2010

EL2620 Nonlinear Control

Lecture 14

- Summary and repetition
- Spring courses in control
- Master thesis projects

Lecture 14

EL2620 2010

Question 1

What's on the exam?

- Nonlinear models: equilibria, phase portaits, linearization and stability
- Lyapunov stability (local and global), LaSalle
- Circle Criterion, Small Gain Theorem, Passivity Theorem
- · Compensating static nonlinearities
- Describing functions
- Sliding modes, equivalent controls
- Lyapunov based design: back-stepping
- Exact feedback linearization, input-output linearization, zero dynamics
- Nonlinear controllability
- Optimal control

Exam

- Regular written exam (in English) with five problems
- Sign up on course homepage

EL2620

 You may bring lecture notes, Glad & Ljung "Reglerteknik", and TEFYMA or BETA
 (No other material: teythooks, exercises, calculators etc. Any

(No other material: textbooks, exercises, calculators etc. Any other basic control book must be approved by me *before* the exam.).

• See homepage for old exams

Lecture 14 2

EL2620 2010

Question 2

What design method should I use in practice?

The answer is highly problem dependent. Possible (learning) approach:

- Start with the simplest:
 - linear methods (loop shaping, state feedback, ...)
- Evaluate:
 - strong nonlinearities (under feedback!)?
 - varying operating conditions?
 - analyze and simulate with nonlinear model
- Some nonlinearities to compensate for?
 - saturations, valves etc
- Is the system generically nonlinear? E.g, $\dot{x} = xu$

Lecture 14 3 Lecture 14 4

EL2620

2010

Question 3

Can a system be proven stable with the Small Gain Theorem and unstable with the Circle Criterion?

- No, the Small Gain Theorem, Passivity Theorem and Circle Criterion all provide only sufficient conditions for stability
- But, if one method does not prove stability, another one may.
- Since they do not provide necessary conditions for stability, none of them can be used to prove instability.

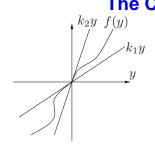
Question 4

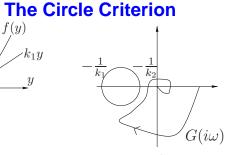
Can you review the circle criterion? What about $k_1 < 0 < k_2$?

Lecture 14 5

Lecture 14 6

EL2620 2010





Theorem Consider a feedback loop with y=Gu and u=-f(y). Assume G(s) is stable and that

$$k_1 \le f(y)/y \le k_2$$
.

If the Nyquist curve of G(s) stays on the correct side of the circle defined by the points $-1/k_1$ and $-1/k_2$, then the closed-loop system is BIBO stable.

EL2620 2010

The different cases

 ${\it Stable system}\ G$

1. $0 < k_1 < k_2$: Stay outside circle

2. $0 = k_1 < k_2$: Stay to the right of the line Re $s = -1/k_2$

3. $k_1 < 0 < k_2$: Stay inside the circle

Other cases: Multiply f and G with -1.

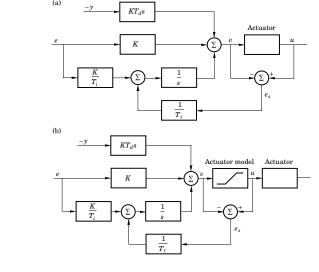
Only Case 1 and 2 studied in lectures. Only ${\cal G}$ stable studied.

7

EL2620 2010 EL2620

Question 5

Please repeat antiwindup



Tracking PID

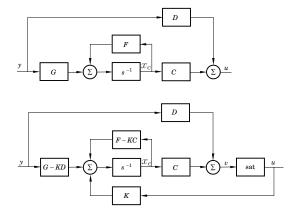
2010

Lecture 14 9 Lecture 14 10

EL2620 2010

EL2620 2010

Antiwindup—General State-Space Model



Choose K such that F-KC has stable eigenvalues.

Question 6

Please repeat Lyapunov theory

Lecture 14 11 Lecture 14 12

Stability Definitions

An equilibrium point x=0 of $\dot{x}=f(x)$ is

locally stable, if for every R > 0 there exists r > 0, such that

$$||x(0)|| < r \implies ||x(t)|| < R, \quad t \ge 0$$

locally asymptotically stable, if locally stable and

$$||x(0)|| < r \quad \Rightarrow \quad \lim_{t \to \infty} x(t) = 0$$

globally asymptotically stable, if asymptotically stable for all $x(0) \in \mathbf{R}^n$.

Lecture 14 13

EL2620 2010

Lyapunov Theorem for Global Stability

Theorem Let $\dot{x}=f(x)$ and f(0)=0. Assume that $V:\mathbf{R}^n\to\mathbf{R}$ is a C^1 function. If

- V(0) = 0
- V(x) > 0, for all $x \neq 0$
- $\dot{V}(x) < 0$ for all $x \neq 0$
- $V(x) \to \infty$ as $||x|| \to \infty$

then x = 0 is globally asymptotically stable.

Lyapunov Theorem for Local Stability

Theorem Let $\dot{x}=f(x), f(0)=0$, and $0\in\Omega\subset\mathbf{R}^n$. Assume that $V:\Omega\to\mathbf{R}$ is a C^1 function. If

- V(0) = 0
- V(x) > 0, for all $x \in \Omega$, $x \neq 0$
- $\dot{V}(x) \leq 0$ along all trajectories in Ω

then x = 0 is locally stable. Furthermore, if

• $\dot{V}(x) < 0$ for all $x \in \Omega, x \neq 0$

then x = 0 is locally asymptotically stable.

Lecture 14 14

EL2620 2010

LaSalle's Theorem for Global Asymptotic Stability

Theorem: Let $\dot{x}=f(x)$ and f(0)=0. If there exists a \mathbb{C}^1 function $V:\,R^n\to\mathbb{R}$ such that

(1) V(0) = 0

Lecture 14

- (2) V(x) > 0 for all $x \neq 0$
- (3) $\dot{V}(x) \leq 0$ for all x
- (4) $V(x) \to \infty$ as $||x|| \to \infty$
- (5) The only solution of $\dot{x}=f(x)$ such that $\dot{V}(x)=0$ is x(t)=0 for all t

then x = 0 is globally asymptotically stable.

16

EL2620

LaSalle's Invariant Set Theorem

Theorem Let $\Omega \in \mathbf{R}^n$ be a bounded and closed set that is invariant with respect to

$$\dot{x} = f(x).$$

Let $V:\mathbf{R}^n\to\mathbf{R}$ be a C^1 function such that $\dot{V}(x)\leq 0$ for $x\in\Omega$. Let E be the set of points in Ω where $\dot{V}(x)=0$. If M is the largest invariant set in E, then every solution with $x(0)\in\Omega$ approaches M as $t\to\infty$

Remark: a **compact set** (bounded and closed) is obtained if we e.g., consider

$$\Omega = \{ x \in \mathbf{R}^n | V(x) \le c \}$$

and V is a positive definite function

Relation to Poincare-Bendixson Theorem

Poincare-Bendixson Any orbit of a continuous 2nd order system that stays in a compact region of the phase plane approaches its ω -limit set, which is either a fixed point, a periodic orbit, or several fixed points connected through homoclinic or heteroclinic orbits

In particular, if the compact region does not contain any fixed point then the $\omega\text{-limit}$ set is a limit cycle

Lecture 14 17 Lecture 14 18

EL2620 2010

Example: Pendulum with friction

$$\dot{x}_1 = x_2 \;, \quad \dot{x}_2 = -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2$$

$$V(x) = \frac{g}{l} (1 - \cos x_1) + \frac{1}{2} x_2^2 \quad \Rightarrow \quad \dot{V} = -\frac{k}{m} x_2^2$$

- We can not prove global asymptotic stability; why?
- The set $E = \{(x_1, x_2) | \dot{V} = 0\}$ is $E = \{(x_1, x_2) | x_2 = 0\}$
- The invariant points in E are given by $\dot{x}_1=x_2=0$ and $\dot{x}_2=0$. Thus, the largest invariant set in E is

$$M = \{(x_1, x_2) | x_1 = k\pi, x_2 = 0\}$$

• The domain is compact if we consider $\Omega = \{(x_1, x_2) \in \mathbf{R}^2 | V(x) \le c\}$

EL2620 2010

• If we e.g., consider $\Omega: x_1^2+x_2^2\leq 1$ then $M=\{(x_1,x_2)|x_1=0,x_2=0\}$ and we have proven asymptotic stability of the origin.

EL2620 2010

Question 7

Please repeat the most important facts about sliding modes.

There are 3 essential parts you need to understand:

- 1. The sliding manifold
- 2. The sliding control
- 3. The equivalent control

Lecture 14 21

EL2620 2010

Example

$$\dot{x}_1 = x_2(t)$$

$$\dot{x}_2 = x_1(t)x_2(t) + u(t)$$

Choose ${\cal S}$ for desired behavior, e.g.,

$$\sigma(x) = ax_1 + x_2 = 0 \quad \Rightarrow \quad \dot{x}_1 = -ax_1(t)$$

Choose large a: fast convergence along sliding manifold

Step 1. The Sliding Manifold ${\cal S}$

Aim: we want to stabilize the equilibrium of the dynamic system

$$\dot{x} = f(x) + g(x)u, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^1$$

Idea: use u to force the system onto a *sliding manifold* S of dimension n-1 in finite time

$$S = \{x \in \mathbb{R}^n | \sigma(x) = 0\} \quad \sigma \in R^1$$

and make S invariant

If $x \in \mathbb{R}^2$ then S is \mathbb{R}^1 , i.e., a curve in the state-plane (phase plane).

Lecture 14 22

EL2620 2010

Step 2. The Sliding Controller

Use Lyapunov ideas to design u(x) such that S is an attracting invariant set

Lyapunov function $V(x)=0.5\sigma^2$ yields $\dot{V}=\sigma\dot{\sigma}$

For 2nd order system $\dot{x}_1=x_2\ , \dot{x}_2=f(x)+g(x)u$ and $\sigma=x_1+x_2$ we get

$$\dot{V} = \sigma \left(x_2 + f(x) + g(x)u \right) < 0 \quad \Leftarrow \quad u = -\frac{f(x) + x_2 + sgn(\sigma)}{g(x)}$$

Example: $f(x) = x_1x_2$, g(x) = 1, $\sigma = x_1 + x_2$, yields

$$u = -x_1x_2 - x_2 - sgn(x_1 + x_2)$$

Step 3. The Equivalent Control

When trajectory reaches sliding mode, i.e., $x \in S$, then u will chatter (high frequency switching).

However, an equivalent control $u_{eq}(t)$ that keeps x(t) on S can be computed from $\dot{\sigma}=0$ when $\sigma=0$

Example:

$$\dot{\sigma} = \dot{x}_1 + \dot{x}_2 = x_2 + x_1 x_2 + u_{eq} = 0 \quad \Rightarrow \quad u_{eq} = -x_2 - x_1 x_2$$

Thus, the sliding controller will take the system to the sliding manifold S in finite time, and the equivalent control will keep it on S.

Lecture 14 25

EL2620 2010

Question 8

Can you repeat backstepping?

Note!

Previous years it has often been assumed that the sliding mode control always is on the form

$$u = -sgn(\sigma)$$

This is OK, but is not completely general (see example)

Lecture 14 26

EL2620 2010

Backstepping Design

We are concerned with finding a stabilizing control $u(\boldsymbol{x})$ for the system

$$\dot{x} = f(x, u)$$

General Lyapunov control design: determine a Control Lyapunov function V(x,u) and determine u(x) so that

$$V(x) > 0$$
, $\dot{V}(x) < 0 \,\forall x \in \mathbb{R}^n$

In this course we only consider $f(\boldsymbol{x}, \boldsymbol{u})$ with a special structure, namely strict feedback structure

Lecture 14

27

Lecture 14

Strict Feedback Systems

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2
\dot{x}_2 = f_2(x_1, x_2) + g_2(x_1, x_2)x_3
\dot{x}_3 = f_3(x_1, x_2, x_3) + g_3(x_1, x_2, x_3)x_4
\vdots
\dot{x}_n = f_n(x_1, \dots, x_n) + g_n(x_1, \dots, x_n)u$$

where $g_k \neq 0$

Note: x_1, \ldots, x_k do not depend on x_{k+2}, \ldots, x_n .

The Backstepping Idea

Given a Control Lyapunov Function $V_1(x_1)$, with corresponding control $u=\phi_1(x_1)$, for the system

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)u$$

find a Control Lyapunov function $V_2(x_1,x_2)$, with corresponding control $u=\phi_2(x_1,x_2)$, for the system

$$\dot{x_1} = f_1(x_1) + g_1(x_1)x_2$$
$$\dot{x_2} = f_2(x_1, x_2) + u$$

Lecture 14 29

Lecture 14 30

EL2620 2010

The Backstepping Result

Let $V_1(x_1)$ be a Control Lyapunov Function for the system

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)u$$

with corresponding controller $u = \phi(x_1)$.

Then $V_2(x_1,x_2)=V_1(x_1)+\left(x_2-\phi(x_1)\right)^2/2$ is a Control Lyapunov Function for the system

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2$$
$$\dot{x}_2 = f_2(x_1, x_2) + u$$

with corresponding controller

$$u(x) = \frac{d\phi}{dx_1} \left(f(x_1) + g(x_1)x_2 \right) - \frac{dV}{dx_1} g(x_1) - (x_k - \phi(x_1)) - f_2(x_1, x_2)$$

EL2620 2010

Question 9

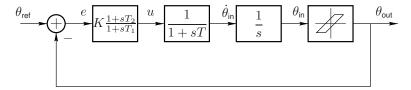
Repeat backlash compensation

EL2620

Backlash Compensation

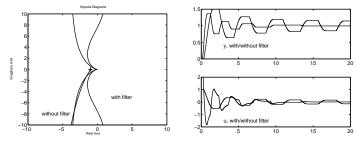
- Deadzone
- Linear controller design
- Backlash inverse

Linear controller design: Phase lead compensation



ullet Choose compensation F(s) such that the intersection with the describing function is removed

$$F(s) = K \frac{1+sT_2}{1+sT_1}$$
 with $T_1 = 0.5, T_2 = 2.0$:



Oscillation removed!

Lecture 14 33

Lecture 14 34

EL2620 2010

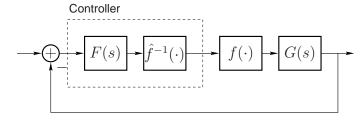
EL2620 2010

Question 10

Can you repeat linearization through high gain feedback?

Inverting Nonlinearities

Compensation of static nonlinearity through inversion:

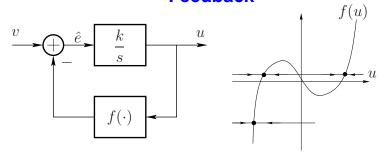


Should be combined with feedback as in the figure!

2010

EL2620 2010

Remark: How to Obtain f^{-1} from f using Feedback



$$\hat{e} = (v - f(u))$$

If k>0 large and df/du>0, then $\hat{e}\to 0$ and

$$0 = (v - f(u)) \qquad \Leftrightarrow \qquad f(u) = v \qquad \Leftrightarrow \qquad u = f^{-1}(v)$$

Lecture 14 37

Question 11

What should we know about input-output stability?

You should understand and be able to derive/apply

- System gain $\gamma(S) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2}$
- BIBO stability
- Small Gain Theorem
- Circle Criterion
- Passivity Theorem

Lecture 14 38

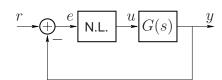
EL2620 2010 EL2620

Question 12

What about describing functions?

2620 2010

Idea Behind Describing Function Method



 $e(t) = A \sin \omega t$ gives

$$u(t) = \sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2} \sin[n\omega t + \arctan(a_n/b_n)]$$

If $|G(in\omega)|\ll |G(i\omega)|$ for $n\geq 2,$ then n=1 suffices, so that

$$y(t) \approx |G(i\omega)| \sqrt{a_1^2 + b_1^2} \sin[\omega t + \arctan(a_1/b_1) + \arg G(i\omega)]$$

Definition of Describing Function

The describing function is

$$N(A,\omega) = \frac{b_1(\omega) + ia_1(\omega)}{A}$$

$$e(t) \qquad e(t) \qquad e(t) \qquad \widehat{u}_1(t)$$

$$N(A,\omega) \qquad \widehat{u}_1(t)$$

If G is low pass and $a_0=0$ then

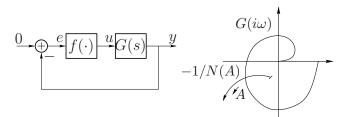
$$\widehat{u}_1(t) = |N(A,\omega)| A \sin[\omega t + \arg N(A,\omega)] \approx u(t)$$

Lecture 14 41

More Courses in Control

- EL2450 Hybrid and Embedded Control Systems, per 3
- EL2520 Control Theory and Practice, Advanced Course, per 4
- EL1820 Modelling of Dynamic Systems, per 1
- EL2420 Project Course in Automatic Control, per 2

Existence of Periodic Solutions



$$y = G(i\omega)u = -G(i\omega)N(A)y \Rightarrow G(i\omega) = -\frac{1}{N(A)}$$

The intersections of the curves $G(i\omega)$ and -1/N(A) give ω and A for a possible periodic solution.

EL2520 Control Theory and Practice, Advanced Course

Aim: provide an introduction to principles and methods in advanced control, especially multivariable feedback systems.

• Period 4, 7.5 p

Lecture 14

EL2620

- Multivariable control:
 - Linear multivariable systems
 - Robustness and performance
 - Design of multivariable controllers: LQG, H_{∞} -optimization
 - Real time optimization: Model Predictive Control (MPC)
- Lectures, exercises, labs, computer exercises

Contact: Mikael Johansson mikaelj@kth.se

EL2620

2010

2010

42

2010

EL2620 2010

EL2450 Hybrid and Embedded Control Systems

Aim:course on analysis, design and implementation of control algorithms in networked and embedded systems.

- Period 3, 7.5 p
- How is control implemented in reality:
 - Computer-implementation of control algorithms
 - Scheduling of real-time software
 - Control over communication networks
- Lectures, exercises, homework, computer exercises

Contact: Dimos Dimarogonas dimos@kth.se

Lecture 14 45

EL2620 2010

EL2420 Project Course in Control

Aim: provide practical knowledge about modeling, analysis, design, and implementation of control systems. Give some experience in project management and presentation.

- Period 4, 12 p
- "From start to goal...": apply the theory from other courses
- Team work
- Preparation for Master thesis project
- Project management (lecturers from industry)
- No regular lectures or labs

Contact: Ather Gattami@attami@kth.se

EL2620 2010

EL1820 Modelling of Dynamic Systems

Aim: teach how to systematically build mathematical models of technical systems from physical laws and from measured signals.

- Period 1, 6 p
- Model dynamical systems from
 - physics: lagrangian mechanics, electrical circuits etc
 - experiments: parametric identification, frequency response
- Computer tools for modeling, identification, and simulation
- · Lectures, exercises, labs, computer exercises

Contact: Håkan Hjalmarsson, hjalmars@kth.se

Lecture 14 46

EL2620 2010

Doing Master Thesis Project at Automatic Control Lab

- o Theory and practice
- o Cross-disciplinary
- o The research edge
- o Collaboration with leading industry and universities
- o Get insight in research and development

Hints:

- The topic and the results of your thesis are up to you
- Discuss with professors, lecturers, PhD and MS students
- Check old projects