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EL2620 Nonlinear Control

Lecture 11

• Nonlinear controllability

• Gain scheduling
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Today’s Goal

You should be able to

• Determine if a nonlinear system is controllable

• Apply gain scheduling to simple examples
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Controllability

Definition:
ẋ = f(x, u)

is controllable if for any x0, x1 there exists T > 0 and
u : [0, T ] → R such that x(0) = x0 and x(T ) = x1.
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Linear Systems

Lemma:
ẋ = Ax + Bu

is controllable if and only if

Wn =
(

B AB . . . An−1B
)

has full rank.

Is there a corresponding result for nonlinear systems?
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Controllable Linearization

Lemma: Let
ż = Az + Bu

be the linearization of

ẋ = f(x) + g(x)u

at x = 0 with f(0) = 0. If the linear system is controllable then the
nonlinear system is controllable in a neighborhood of the origin.

Remark:

• Hence, if rankWn = n then there is an ǫ > 0 such that for every
x1 ∈ Bǫ(0) there exists u : [0, T ] → R so that x(T ) = x1

• A nonlinear system can be controllable, even if the linearized
system is not controllable
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Car Example

ϕ

θ

x

y

(x, y)

Input: u1 steering wheel velocity, u2 forward
velocity

d

dt











x

y

ϕ

θ











=











0

0

0

1











u1 +











cos(ϕ + θ)

sin(ϕ + θ)

sin(θ)

0











u2 = g1(z)u1 + g2(z)u2
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Linearization for u1 = u2 = 0 gives

ż = Az + B1u1 + B2u2

with A = 0 and

B1 =











0

0

0

1











, B2 =











cos(ϕ0 + θ0)

sin(ϕ0 + θ0)

sin(θ0)

0











rankWn = rank
(

B AB . . . An−1B
)

= 2 < 4, so the
linearization is not controllable. Still the car is controllable!

Linearization does not capture the controllability good en ough
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Lie Brackets

Lie bracket between vector fields f, g : R
n → R

n is a vector field
defined by

[f, g] =
∂g

∂x
f −

∂f

∂x
g

Example:

f =

(

cos x2

x1

)

, g =

(

x1

1

)

[f, g] =

(

1 0

0 0

)(

cos x2

x1

)

−

(

0 − sin x2

1 0

) (

x1

1

)

=

(

cos x2 + sin x2

−x1

)
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Lie Bracket Direction

For the system
ẋ = g1(x)u1 + g2(x)u2

the control

(u1, u2) =



















(1, 0), t ∈ [0, ǫ)

(0, 1), t ∈ [ǫ, 2ǫ)

(−1, 0), t ∈ [2ǫ, 3ǫ)

(0,−1), t ∈ [3ǫ, 4ǫ)

gives motion

x(4ǫ) = x(0) + ǫ2[g1, g2] + O(ǫ3)

The system can move in the [g1, g2] direction!
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Proof

1. For t ∈ [0, ǫ], assuming ǫ small and x(0) = x0, Taylor series yields

x(ǫ) = x0 + g1(x0)ǫ +
1

2

dg1

dx
g1(x0)ǫ

2 + O(ǫ3) (1)

2. Similarily, for t ∈ [ǫ, 2ǫ]

x(2ǫ) = x(ǫ) + g2(x(ǫ))ǫ +
1

2

dg2

dx
g2(x(ǫ))ǫ2

and with x(ǫ) from (1), and g2(x(ǫ)) = g2(x0) + dg2

dx
ǫg1(x0)

x(2ǫ) = x0 + ǫ(g1(x0) + g2(x0))+

ǫ2

(

1

2

dg1

dx
(x0)g1(x0) +

dg2

dx
(x0)g1(x0) +

1

2

dg2

dx
(x0)g2(x0)

)
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Proof, continued

3. Similarily, for t ∈ [2ǫ, 3ǫ]

x(3ǫ) = x0 + ǫg2 + ǫ2

(

dg2

dx
g1 −

dg1

dx
g2 +

1

2

dg2

dx
g2

)

4. Finally, for t ∈ [3ǫ, 4ǫ]

x(4ǫ) = x0 + ǫ2

(

dg2

dx
g1 −

dg1

dx
g2

)
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Car Example (Cont’d)

g3 := [g1, g2] =
∂g2

∂x
g1 −

∂g1

∂x
g2

=











0 0 − sin(ϕ + θ) − sin(ϕ + θ)

0 0 cos(ϕ + θ) cos(ϕ + θ)

0 0 0 cos(θ)

0 0 0 0





















0

0

0

1











− 0

=











− sin(ϕ + θ)

cos(ϕ + θ)

cos(θ)

0










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We can hence move the car in the g3 direction (“wriggle”) by applying
the control sequence

(u1, u2) = {(1, 0), (0, 1), (−1, 0), (0,−1)}

ϕ

θ

x

y

(x, y)
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The car can also move in the direction

g4 := [g3, g2] =
∂g2

∂x
g3 −

∂g3

∂x
g2 = . . . =











− sin(ϕ + 2θ)

cos(ϕ + 2θ)

0

0











g4 direction corresponds to
sideways movement

(−sin(ϕ), cos(ϕ))

Lecture 11 14

EL2620 2010

Parking Theorem

You can get out of any parking lot that is ǫ > 0 bigger than your car
by applying control corresponding to g4, that is, by applying the
control sequence

Wriggle, Drive, −Wriggle, −Drive

Lecture 11 15

EL2620 2010

2 minute exercise: What does the direction [g1, g2] correspond to for
a linear system ẋ = g1(x)u1 + g2(x)u2 = B1u1 + B2u2?
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The Lie Bracket Tree
[g1, g2]

[g1, [g1, g2]]
[g2, [g1, g2]]

[g1, [g1, [g1, g2]]] [g2, [g1, [g1, g2]]] [g1, [g2, [g1, g2]]] [g2, [g2, [g1, g2]]]
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Controllability Theorem

Theorem: The system

ẋ = g1(x)u1 + g2(x)u2

is controllable if the Lie bracket tree (together with g1 and g2) spans
R

n for all x

Remark:

• The system can be steered in any direction of the Lie bracket tree
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Example—Unicycle

d

dt





x1

x2

θ



 =





cos θ

sin θ

0



 u1 +





0

0

1



u2

(x1, x2)
θ

g1 =





cos θ

sin θ

0



 , g2 =





0

0

1



 , [g1, g2] =





sin θ

− cos θ

0





Controllable because {g1, g2, [g1, g2]} spans R
3
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2 minute exercise:

• Show that {g1, g2, [g1, g2]} spans R
3 for the unicycle

• Is the linearization of the unicycle controllable?

Lecture 11 20



EL2620 2010

Example—Rolling Penny

(x1, x2)

θ

φ

d

dt











x1

x2

θ

φ











=











cos θ

sin θ

0

1











u1+











0

0

1

0











u2

Controllable because {g1, g2, [g1, g2], [g2, [g1, g2]]} spans R
4
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When is Feedback Linearization Possible?

Q: When can we transform ẋ = f(x) + g(x)u into ż = Az + bv by
means of feedback u = α(x) + β(x)v and change of variables
z = T (x) (see previous lecture)?

A: The answer requires Lie brackets and further concepts from
differential geometry (see Khalil and PhD course)

v x zu
ẋ = fβ

α

T
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Gain Scheduling

Control parameters depend on operating conditions:

Process

schedule

Gain

Output 

Control
signal

Controller
parameters

Operating
condition

Command
signal

Controller

Example: PID controller with K = K(α), where α is the scheduling
variable.

Examples of scheduling variable are production rate, machine speed,
Mach number, flow rate
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Valve Characteristics

Flow

Position

Quick opening

Linear

Equal percentage
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Nonlinear Valve

Σ PI
c u

f
v y

Process

−1

    ̂ f 
−1  uc

    G0 (s)

Valve characteristics

0 0.5 1 1.5 2
0

10 f̂(u)
f(u)
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Without gain scheduling:

0 10 20 30 40
0.2

0.3

0 10 20 30 40
1.0

1.1

0 10 20 30 40

5.0

5.2

Time

Time

Time

uc

y

uc

y

y

uc
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With gain scheduling:

0 20 40 60 80 100
0.2

0.3

0 20 40 60 80 100
1.0

1.1

0 20 40 60 80 100
5.0

5.1

Time

Time

Time

uc

y

uc

y

uc

y
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Flight Control

Pitch dynamics

α

  V
θ

    q = ˙ θ 

  Nz   δ e

Lecture 11 28



EL2620 2010

Flight Control

Operating conditions:

0 0.4 0.8 1.2 1.6 2.0 2.4

80

60

40

20

0
1 2

3 4

Mach number

A
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0 
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The Pitch Control Channel

Filter

Filter

Filter A/D

A/D

A/D

D/A

D/A

Filter

−

H

H M
H

M

Pitch stick

Position

Acceleration

Pitch rate

Σ

Σ

Σ

Σ Σ

Gear

To servos

Σ

  VIAS

  VIAS

  VIASMH

  KDSE

  KSG
    

T1s

1+ T1s

    

1

1+ T3s     KQ1   KNZ

  M   H

  KQD

    

T2s

1+ T2s
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Today’s Goal

You should be able to

• Determine if a nonlinear system is controllable

• Apply gain scheduling to simple examples
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Next Lecture

• Optimal control
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