. Any
other basic control book must be approved by me before the
exam.).

• See homepage for old exams
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Question 1
What’s on the exam?

• Nonlinear models: equilibria, phase portaits, linearization and stability

• Lyapunov stability (local and global), LaSalle

• Circle Criterion, Small Gain Theorem, Passivity Theorem

• Compensating static nonlinearities

• Describing functions

• Sliding modes, equivalent controls

• Lyapunov based design: back-stepping

• Exact feedback linearization, input-output linearization, zero dynamics

• Nonlinear controllability

• Optimal control
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Question 2
What design method should I use in practice?

The answer is highly problem dependent. Possible (learning)
approach:

• Start with the simplest:

– linear methods (loop shaping, state feedback, . . . )

• Evaluate:

– strong nonlinearities (under feedback!)?

– varying operating conditions?

– analyze and simulate with nonlinear model

• Some nonlinearities to compensate for?

– saturations, valves etc

• Is the system generically nonlinear? E.g, ẋ = xu
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Question 3
Can a system be proven stable with the Small Gain Theorem and
unstable with the Circle Criterion?

• No, the Small Gain Theorem, Passivity Theorem and Circle
Criterion all provide only sufficient conditions for stability

• But, if one method does not prove stability, another one may.

• Since they do not provide necessary conditions for stability, none
of them can be used to prove instability.
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Question 4

Can you review the circle criterion? What about k1 < 0 < k2?
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The Circle Criterion

y

k1y

k2y f(y)

− 1
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− 1

k2
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Theorem Consider a feedback loop with y = Gu and
u = −f(y). Assume G(s) is stable and that

k1 ≤ f(y)/y ≤ k2.

If the Nyquist curve of G(s) stays on the correct side of the circle
defined by the points −1/k1 and −1/k2, then the closed-loop
system is BIBO stable.
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The different cases
Stable system G

1. 0 < k1 < k2: Stay outside circle

2. 0 = k1 < k2: Stay to the right of the line Re s = −1/k2

3. k1 < 0 < k2: Stay inside the circle

Other cases: Multiply f and G with −1.

Only Case 1 and 2 studied in lectures. Only G stable studied.
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Question 5

Please repeat antiwindup
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Tracking PID
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Antiwindup—General State-Space Model
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Choose K such that F − KC has stable eigenvalues.
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Question 6

Please repeat Lyapunov theory
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Stability Definitions
An equilibrium point x = 0 of ẋ = f(x) is

locally stable , if for every R > 0 there exists r > 0, such that

‖x(0)‖ < r ⇒ ‖x(t)‖ < R, t ≥ 0

locally asymptotically stable , if locally stable and

‖x(0)‖ < r ⇒ lim
t→∞

x(t) = 0

globally asymptotically stable , if asymptotically stable for all
x(0) ∈ R

n.
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Lyapunov Theorem for Local Stability
Theorem Let ẋ = f(x), f(0) = 0, and 0 ∈ Ω ⊂ R

n. Assume that
V : Ω → R is a C1 function. If

• V (0) = 0

• V (x) > 0, for all x ∈ Ω, x 6= 0

• V̇ (x) ≤ 0 along all trajectories in Ω

then x = 0 is locally stable. Furthermore, if

• V̇ (x) < 0 for all x ∈ Ω, x 6= 0

then x = 0 is locally asymptotically stable.
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Lyapunov Theorem for Global Stability
Theorem Let ẋ = f(x) and f(0) = 0. Assume that V : R

n → R

is a C1 function. If

• V (0) = 0

• V (x) > 0, for all x 6= 0

• V̇ (x) < 0 for all x 6= 0

• V (x) → ∞ as ‖x‖ → ∞

then x = 0 is globally asymptotically stable.
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LaSalle’s Theorem for Global Asymptotic
Stability

Theorem: Let ẋ = f(x) and f(0) = 0. If there exists a C
1 function

V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x 6= 0

(3) V̇ (x) ≤ 0 for all x

(4) V (x) → ∞ as ‖x‖ → ∞

(5) The only solution of ẋ = f(x) such that V̇ (x) = 0 is x(t) = 0
for all t

then x = 0 is globally asymptotically stable.
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LaSalle’s Invariant Set Theorem
Theorem Let Ω ∈ R

n be a bounded and closed set that is invariant
with respect to

ẋ = f(x).

Let V : Rn → R be a C1 function such that V̇ (x) ≤ 0 for x ∈ Ω.

Let E be the set of points in Ω where V̇ (x) = 0. If M is the largest
invariant set in E, then every solution with x(0) ∈ Ω approaches M
as t → ∞

Remark : a compact set (bounded and closed) is obtained if we e.g.,
consider

Ω = {x ∈ R
n|V (x) ≤ c}

and V is a positive definite function
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Relation to Poincare-Bendixson Theorem
Poincare-Bendixson Any orbit of a continuous 2nd order system that
stays in a compact region of the phase plane approaches its ω-limit
set, which is either a fixed point, a periodic orbit, or several fixed
points connected through homoclinic or heteroclinic orbits

In particular, if the compact region does not contain any fixed point
then the ω-limit set is a limit cycle
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Example: Pendulum with friction

ẋ1 = x2 , ẋ2 = −
g

l
sin x1 −

k

m
x2

V (x) =
g

l
(1 − cos x1) +

1

2
x2

2 ⇒ V̇ = −
k

m
x2

2

• We can not prove global asymptotic stability; why?

• The set E = {(x1, x2)|V̇ = 0} is E = {(x1, x2)|x2 = 0}

• The invariant points in E are given by ẋ1 = x2 = 0 and ẋ2 = 0.
Thus, the largest invariant set in E is

M = {(x1, x2)|x1 = kπ, x2 = 0}

• The domain is compact if we consider
Ω = {(x1, x2) ∈ R

2|V (x) ≤ c}
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• If we e.g., consider Ω : x2
1 + x2

2 ≤ 1 then
M = {(x1, x2)|x1 = 0, x2 = 0} and we have proven
asymptotic stability of the origin.
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Question 7

Please repeat the most important facts about sliding modes.

There are 3 essential parts you need to understand:

1. The sliding manifold

2. The sliding control

3. The equivalent control
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Step 1. The Sliding Manifold S
Aim: we want to stabilize the equilibrium of the dynamic system

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R

1

Idea: use u to force the system onto a sliding manifold S of
dimension n − 1 in finite time

S = {x ∈ R
n|σ(x) = 0} σ ∈ R1

and make S invariant

If x ∈ R
2 then S is R

1, i.e., a curve in the state-plane (phase plane).
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Example

ẋ1 = x2(t)

ẋ2 = x1(t)x2(t) + u(t)

Choose S for desired behavior, e.g.,

σ(x) = ax1 + x2 = 0 ⇒ ẋ1 = −ax1(t)

Choose large a: fast convergence along sliding manifold
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Step 2. The Sliding Controller
Use Lyapunov ideas to design u(x) such that S is an attracting
invariant set

Lyapunov function V (x) = 0.5σ2 yields V̇ = σσ̇

For 2nd order system ẋ1 = x2 , ẋ2 = f(x) + g(x)u and
σ = x1 + x2 we get

V̇ = σ (x2 + f(x) + g(x)u) < 0 ⇐ u = −
f(x) + x2 + sgn(σ)

g(x)

Example: f(x) = x1x2, g(x) = 1, σ = x1 + x2, yields

u = −x1x2 − x2 − sgn(x1 + x2)
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Step 3. The Equivalent Control
When trajectory reaches sliding mode, i.e., x ∈ S, then u will chatter
(high frequency switching).

However, an equivalent control ueq(t) that keeps x(t) on S can be
computed from σ̇ = 0 when σ = 0

Example:

σ̇ = ẋ1 + ẋ2 = x2 + x1x2 + ueq = 0 ⇒ ueq = −x2 − x1x2

Thus, the sliding controller will take the system to the sliding manifold
S in finite time, and the equivalent control will keep it on S.
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Note!
Previous years it has often been assumed that the sliding mode
control always is on the form

u = −sgn(σ)

This is OK, but is not completely general (see example)
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Question 8

Can you repeat backstepping?
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Backstepping Design
We are concerned with finding a stabilizing control u(x) for the
system

ẋ = f(x, u)

General Lyapunov control design: determine a Control Lyapunov
function V (x, u) and determine u(x) so that

V (x) > 0 , V̇ (x) < 0 ∀x ∈ R
n

In this course we only consider f(x, u) with a special structure,
namely strict feedback structure
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Strict Feedback Systems

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4

...

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u

where gk 6= 0

Note: x1, . . . , xk do not depend on xk+2, . . . , xn.
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The Backstepping Idea
Given a Control Lyapunov Function V1(x1), with corresponding
control u = φ1(x1), for the system

ẋ1 = f1(x1) + g1(x1)u

find a Control Lyapunov function V2(x1, x2), with corresponding
control u = φ2(x1, x2), for the system

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + u
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The Backstepping Result
Let V1(x1) be a Control Lyapunov Function for the system

ẋ1 = f1(x1) + g1(x1)u

with corresponding controller u = φ(x1).

Then V2(x1, x2) = V1(x1) + (x2 − φ(x1))
2 /2 is a Control

Lyapunov Function for the system

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + u

with corresponding controller

u(x) =
dφ

dx1

(
f(x1)+g(x1)x2

)
−

dV

dx1

g(x1)−(xk−φ(x1))−f2(x1, x2)
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Question 9

Repeat backlash compensation
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Backlash Compensation

• Deadzone

• Linear controller design

• Backlash inverse

Linear controller design: Phase lead compensation

θref

−

e u θoutθinθ̇in1

1 + sT

1

s
K 1+sT2

1+sT1
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• Choose compensation F (s) such that the intersection with the
describing function is removed

F (s) = K 1+sT2

1+sT1

with T1 = 0.5, T2 = 2.0:
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Oscillation removed!
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Question 10

Can you repeat linearization through high gain feedback?
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Inverting Nonlinearities
Compensation of static nonlinearity through inversion:

F (s) f̂−1(·) f(·) G(s)
−

Controller

Should be combined with feedback as in the figure!
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Remark: How to Obtain f−1 from f using
Feedback

−

v uk

s

f(·)

ê

u

f(u)

ê =
(
v − f(u)

)

If k > 0 large and df/du > 0, then ê → 0 and

0 =
(
v − f(u)

)
⇔ f(u) = v ⇔ u = f−1(v)
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Question 11
What should we know about input–output stability?

You should understand and be able to derive/apply

• System gain γ(S) = supu∈L2

‖y‖2

‖u‖2

• BIBO stability

• Small Gain Theorem

• Circle Criterion

• Passivity Theorem
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Question 12

What about describing functions?
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Idea Behind Describing Function Method
r e u y

−
N.L. G(s)

e(t) = A sin ωt gives

u(t) =
∞∑

n=1

√
a2

n + b2
n sin[nωt + arctan(an/bn)]

If |G(inω)| ≪ |G(iω)| for n ≥ 2, then n = 1 suffices, so that

y(t) ≈ |G(iω)|
√

a2
1 + b2

1 sin[ωt + arctan(a1/b1) + arg G(iω)]
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Definition of Describing Function
The describing function is

N(A,ω) =
b1(ω) + ia1(ω)

A

e(t) u(t)
N.L.

e(t) û1(t)
N(A,ω)

If G is low pass and a0 = 0 then

û1(t) = |N(A,ω)|A sin[ωt + arg N(A,ω)] ≈ u(t)
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Existence of Periodic Solutions

replacements

0 e u y
−

f(·) G(s)

−1/N(A)

A

G(iω)

y = G(iω)u = −G(iω)N(A)y ⇒ G(iω) = −
1

N(A)

The intersections of the curves G(iω) and −1/N(A)
give ω and A for a possible periodic solution.
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More Courses in Control

• EL2450 Hybrid and Embedded Control Systems, per 3

• EL2520 Control Theory and Practice, Advanced Course, per 4

• EL1820 Modelling of Dynamic Systems, per 1

• EL2420 Project Course in Automatic Control, per 2
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EL2520 Control Theory and Practice,
Advanced Course

Aim: provide an introduction to principles and methods in advanced
control, especially multivariable feedback systems.

• Period 4, 7.5 p

• Multivariable control:

– Linear multivariable systems

– Robustness and performance

– Design of multivariable controllers: LQG, H∞-optimization

– Real time optimization: Model Predictive Control (MPC)

• Lectures, exercises, labs, computer exercises

Contact: Mikael Johansson mikaelj@kth.se
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EL2450 Hybrid and Embedded Control
Systems

Aim: course on analysis, design and implementation of control
algorithms in networked and embedded systems.

• Period 3, 7.5 p

• How is control implemented in reality:

– Computer-implementation of control algorithms

– Scheduling of real-time software

– Control over communication networks

• Lectures, exercises, homework, computer exercises

Contact: Dimos Dimarogonas dimos@kth.se
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EL1820 Modelling of Dynamic Systems
Aim: teach how to systematically build mathematical models of
technical systems from physical laws and from measured signals.

• Period 1, 6 p

• Model dynamical systems from

– physics: lagrangian mechanics, electrical circuits etc

– experiments: parametric identification, frequency response

• Computer tools for modeling, identification, and simulation

• Lectures, exercises, labs, computer exercises

Contact: Håkan Hjalmarsson, hjalmars@kth.se
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EL2420 Project Course in Control
Aim: provide practical knowledge about modeling, analysis, design,
and implementation of control systems. Give some experience in
project management and presentation.

• Period 4, 12 p

• “From start to goal...”: apply the theory from other courses

• Team work

• Preparation for Master thesis project

• Project management (lecturers from industry)

• No regular lectures or labs

Contact: Ather Gattami gattami@kth.se
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Doing Master Thesis Project at Automatic
Control Lab

◦ Theory and practice

◦ Cross-disciplinary

◦ The research edge

◦ Collaboration with leading industry and universities

◦ Get insight in research and development

Hints:

• The topic and the results of your thesis are up to you

• Discuss with professors, lecturers, PhD and MS students

• Check old projects
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