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EL2620 Nonlinear Control

Lecture 12

• Optimal control
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Today’s Goal
You should be able to

• Design controllers based on optimal control theory
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Optimal Control Problems
Idea: formulate the control design problem as an optimization problem

min
u(t)

J(x, u, t), ẋ = f(t, x, u)

+ provides a systematic design framework

+ applicable to nonlinear problems

+ can deal with constraints

- difficult to formulate control objectives as a single objective
function

- determining the optimal controller can be hard
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Example—Boat in Stream
Sail as far as possible in x1 direction

Speed of water v(x2) with dv/dx2 = 1

Rudder angle control:
u(t) ∈ U = {(u1, u2) : u2

1 + u2
2 = 1} x1

x2

v(x2)

max
u:[0,tf ]→U

x1(tf )

ẋ1(t) = v(x2) + u1(t)

ẋ2(t) = u2(t)

x1(0) = x2(0) = 0
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Example—Resource Allocation
Maximization of stored profit

x(t) ∈ [0,∞) production rate

u(t) ∈ [0, 1] portion of x reinvested

1 − u(t) portion of x stored

γu(t)x(t) change of production rate (γ > 0)

[1 − u(t)]x(t) amount of stored profit

max
u:[0,tf ]→[0,1]

∫ tf

0

[1 − u(t)]x(t)dt

ẋ(t) = γu(t)x(t)

x(0) = x0 > 0
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Example—Minimal Curve Length
Find the curve with minimal length between a given point and a line

Curve: (t, x(t)) with x(0) = a

Line: Vertical through (tf , 0)

t

tf

x(t)

a

min
u:[0,tf ]→R

∫ tf

0

√

1 + u2(t)dt

ẋ(t) = u(t)

x(0) = a
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Optimal Control Problem
Standard form:

min
u:[0,tf ]→U

∫ tf

0

L(x(t), u(t)) dt+ φ(x(tf))

ẋ(t) = f(x(t), u(t)), x(0) = x0

Remarks:

• U ⊂ R
m set of admissible control

• Infinite dimensional optimization problem:
Optimization over functions u : [0, tf ] → U

• Constraints on x from the dynamics

• Final time tf fixed (free later)
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Pontryagin’s Maximum Principle
Theorem: Introduce the Hamiltonian function

H(x, u, λ) = L(x, u) + λTf(x, u)

Suppose the optimal control problem above has the solution
u∗ : [0, tf ] → U and x∗ : [0, tf ] → R

n. Then,

min
u∈U

H(x∗(t), u, λ(t)) = H(x∗(t), u∗(t), λ(t)), ∀t ∈ [0, tf ]

where λ(t) solves the adjoint equation

λ̇(t) = −
∂HT

∂x
(x∗(t), u∗(t), λ(t)), λ(tf) =

∂φT

∂x
(x∗(tf ))

Moreover, the optimal control is given by

u∗(t) = arg min
u∈U

H(x∗(t), u, λ(t))
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Remarks

• See textbook, e.g., Glad and Ljung, for proof. The outline is simply
to note that every change of u(t) from the optimal u∗(t) must
increase the criterium. Then perform a clever Taylor expansion.

• Pontryagin’s Maximum Principle provides necessary condition:
there may exist many or none solutions

(cf., minu:[0,1]→R x(1), ẋ = u, x(0) = 0)

• The Maximum Principle provides all possible candidates.

• Solution involves two ODE’s with boundary conditions x(0) = x0

and λ(tf) = ∂φT/∂x(x∗(tf )). Often hard to solve explicitly.

• “maximum” is due to Pontryagin’s original formulation
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Example—Boat in Stream (cont’d)
Hamiltonian satisfies

H = λTf =
(

λ1 λ2

)

(

v(x2) + u1

u2

)

∂H

∂x
=

(

0 λ1

)

, φ(x) = −x1

Adjoint equations

λ̇1(t) = 0, λ1(tf ) = −1

λ̇2(t) = −λ1(t), λ2(tf ) = 0

have solution

λ1(t) = −1, λ2(t) = t− tf
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Optimal control

u∗(t) = arg min
u2

1
+u2

2
=1
λ1(t)(v(x

∗

2(t)) + u1) + λ2(t)u2

= arg min
u2

1
+u2

2
=1
λ1(t)u1 + λ2(t)u2

Hence,

u1(t) = −
λ1(t)

√

λ2
1(t) + λ2

2(t)
, u2(t) = −

λ2(t)
√

λ2
1(t) + λ2

2(t)

or

u1(t) =
1

√

1 + (t− tf )2
, u2(t) =

tf − t
√

1 + (t− tf )2
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Example—Resource Allocation (cont’d)

min
u:[0,tf ]→[0,1]

∫ tf

0

[u(t) − 1]x(t)dt

ẋ(t) = γu(t)x(t), x(0) = x0

Hamiltonian satisfies

H = L+ λTf = (u− 1)x+ λγux

Adjoint equation

λ̇(t) = 1 − u∗(t) − λ(t)γu∗(t), λ(tf ) = 0
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Optimal control

u∗(t) = arg min
u∈[0,1]

(u− 1)x∗(t) + λ(t)γux∗(t)

= arg min
u∈[0,1]

u(1 + λ(t)γ), (x∗(t) > 0)

=

{

0, λ(t) ≥ −1/γ

1, λ(t) < −1/γ

For t ≈ tf , we have u∗(t) = 0 (why?) and thus λ̇(t) = 1.

For t < tf − 1/γ, we have u∗(t) = 1 and thus λ̇(t) = −γλ(t).
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• u∗(t) =

{

1, t ∈ [0, tf − 1/γ]

0, t ∈ (tf − 1/γ, tf ]

• It’s optimal to reinvest in the beginning
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5 minute exercise: Find the curve with minimal length by solving

min
u:[0,tf ]→R

∫ tf

0

√

1 + u2(t)dt

ẋ(t) = u(t), x(0) = a
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5 minute exercise II: Solve the optimal control problem

min

∫ 1

0

u4dt+ x(1)

ẋ = −x+ u

x(0) = 0
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History—Calculus of Variations

• Brachistochrone (shortest time) problem (1696): Find the
(frictionless) curve that takes a particle from A to B in shortest
time

dt =
ds

v
=

√

dx2 + dy2

v
=

√

1 + y′(x)
√

2gy(x)
dx

Minimize

J(y) =

∫ B

A

√

1 + y′(x)
√

2gy(x)
dx

Solved by John and James Bernoulli, Newton, l’Hospital

• Find the curve enclosing largest area (Euler)
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History—Optimal Control

• The space race (Sputnik, 1957)

• Pontryagin’s Maximum Principle (1956)

• Bellman’s Dynamic Programming (1957)

• Huge influence on engineering and other sciences:

– Robotics—trajectory generation

– Aeronautics—satellite orbits

– Physics—Snell’s law, conservation laws

– Finance—portfolio theory
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Goddard’s Rocket Problem (1910)
How to send a rocket as high up in the air as possible?

d

dt







v

h

m






=









u − D

m
− g

v

−γu









h

m

(v(0), h(0),m(0)) = (0, 0,m0), g, γ > 0

u motor force, D = D(v, h) air resistance

Constraints: 0 ≤ u ≤ umax and m(tf ) = m1 (empty)

Optimization criterion: maxu h(tf )
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Generalized form:

min
u:[0,tf ]→U

∫ tf

0

L(x(t), u(t)) dt+ φ(x(tf))

ẋ(t) = f(x(t), u(t)), x(0) = x0

ψ(x(tf )) = 0

Note the diffences compared to standard form:

• End time tf is free

• Final state is constrained: ψ(x(tf )) = x3(tf ) −m1 = 0
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Solution to Goddard’s Problem
Goddard’s problem is on generalized form with

x = (v, h,m)T , L ≡ 0, φ(x) = −x2, ψ(x) = x3 −m1

D(v, h) ≡ 0:

• Easy: let u(t) = umax until m(t) = m1

• Burn fuel as fast as possible, because it costs energy to lift it

D(v, h) 6≡ 0:

• Hard: e.g., it can be optimal to have low speed when air
resistance is high, in order to burn fuel at higher level

• Took 50 years before a complete solution was presented
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General Pontryagin’s Maximum Principle
Theorem: Suppose u∗ : [0, tf ] → U and x∗ : [0, tf ] → R

n are
solutions to

min
u:[0,tf ]→U

∫ tf

0

L(x(t), u(t)) dt+ φ(tf , x(tf ))

ẋ(t) = f(x(t), u(t)), x(0) = x0

ψ(tf , x(tf )) = 0

Then, there exists n0 ≥ 0, µ ∈ R
n such that (n0, µ

T ) 6= 0 and

min
u∈U

H(x∗(t), u, λ(t), n0) = H(x∗(t), u∗(t), λ(t), n0), t ∈ [0, tf ]

where
H(x, u, λ, n0) = n0L(x, u) + λTf(x, u)
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λ̇(t) = −
∂HT

∂x
(x∗(t), u∗(t), λ(t), n0)

λT (tf ) = n0
∂φ

∂x
(tf , x

∗(tf )) + µT ∂ψ

∂x
(tf , x

∗(tf ))

H(x∗(tf ), u
∗(tf ), λ(tf ), n0)

= −n0
∂φ

∂t
(tf , x

∗(tf )) − µT ∂ψ

∂t
(tf , x

∗(tf ))

Remarks:

• tf may be a free variable

• With fixed tf : H(x∗(tf ), u
∗(tf ), λ(tf ), n0) = 0

• ψ defines end point constraints
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Example—Minimum Time Control
Bring the states of the double integrator to the origin as fas t as possible

min
u:[0,tf ]→[−1,1]

∫ tf

0

1 dt = min
u:[0,tf ]→[−1,1]

tf

ẋ1(t) = x2(t), ẋ2(t) = u(t)

ψ(x(tf)) = (x1(tf ), x2(tf ))
T = (0, 0)T

Optimal control is the bang-bang control

u∗(t) = arg min
u∈[−1,1]

1 + λ1(t)x
∗

2(t) + λ2(t)u

=

{

1, λ2(t) < 0

−1, λ2(t) ≥ 0
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Adjoint equations λ̇1(t) = 0, λ̇2(t) = −λ1(t) gives

λ1(t) = c1, λ2(t) = c2 − c1t

With u(t) = ζ = ±1, we have

x1(t) = x1(0) + x2(0)t+ ζt2/2

x2(t) = x2(0) + ζt

Eliminating t gives curves

x1(t) ± x2(t)
2/2 = const

These define the switch curve, where the optimal control switch
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Reference Generation using Optimal Control

• Optimal control problem makes no distinction between open-loop
control u∗(t) and closed-loop control u∗(t, x).

• We may use the optimal open-loop solution u∗(t) as the
reference value to a linear regulator, which keeps the system
close to the wanted trajectory

• Efficient design method for nonlinear problems
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Linear Quadratic Control

min
u:[0,∞)→Rm

∫

∞

0

(xTQx+ uTRu) dt

with
ẋ = Ax+ Bu

has optimal solution
u = −Lx

where L = R−1BTS and S > 0 is the solution to

SA+ ATS +Q− SBR−1BTS = 0
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Properties of LQ Control

• Stabilizing

• Closed-loop system stable with u = −α(t)Lx for
α(t) ∈ [1/2,∞) (infinite gain margin)

• Phase margin 60 degrees

If x is not measurable, then one may use a Kalman filter; leads to
linear quadratic Gaussian (LQG) control.

• But, then system may have arbitrarily poor robustness! (Doyle,
1978)
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Tetra Pak Milk Race
Move milk in minimum time without spilling

[Grundelius & Bernhardsson,1999]
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Given dynamics of system and maximum slosh φ = 0.63, solve

minu:[0,tf ]→[−10,10]

∫ tf

0
1 dt, where u is the acceleration.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−15

−10

−5

0

5

10

15
Acceleration

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

−0.5

0

0.5

1
Slosh

Optimal time = 375 ms, TetraPak = 540ms
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Pros & Cons for Optimal Control

+ Systematic design procedure

+ Applicable to nonlinear control problems

+ Captures limitations (as optimization constraints)

− Hard to find suitable criteria

− Hard to solve the equations that give optimal controller
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SF2852 Optimal Control Theory

• Period 3, 7.5 credits

• Optimization and Systems Theory
http://www.math.kth.se/optsyst/

Dynamic Programming: Discrete & continuous; Principle of
optimality; Hamilton-Jacobi-Bellman equation

Pontryagin’s Maximum principle: Main results; Special cases such
as time optimal control and LQ control

Numerical Methods: Numerical solution of optimal control problems

Applications: Aeronautics, Robotics, Process Control,
Bioengineering, Economics, Logistics
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Today’s Goal
You should be able to

• Design controllers based on optimal control theory for

– Standard form

– Generalized form

• Understand possibilities and limitations of optimal control
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Next Lecture
Nonlinear control interpretations of

• Artificial neural networks

• Fuzzy logic and fuzzy control
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