EL2620		2010	EL2620	2010
<u>kin</u>	EL2620 Nonlinear Control Lecture 12		Today's Goal You should be able to	
e Destrict Explored	Optimal control		 Design controllers based on optimal control theory 	
Lecture 12		1	Lecture 12	2
EL2620		2010	EL2620	2010

Optimal Control Problems

Idea: formulate the control design problem as an optimization problem

$$\min_{u(t)} J(x, u, t), \quad \dot{x} = f(t, x, u)$$

- + provides a systematic design framework
- + applicable to nonlinear problems
- + can deal with constraints
- difficult to formulate control objectives as a single objective function
- determining the optimal controller can be hard

Example—Boat in Stream

Sail as far as possible in x_1 direction

Speed of water
$$v(x_2)$$
 with $dv/dx_2 = 1$ $v(x_2)$
Rudder angle control:
 $u(t) \in U = \{(u_1, u_2) : u_1^2 + u_2^2 = 1\}$

$$(x_1)$$

$$(x_1(t) = v(x_2) + u_1(t))$$

$$(x_1(t) = v_2(t))$$

$$(x_1(0) = x_2(0) = 0$$

3

4

Example—Minimal Curve Length Example—Resource Allocation Find the curve with minimal length between a given point and a line Maximization of stored profit $\mathbf{x}(t)$ $x(t) \in [0,\infty)$ production rate $u(t) \in [0, 1]$ portion of x reinvested Curve: (t, x(t)) with x(0) = aa1 - u(t)portion of x stored Line: Vertical through $(t_f, 0)$ $\gamma u(t)x(t)$ change of production rate ($\gamma > 0$) [1 - u(t)]x(t)amount of stored profit $\max_{u:[0,t_f]\to[0,1]} \int_0^{t_f} [1-u(t)]x(t)dt$ $\min_{u:[0,t_f]\to\mathbb{R}}\int_0^{\tau_f}\sqrt{1+u^2(t)}dt$ $\dot{x}(t) = \gamma u(t) x(t)$ $\dot{x}(t) = u(t)$ $x(0) = x_0 > 0$ x(0) = a5 Lecture 12 Lecture 12 6 EL2620 2010 EL2620 2010

Optimal Control Problem

Standard form:

$$\min_{\substack{u:[0,t_f]\to U}} \int_0^{t_f} L(x(t), u(t)) \, dt + \phi(x(t_f))$$
$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0$$

Remarks:

- $U \subset \mathbb{R}^m$ set of admissible control
- Infinite dimensional optimization problem: Optimization over *functions* $u : [0, t_f] \rightarrow U$
- Constraints on x from the dynamics
- Final time t_f fixed (free later)

Pontryagin's Maximum Principle

Theorem: Introduce the Hamiltonian function

$$H(x, u, \lambda) = L(x, u) + \lambda^T f(x, u)$$

Suppose the optimal control problem above has the solution $u^*: [0, t_f] \to U$ and $x^*: [0, t_f] \to \mathbb{R}^n$. Then,

$$\min_{u \in U} H(x^*(t), u, \lambda(t)) = H(x^*(t), u^*(t), \lambda(t)), \quad \forall t \in [0, t_f]$$

where $\lambda(t)$ solves the adjoint equation

$$\dot{\lambda}(t) = -\frac{\partial H^T}{\partial x}(x^*(t), u^*(t), \lambda(t)), \quad \lambda(t_f) = \frac{\partial \phi^T}{\partial x}(x^*(t_f))$$

Moreover, the optimal control is given by

$$u^*(t) = \arg\min_{u \in U} H(x^*(t), u, \lambda(t))$$

Lecture 12

2010

EL2620

Remarks

- See textbook, e.g., Glad and Ljung, for proof. The outline is simply to note that every change of u(t) from the optimal $u^*(t)$ must increase the criterium. Then perform a clever Taylor expansion.
- Pontryagin's Maximum Principle provides **necessary** condition: there may exist many or none solutions
 - (cf., $\min_{u:[0,1]\to\mathbb{R}} x(1)$, $\dot{x} = u$, x(0) = 0)
- The Maximum Principle provides all possible candidates.
- Solution involves two ODE's with boundary conditions $x(0) = x_0$ and $\lambda(t_f) = \partial \phi^T / \partial x(x^*(t_f))$. Often hard to solve explicitly.
- "maximum" is due to Pontryagin's original formulation

Example—Boat in Stream (cont'd)

Hamiltonian satisfies

$$H = \lambda^T f = \begin{pmatrix} \lambda_1 & \lambda_2 \end{pmatrix} \begin{pmatrix} v(x_2) + u_1 \\ u_2 \end{pmatrix}$$
$$\frac{\partial H}{\partial x} = \begin{pmatrix} 0 & \lambda_1 \end{pmatrix}, \qquad \phi(x) = -x_1$$

Adjoint equations

$$\dot{\lambda}_1(t) = 0,$$
 $\lambda_1(t_f) = -1$
 $\dot{\lambda}_2(t) = -\lambda_1(t),$ $\lambda_2(t_f) = 0$

have solution

$$\lambda_1(t) = -1, \quad \lambda_2(t) = t - t_f$$

$$u^{*}(t) = \arg \min_{\substack{u_{1}^{2}+u_{2}^{2}=1}} \lambda_{1}(t)(v(x_{2}^{*}(t))+u_{1}) + \lambda_{2}(t)u_{2}$$

=
$$\arg \min_{\substack{u_{1}^{2}+u_{2}^{2}=1}} \lambda_{1}(t)u_{1} + \lambda_{2}(t)u_{2}$$

Hence,

Optimal control

$$u_1(t) = -\frac{\lambda_1(t)}{\sqrt{\lambda_1^2(t) + \lambda_2^2(t)}}, \quad u_2(t) = -\frac{\lambda_2(t)}{\sqrt{\lambda_1^2(t) + \lambda_2^2(t)}}$$

or

$$u_1(t) = \frac{1}{\sqrt{1 + (t - t_f)^2}}, \quad u_2(t) = \frac{t_f - t}{\sqrt{1 + (t - t_f)^2}}$$

Example—Resource Allocation (cont'd)

$$\min_{\substack{u:[0,t_f]\to[0,1]\\\dot{x}(t)=\gamma u(t)x(t),}} \int_0^{t_f} [u(t)-1]x(t)dt$$

Hamiltonian satisfies

$$H = L + \lambda^T f = (u - 1)x + \lambda\gamma ux$$

Adjoint equation

$$\dot{\lambda}(t) = 1 - u^*(t) - \lambda(t)\gamma u^*(t), \qquad \lambda(t_f) = 0$$

Lecture 12

2010

2010

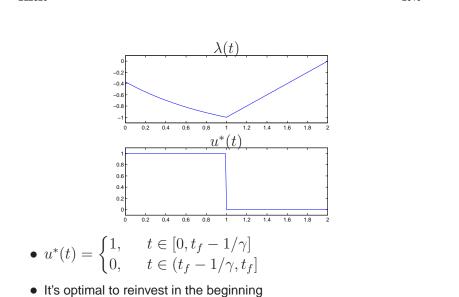
Optimal control

$$u^*(t) = \arg\min_{u \in [0,1]} (u-1)x^*(t) + \lambda(t)\gamma ux^*(t)$$

=
$$\arg\min_{u \in [0,1]} u(1+\lambda(t)\gamma), \qquad (x^*(t) > 0)$$

=
$$\begin{cases} 0, \quad \lambda(t) \ge -1/\gamma\\ 1, \quad \lambda(t) < -1/\gamma \end{cases}$$

For $t \approx t_f$, we have $u^*(t) = 0$ (why?) and thus $\dot{\lambda}(t) = 1$. For $t < t_f - 1/\gamma$, we have $u^*(t) = 1$ and thus $\dot{\lambda}(t) = -\gamma\lambda(t)$.



Lecture 12	13	Lecture 12	14
EL2620	2010	EL2620	2010

5 minute exercise: Find the curve with minimal length by solving

$$\min_{\substack{u:[0,t_f]\to\mathbb{R}}} \int_0^{t_f} \sqrt{1+u^2(t)} dt$$
$$\dot{x}(t) = u(t), \qquad x(0) = a$$

5 minute exercise II: Solve the optimal control problem

$$\min \int_0^1 u^4 dt + x(1)$$
$$\dot{x} = -x + u$$
$$x(0) = 0$$

EL2620

History—Calculus of Variations

• Brachistochrone (shortest time) problem (1696): Find the (frictionless) curve that takes a particle from A to B in shortest time

$$dt = \frac{ds}{v} = \frac{\sqrt{dx^2 + dy^2}}{v} = \frac{\sqrt{1 + y'(x)}}{\sqrt{2gy(x)}}dx$$

Minimize

$$J(y) = \int_{A}^{B} \frac{\sqrt{1 + y'(x)}}{\sqrt{2gy(x)}} \, dx$$

Solved by John and James Bernoulli, Newton, l'Hospital

• Find the curve enclosing largest area (Euler)

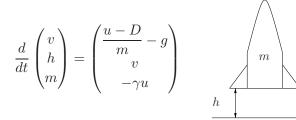
History—Optimal Control

- The space race (Sputnik, 1957)
- Pontryagin's Maximum Principle (1956)
- Bellman's Dynamic Programming (1957)
- Huge influence on engineering and other sciences:
 - Robotics-trajectory generation
 - Aeronautics-satellite orbits
 - Physics-Snell's law, conservation laws
 - Finance-portfolio theory

Lecture 12	17	Lecture 12	18
EL2620	2010	EL2620	2010

Goddard's Rocket Problem (1910)

How to send a rocket as high up in the air as possible?



 $(v(0), h(0), m(0)) = (0, 0, m_0), g, \gamma > 0$ u motor force, D = D(v, h) air resistance Constraints: $0 \le u \le u_{max}$ and $m(t_f) = m_1$ (empty) Optimization criterion: $\max_u h(t_f)$ Generalized form:

$$\min_{\substack{u:[0,t_f]\to U}} \int_0^{t_f} L(x(t), u(t)) \, dt + \phi(x(t_f))$$
$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0$$
$$\psi(x(t_f)) = 0$$

Note the diffences compared to standard form:

- End time t_f is free
- Final state is constrained: $\psi(x(t_f)) = x_3(t_f) m_1 = 0$

Solution to Goddard's Problem

Goddard's problem is on generalized form with

$$x = (v, h, m)^T$$
, $L \equiv 0$, $\phi(x) = -x_2$, $\psi(x) = x_3 - m_1$

 $D(v,h) \equiv 0$:

- Easy: let $u(t) = u_{max}$ until $m(t) = m_1$
- Burn fuel as fast as possible, because it costs energy to lift it

 $D(v,h) \not\equiv 0$:

- Hard: e.g., it can be optimal to have low speed when air resistance is high, in order to burn fuel at higher level
- Took 50 years before a complete solution was presented

Lecture 12	21
EL2620	2010

$$\dot{\lambda}(t) = -\frac{\partial H^T}{\partial x}(x^*(t), u^*(t), \lambda(t), n_0)$$
$$\lambda^T(t_f) = n_0 \frac{\partial \phi}{\partial x}(t_f, x^*(t_f)) + \mu^T \frac{\partial \psi}{\partial x}(t_f, x^*(t_f))$$

$$H(x^*(t_f), u^*(t_f), \lambda(t_f), n_0)$$

= $-n_0 \frac{\partial \phi}{\partial t}(t_f, x^*(t_f)) - \mu^T \frac{\partial \psi}{\partial t}(t_f, x^*(t_f))$

Remarks:

- t_f may be a free variable
- With fixed t_f : $H(x^*(t_f), u^*(t_f), \lambda(t_f), n_0) = 0$
- ψ defines end point constraints

Theorem: Suppose $u^*:[0,t_f]\to U$ and $x^*:[0,t_f]\to \mathbb{R}^n$ are solutions to

$$\min_{\substack{u:[0,t_f]\to U}} \int_0^{t_f} L(x(t), u(t)) \, dt + \phi(t_f, x(t_f))$$
$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0$$
$$\psi(t_f, x(t_f)) = 0$$

Then, there exists $n_0 \ge 0$, $\mu \in \mathbb{R}^n$ such that $(n_0, \mu^T) \ne 0$ and $\min_{u \in U} H(x^*(t), u, \lambda(t), n_0) = H(x^*(t), u^*(t), \lambda(t), n_0), \quad t \in [0, t_f]$

where

$$H(x, u, \lambda, n_0) = n_0 L(x, u) + \lambda^T f(x, u)$$

```
Lecture 12
```

22

EL2620

2010

Example—Minimum Time Control

Bring the states of the double integrator to the origin as fast as possible

$$\min_{\substack{u:[0,t_f]\to[-1,1]}} \int_0^{t_f} 1 \, dt = \min_{\substack{u:[0,t_f]\to[-1,1]}} t_f \\
\dot{x}_1(t) = x_2(t), \quad \dot{x}_2(t) = u(t) \\
\psi(x(t_f)) = (x_1(t_f), x_2(t_f))^T = (0,0)^T$$

Optimal control is the bang-bang control

$$u^{*}(t) = \arg \min_{u \in [-1,1]} 1 + \lambda_{1}(t)x_{2}^{*}(t) + \lambda_{2}(t)u$$
$$= \begin{cases} 1, & \lambda_{2}(t) < 0\\ -1, & \lambda_{2}(t) \ge 0 \end{cases}$$

2010

EL2620

Adjoint equations
$$\dot{\lambda}_1(t) = 0$$
, $\dot{\lambda}_2(t) = -\lambda_1(t)$ gives

$$\lambda_1(t) = c_1, \quad \lambda_2(t) = c_2 - c_1 t$$

With $u(t) = \zeta = \pm 1$, we have

$$x_1(t) = x_1(0) + x_2(0)t + \zeta t^2/2$$

$$x_2(t) = x_2(0) + \zeta t$$

Eliminating t gives curves

$$x_1(t) \pm x_2(t)^2/2 = \text{const}$$

These define the switch curve, where the optimal control switch

Reference Generation using Optimal Control

- Optimal control problem makes no distinction between open-loop control $u^*(t)$ and closed-loop control $u^*(t, x)$.
- We may use the optimal open-loop solution $u^*(t)$ as the reference value to a linear regulator, which keeps the system close to the wanted trajectory
- Efficient design method for nonlinear problems

Lecture 12	25	Lecture 12	26
EL2620	2010	EL2620	2010
	$\overset{\infty}{=} (x^T Q x + u^T R u) dt$	 Properti Stabilizing 	es of LQ Control

with

$$\dot{x} = Ax + Bu$$

has optimal solution

$$u = -Lx$$

where $L=R^{-1}B^TS$ and S>0 is the solution to

$$SA + A^T S + Q - SBR^{-1}B^T S = 0$$

- Closed-loop system stable with $u=-\alpha(t)Lx$ for $\alpha(t)\in [1/2,\infty)$ (infinite gain margin)

• Phase margin $60 \ \mathrm{degrees}$

If x is not measurable, then one may use a Kalman filter; leads to linear quadratic Gaussian (LQG) control.

• But, then system may have arbitrarily poor robustness! (Doyle, 1978)

2010

EL2620

Given dynamics of system and maximum slosh $\phi = 0.63$, solve

0.15 0.2 0.25 0.3 0.35

0.2 0.25 0.3 0.35

0.1

0.1

Optimal time = 375 ms, TetraPak = 540ms

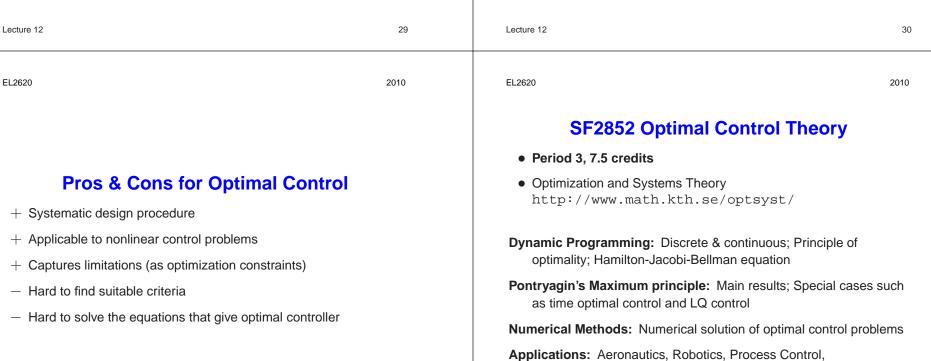
Bioengineering, Economics, Logistics

 $\min_{u:[0,t_f] \to [-10,10]} \int_0^{t_f} 1 dt$, where u is the acceleration.

2010

Tetra Pak Milk Race Move milk in minimum time without spilling

[Grundelius & Bernhardsson, 1999]



31

2010

Today's Goal

You should be able to

- Design controllers based on optimal control theory for
 - Standard form
 - Generalized form
- Understand possibilities and limitations of optimal control

Next Lecture

Nonlinear control interpretations of

- Artificial neural networks
- Fuzzy logic and fuzzy control

Lecture 12

33

Lecture 12

34