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EL2620 Nonlinear Control

Lecture 13

• Fuzzy logic and fuzzy control

• Artificial neural networks

Some slides copied from K.-E. Årzén and M. Johansson
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Today’s Goal
You should

• understand the basics of fuzzy logic and fuzzy controllers

• understand simple neural networks
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Fuzzy Control

• Many plants are manually controlled by experienced operators

• Transfer process knowledge to control algorithm is difficult

Idea:

• Model operator’s control actions (instead of the plant)

• Implement as rules (instead of as differential equations)

Example of a rule:
IF Speed is High AND Traffic is Heavy

THEN Reduce Gas A Bit
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Model Controller Instead of Plant
Conventional control design
Model plant P → Analyze feedback → Synthesize controller C →
Implement control algorithm

Fuzzy control design
Model manual control → Implement control rules

r e u y

−
C P
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Fuzzy Set Theory
Specify how well an object satisfies a (vague) description

Conventional set theory: x ∈ A or x 6∈ A

Fuzzy set theory: x ∈ A to a certain degree µA(x)

Membership function:
µA : Ω → [0, 1] expresses the degree x belongs to A
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A fuzzy set is defined as (A,µA)
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Example
Q1: Is the temperature x = 15 cold?
A1: It is quite cold since µC(15) = 2/3.

Q2: Is x = 15 warm?
A2: It is not really warm since µW (15) = 1/3.
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Fuzzy Logic
How to calculate with fuzzy sets (A,µA)?

Conventional logic:
AND: A ∩ B
OR: A ∪ B
NOT: A′

Fuzzy logic:
AND: µA∩B(x) = min(µA(x), µB(x))
OR: µA∪B(x) = max(µA(x), µB(x))
NOT: µA′(x) = 1 − µA(x)

Defines logic calculations as X AND Y OR Z

Mimic human linguistic (approximate) reasoning [Zadeh,1965]
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Example
Q1: Is it cold AND warm? Q2: Is it cold OR warm?
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Fuzzy Control System

PlantController

Fuzzy
r

yu

r, y, u : [0,∞) 7→ R are conventional signals

Fuzzy controller is a nonlinear mapping from y (and r) to u
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Fuzzy Controller

y u
Fuzzifier Defuzzifier

Fuzzy Controller

Fuzzy
Inference

Fuzzifier: Fuzzy set evaluation of y (and r)
Fuzzy Inference: Fuzzy set calculations
Defuzzifier: Map fuzzy set to u

Fuzzifier and defuzzifier act as interfaces to the crisp signals
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Fuzzifier
Fuzzy set evaluation of input y

Example
y = 15: µC(15) = 2/3 and µW (15) = 1/3
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Fuzzy Inference
Fuzzy Inference:

1. Calculate degree of fulfillment for each rule

2. Calculate fuzzy output of each rule

3. Aggregate rule outputs

Examples of fuzzy rules:
Rule 1: IF y is Cold

︸ ︷︷ ︸

1.

THEN u is High
︸ ︷︷ ︸

2.

Rule 2: IF y is Warm
︸ ︷︷ ︸

1.

THEN u is Low
︸ ︷︷ ︸

2.
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1. Calculate degree of fulfillment for rules
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2. Calculate fuzzy output of each rule

Note that ”mu” is standard fuzzy-logic nomenclature for ”truth value”:

Lecture 13 14

EL2620 2010

3. Aggregate rule outputs
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Defuzzifier
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Fuzzy Controller—Summary

y uFuzzifier Defuzzifier

Fuzzy Controller

Fuzzy
Inference

Fuzzifier: Fuzzy set evaluation of y (and r)

Fuzzy Inference: Fuzzy set calculations

1. Calculate degree of fulfillment for each rule

2. Calculate fuzzy output of each rule

3. Aggregate rule outputs

Defuzzifier: Map fuzzy set to u
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Example—Fuzzy Control of Steam Engine

http://isc.faqs.org/docs/air/ttfuzzy.html
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Rule-Based View of Fuzzy Control
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Nonlinear View of Fuzzy Control
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Pros and Cons of Fuzzy Control
Advantages

• User-friendly way to design nonlinear controllers

• Explicit representation of operator (process) knowledge

• Intuitive for non-experts in conventional control

Disadvantages

• Limited analysis and synthesis

• Sometimes hard to combine with classical control

• Not obvious how to include dynamics in controller

Fuzzy control is a way to obtain a class of nonlinear controll ers
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Neural Networks

• How does the brain work?

• A network of computing components (neurons)
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Neurons
Brain neuron Artificial neuron
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Model of a Neuron
Inputs: x1, x2, . . . , xn

Weights: w1, w2, . . . , wn

Bias: b y = φ
(
b +

∑
n

i=1
wixi

)

Nonlinearity: φ(·)
Output: y
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A Simple Neural Network
Neural network consisting of six neurons:

y

u1

u2

u3

Input Layer Hidden Layer Output Layer

Represents a nonlinear mapping from inputs to outputs
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Neural Network Design

1. How many hidden layers?

2. How many neurons in each layer?

3. How to choose the weights?

The choice of weights are often done adaptively through learning
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Success Stories
Fuzzy controls:

• Zadeh (1965)

• Complex problems but with possible linguistic controls

• Applications took off in mid 70’s

– Cement kilns, washing machines, vacuum cleaners

Artificial neural networks:

• McCulloch & Pitts (1943), Minsky (1951)

• Complex problems with unknown and highly nonlinear structure

• Applications took off in mid 80’s

– Pattern recognition (e.g., speech, vision), data classification
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Today’s Goal
You should

• understand the basics of fuzzy logic and fuzzy controllers

• understand simple neural networks
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Next Lecture

• EL2620 Nonlinear Control revisited

• Spring courses in control

• Master thesis projects

• PhD thesis projects

Lecture 13 33


