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EL2620 Nonlinear Control
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Optimal Control Problems

Idea: formulate the control design problem as an optimization problem

m(il)q(](x,u,t), T = f(t,z,u)
u(t

+ provides a systematic design framework
+ applicable to nonlinear problems
+ can deal with constraints

- difficult to formulate control objectives as a single objective
function

- determining the optimal controller can be hard
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Today’s Goal
Lecture 12 You should be able to
) e Design controllers based on optimal control theory
e Optimal control
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Example—Boat in Stream
Sail as far as possible in  x; direction

T2
Speed of water v(xy) with dv/dxy =1 v(z2)
Rudder angle control: -
u(t) € U= {(ug,us) : u3 +ui =1} - -
t
wipi, Tts)

ZEl(t) = U(CL’Q) + Ul(t)

a2 (t) = ua(t)
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Example—Resource Allocation
Maximization of stored profit
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Example—Minimal Curve Length
Find the curve with minimal length between a given point and a line

x(t) € [0,00) production rate 2(t) |
u(t) € [0, 1] portion of z reinvested _
1 —u(t) portion of x stored Curve: (¢, 2(t)) with 2(0) = a a 3
yu(t)z(t) change of production rate (y > 0) Line: Vertical through (¢, 0)
[1—u(t)|x(t) amount of stored profit ot
ty
ty
max 1 — w(t)]z(t)dt ty
u:[O,tﬂ—r[O,l} /O' min / AV ]. + U2 (t)dt
x(t) = ~yu(t)x(t) uz[Ovt{}—ﬂR 0
z(0) =29 >0 (t) = u(t)
z(0) =a
Lecture 12 5 Lecture 12 6
EL2620 2010 EL2620 2010

Optimal Control Problem

Standard form:

min Aﬁwwmmﬁ+wwm

w:[0,tf]=U
o(t) = fz(t),u(t)), z(0)= o
Remarks:

e U C R™ set of admissible control

e Infinite dimensional optimization problem:
Optimization over functions u : [0, ;] — U

e Constraints on x from the dynamics

e Final time 7 fixed (free later)
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Pontryagin’s Maximum Principle

Theorem: Introduce the Hamiltonian function
H(z,u,\) = L(z,u) + AT f(z,u)

Suppose the optimal control problem above has the solution
u* :[0,t7] — Uandz* : [0,t7] — R™ Then,

min H (" (1), u, A(1) = H(@*(£), 0" (1), A(1), vt € [0,t)]

where \(t) solves the adjoint equation

(t) = =22 (1), 0 (0, A0), Alty) = T (0 (1)

Moreover, the optimal control is given by

u*(t) = argmin H (" (), u, A(t))

uelU

Lecture 12 8




EL2620 2010

Remarks

e See textbook, e.g., Glad and Ljung, for proof. The outline is simply
to note that every change of (t) from the optimal w* () must
increase the criterium. Then perform a clever Taylor expansion.

e Pontryagin’s Maximum Principle provides necessary condition:
there may exist many or none solutions
(cf., miny0,1)—r (1), & = u, £(0) = 0)

e The Maximum Principle provides all possible candidates.

e Solution involves two ODE’s with boundary conditions x(0) =
and \(t;) = 0¢™ /O0x(x*(t;)). Often hard to solve explicitly.

e “maximum” is due to Pontryagin’s original formulation
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Example—Boat in Stream (contd)
Hamiltonian satisfies

H=Xf=(\ \) (v(xz) + u1>

U2

oH

e (0 >\1) ) P(x) = —x1

Adjoint equations
A(t) =0, Mi(ty) = —1
Ao(t) = =Au(t),  Aa(ty) =0
have solution

M) =1, Alt)=t—t;
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Optimal control

u*(t) = arg u2min A () (v(x5(t)) + ur) + Ao (t)us

+u§:1

=arg min A;(t)u; + Ao(t)us

Hence,
ul(t) _ Al(t) u2<t) _ )‘2(t>
V() + X3(8) VHOESYO
w () = L ut) = —— 1
V14 (t—1t5)? VI1+(t—1tf)?
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Example—Resource Allocation (cont'd)

ly
min wu(t) — 1lx(t)dt
u:[o,tf]ﬂ[o,u/o [u(®) J=(2)
i(t) = yu(t)z(t),  2(0) = a
Hamiltonian satisfies
H=L+\f=(u—1z+ Mux

Adjoint equation

At) =1 —u*(t) = Xt)yu*(t),  Atp) =0
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Al)
Optimal control
u*(t) = arg m[(l)nl](u — D)z (t) + A(t)yuzx™(t)
u€e(0, 1
= arg min u(1 +A()),  (2*(1) > 0) W),
ue|0,1 1
For t &~ t;, we have u*(t) = 0 (why?) and thus A\(¢) = 1. . o |
or #, we have u*(t) (why?) an us.() o 1 tel0t, -1/
Fort <ty — 1/7, we have u*(f) = 1 and thus A(t) = —yA(%). o u(t) = 0, te(ty—1/vt]
e [t's optimal to reinvest in the beginning
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5 minute exercise: Find the curve with minimal length by solving

ty
min / V 1+ u?(t)dt
0

w[0,tf] =R

z(t) =u(t), x(0)=a

Lecture 12 15

5 minute exercise Il: Solve the optimal control problem

1
min/ u'dt + (1)
0
r=-x+u
z(0) =0

Lecture 12
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History—Calculus of Variations

e Brachistochrone (shortest time) problem (1696): Find the
(frictionless) curve that takes a particle from A to B in shortest

time
0t ds  \/dz?+ dy? 1+ y’(a:)d
= — = g €T
v v 2gy(w)
Minimize

/ 1+ y
V29y(x)
Solved by John and James Bernoulli, Newton, I'Hospital

e Find the curve enclosing largest area (Euler)
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History—Optimal Control

e The space race (Sputnik, 1957)

Pontryagin’s Maximum Principle (1956)

Bellman’s Dynamic Programming (1957)

Huge influence on engineering and other sciences:
— Robotics—trajectory generation

— Aeronautics—satellite orbits

— Physics—Snell's law, conservation laws

— Finance—portfolio theory

Lecture 12
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Goddard’s Rocket Problem (1910)

How to send a rocket as high up in the air as possible?

" u—D
i hl = m 7
dt v

m v

h

(v(0), 2(0), m(0)) = (0,0,mq), g,7 >0
u motor force, D = D(v, h) air resistance
Constraints: 0 < % < Up,q, and m(ty) = my (empty)

Optimization criterion: max,, h(t)
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Generalized form:

min /0 fL(a:(t),u(t))dt+¢($<tf))

w:[0,t5]—U
#(t) = f(z@),u(t), 2(0)= w0
d(x(ty) =0

Note the diffences compared to standard form:

e Endtime t; is free

e Final state is constrained: (x(t)) = x3(ty) —my =0

Lecture 12
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Solution to Goddard’s Problem

Goddard’s problem is on generalized form with

T = (Ua h7 m)T7 L= O; d)(‘r) = — T2, ¢($) = T3 — My

D(v,h) =0:
e Easy: let u(t) = Upqq until m(t) = my

e Burn fuel as fast as possible, because it costs energy to lift it

EL2620

General Pontryagin’s Maximum Principle

Theorem: Suppose u* : [0,t;] — U and 2* : [0,1;] — R™ are
solutions to

min /OfL(x(t),u(t))dt+Cf)(tf,-’ﬂ(tf))

w:[0,ts]=U
i(t) = f(x(t),u(?)), z(0)=xo
Yty x(ty) =0

Then, there exists g > 0, 1 € R" such that (ng, u?') # 0 and

2010

D(v,h 0: .
(v,h) # min H (z*(t), u, A(t),ng) = H(z"(t),u"(t), A(t),n0), t € [0,t]
e Hard: e.g., it can be optimal to have low speed when air uet
resistance is high, in order to burn fuel at higher level where
_ T
e Took 50 years before a complete solution was presented H(x,u, A no) = nol(x, u) + A" f (2, u)
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Example—Minimum Time Control
: oOHT " " Bring the states of the double integrator to the origin as fas t as possible
O o : ts .
MN(tr) = no=(ts, a*(ty)) + pF ==t z*(t min / l1dt = min ¢
( f> 08x< ! ( f)> # ax( J ( f)> wl0,ts]—[-1,1] Jq w[0,tf]—[~1,1] !

H(z™(ty),u"(ts), A(ts), o)

) 0
= —Tloa_gf(tfﬂ*(tf)) - MT%(tfax*(tf))

Remarks:
e 1, may be a free variable
o With fixed ¢ ;2 H (z*(ts), u*(ts), AM(tr),no) =0

e 1) defines end point constraints
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i1(t) = 22(t), @a(t) = u(t)
U(a(ty)) = (z1(ty), 22(ty))" = (0,0)"
Optimal control is the bang-bang control

w(t) =arg min 1+ (t)zy(t) + da(t)u

Lecture 12
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Adjoint equations A; (£) = 0, As(t) = —\;(t) gives
)\1(15) = (1, )\2(t> = Co — Clt
With u(t) = ¢ = +1, we have

To(t) = x2(0) + (1

Eliminating ¢ gives curves
x1(t) & 25(t)%/2 = const

These define the switch curve, where the optimal control switch
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Reference Generation using Optimal Control

e Optimal control problem makes no distinction between open-loop
control u*(t) and closed-loop control u*(, x).

e \We may use the optimal open-loop solution u*(t) as the
reference value to a linear regulator, which keeps the system
close to the wanted trajectory

e Efficient design method for nonlinear problems

Lecture 12 26

EL2620 2010

Linear Quadratic Control
min / (2" Qx + u" Ru) dt
w:[0,00)—=R™ J
with
= Ax + Bu
has optimal solution
uw=—Lx

where L = R~'BT S and S > 0 is the solution to

SA+ATS+Q—-SBR'BTS=0
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Properties of LQ Control
e Stabilizing

e Closed-loop system stable with u = —c(t) Lx for
a(t) € [1/2, 00) (infinite gain margin)

e Phase margin 60 degrees

If x is not measurable, then one may use a Kalman filter; leads to
linear quadratic Gaussian (LQG) control.

e But, then system may have arbitrarily poor robustness! (Doyle,
1978)
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Tetra Pak Milk Race

Move milk in minimum time without spilling

[Grundelius & Bernhardsson,1999]

Lecture 12
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Given dynamics of system and maximum slosh ¢ = 0.63, solve
. t . .
MiNy:[0,¢ /] —[~10,10] Jo! Ldt, where w is the acceleration.

Acceleration

0 0.05 0.1 015 0.2 0.25 0.3 0.35 0.4

Optimal time = 375 ms, TetraPak = 540ms
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Pros & Cons for Optimal Control

-+ Systematic design procedure

-+ Applicable to nonlinear control problems

-+ Captures limitations (as optimization constraints)
— Hard to find suitable criteria

— Hard to solve the equations that give optimal controller

Lecture 12
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SF2852 Optimal Control Theory

e Period 3, 7.5 credits

e Optimization and Systems Theory
http://ww. mat h. kt h. se/ opt syst/

Dynamic Programming: Discrete & continuous; Principle of
optimality; Hamilton-Jacobi-Bellman equation

Pontryagin’s Maximum principle: Main results; Special cases such
as time optimal control and LQ control

Numerical Methods: Numerical solution of optimal control problems

Applications:  Aeronautics, Robotics, Process Control,
Bioengineering, Economics, Logistics
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Today’s Goal
You should be able to

e Design controllers based on optimal control theory for
— Standard form
— Generalized form

e Understand possibilities and limitations of optimal control
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Next Lecture
Nonlinear control interpretations of
e Artificial neural networks

e Fuzzy logic and fuzzy control
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