EL2620 2010

EL2620 Nonlinear Control

Lecture 13

- Fuzzy logic and fuzzy control
- Artificial neural networks

Some slides copied from K.-E. Årzén and M. Johansson

Today's Goal

You should

EL2620

- understand the basics of fuzzy logic and fuzzy controllers
- understand simple neural networks

Lecture 13 1 Lecture 13 2

EL2620 2010

Fuzzy Control

- Many plants are manually controlled by experienced operators
- Transfer process knowledge to control algorithm is difficult

Idea:

- Model operator's control actions (instead of the plant)
- Implement as rules (instead of as differential equations)

Example of a rule:

IF Speed is High AND Traffic is Heavy
THEN Reduce Gas A Bit

2010

Model Controller Instead of Plant

Conventional control design

Model plant $P\to {\sf Analyze}\ {\sf feedback} \to {\sf Synthesize}\ {\sf controller}\ C\to {\sf Implement}\ {\sf control}\ {\sf algorithm}$

Fuzzy control design

Model manual control → Implement control rules

Lecture 13 3 Lecture 13 4

Fuzzy Set Theory

Specify how well an object satisfies a (vague) description

Conventional set theory: $x \in A$ or $x \notin A$

Fuzzy set theory: $x \in A$ to a certain degree $\mu_A(x)$

Membership function:

 $\mu_A:\Omega\to [0,1]$ expresses the degree x belongs to A

A fuzzy set is defined as (A, μ_A)

Lecture 13

Example

Q1: Is the temperature $x=15\ \mathrm{cold?}$

A1: It is quite cold since $\mu_C(15) = 2/3$.

Q2: Is x = 15 warm?

EL2620

A2: It is not really warm since $\mu_W(15) = 1/3$.

Lecture 13 6

EL2620 2010

Fuzzy Logic

How to calculate with fuzzy sets (A, μ_A) ?

Conventional logic:

 $\begin{array}{ll} \text{AND:} & A \cap B \\ \text{OR:} & A \cup B \\ \text{NOT:} & A' \end{array}$

Fuzzy logic:

AND: $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$ OR: $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$ NOT: $\mu_{A'}(x) = 1 - \mu_A(x)$

Defines logic calculations as $X \ \mathrm{AND} \ Y \ \mathrm{OR} \ Z$

Mimic human linguistic (approximate) reasoning [Zadeh,1965]

EL2620 2010

Example

Q1: Is it cold AND warm?

Q2: Is it cold OR warm?

Lecture 13

7

5

EL2620

2010

9

11

EL2620 2010

Fuzzy Control System

 $r,y,u:[0,\infty)\mapsto\mathbb{R}$ are conventional signals

Fuzzy controller is a nonlinear mapping from y (and r) to u

Lecture 13

Fuzzy Controller

Fuzzy Inference: Fuzzy set evaluation of y (and r) Fuzzy Inference: Fuzzy set calculations

Defuzzifier: Map fuzzy set to u

Fuzzifier and defuzzifier act as interfaces to the crisp signals

Lecture 13

Fuzzy Inference

EL2620 2010

Fuzzifier

Fuzzy set evaluation of input y

Example

$$y = 15$$
: $\mu_C(15) = 2/3$ and $\mu_W(15) = 1/3$

Fuzzy Inference:

EL2620

- 1. Calculate degree of fulfillment for each rule
- 2. Calculate fuzzy output of each rule
- 3. Aggregate rule outputs

Examples of fuzzy rules:

Rule 1: IF
$$\underbrace{y \text{ is Cold THEN } \underbrace{u \text{ is High}}_{2.}}_{\text{L.}}$$
 Rule 2: IF $\underbrace{y \text{ is Warm THEN } \underbrace{u \text{ is Low}}_{2.}}_{\text{L.}}$

2010

EL2620 2010 EL2620 2010

1. Calculate degree of fulfillment for rules

2. Calculate fuzzy output of each rule

Note that "mu" is standard fuzzy-logic nomenclature for "truth value":

Lecture 13 14

Defuzzifier

2010

EL2620 2010

Lecture 13

3. Aggregate rule outputs

13

EL2620

Lecture 13 15 Lecture 13 16

2010

17

2010

EL2620 2010

Fuzzy Controller—Summary

Fuzzifier: Fuzzy set evaluation of y (and r)

Fuzzy Inference: Fuzzy set calculations

1. Calculate degree of fulfillment for each rule

2. Calculate fuzzy output of each rule

3. Aggregate rule outputs

Defuzzifier: Map fuzzy set to u

Lecture 13

EL2620

Example—Fuzzy Control of Steam Engine

http://isc.faqs.org/docs/air/ttfuzzy.html

Lecture 13 18

EL2620 2010

Lecture 13 19 Lecture 13 20

2010

Lecture 13 21 Lecture 13 22

EL2620 2010 EL2620 2010

Rule-Based View of Fuzzy Control

Nonlinear View of Fuzzy Control

Lecture 13 23 Lecture 13 24

25

Pros and Cons of Fuzzy Control

Advantages

- User-friendly way to design nonlinear controllers
- Explicit representation of operator (process) knowledge
- Intuitive for non-experts in conventional control

Disadvantages

Lecture 13

- Limited analysis and synthesis
- Sometimes hard to combine with classical control
- Not obvious how to include dynamics in controller

Fuzzy control is a way to obtain a class of nonlinear controllers

Lecture 13

Neural Networks

- How does the brain work?
- A network of computing components (neurons)

26

EL2620 2010

Neurons

Brain neuron

Artificial neuron

EL2620 2010

Model of a Neuron

Inputs: x_1, x_2, \ldots, x_n

Weights: w_1, w_2, \ldots, w_n

Bias: b

 $y = \phi \left(b + \sum_{i=1}^{n} w_i x_i \right)$

Nonlinearity: $\phi(\cdot)$

Output: y

EL2620 2010

A Simple Neural Network

Neural network consisting of six neurons:

Input Layer Hidden Layer Output Layer

Represents a nonlinear mapping from inputs to outputs

Neural Network Design

- 1. How many hidden layers?
- 2. How many neurons in each layer?
- 3. How to choose the weights?

The choice of weights are often done adaptively through learning

Lecture 13 29

Lecture 13 30

EL2620 2010

EL2620 2010

Success Stories

Fuzzy controls:

- Zadeh (1965)
- Complex problems but with possible linguistic controls
- Applications took off in mid 70's
 - Cement kilns, washing machines, vacuum cleaners

Artificial neural networks:

- McCulloch & Pitts (1943), Minsky (1951)
- Complex problems with unknown and highly nonlinear structure
- Applications took off in mid 80's
 - Pattern recognition (e.g., speech, vision), data classification

Today's Goal

You should

- understand the basics of fuzzy logic and fuzzy controllers
- understand simple neural networks

Next Lecture

- EL2620 Nonlinear Control revisited
- Spring courses in control
- Master thesis projects
- PhD thesis projects

Lecture 13 33