2010

EL2620 Nonlinear Control

Lecture 11

- Nonlinear controllability
- Gain scheduling

Today's Goal

You should be able to

- Determine if a nonlinear system is controllable
- Apply gain scheduling to simple examples

2 Lecture 11 1 Lecture 11 EL2620 2010

Controllability

Definition:

$$\dot{x} = f(x, u)$$

is controllable if for any x^0 , x^1 there exists T > 0 and $u : [0,T] \to \mathbb{R}$ such that $x(0) = x^0$ and $x(T) = x^1$.

EL2620

2010

Linear Systems

Lemma:

$$\dot{x} = Ax + Bu$$

is controllable if and only if

$$W_n = \begin{pmatrix} B & AB & \dots & A^{n-1}B \end{pmatrix}$$

has full rank.

Is there a corresponding result for nonlinear systems?

2010

Controllable Linearization

Lemma: Let

$$\dot{z} = Az + Bu$$

be the linearization of

 $\dot{x} = f(x) + q(x)u$

at x = 0 with f(0) = 0. If the linear system is controllable then the nonlinear system is controllable in a neighborhood of the origin.

Remark:

- Hence, if rank $W_n = n$ then there is an $\epsilon > 0$ such that for every $x_1 \in B_{\epsilon}(0)$ there exists $u : [0, T] \to \mathbb{R}$ so that $x(T) = x_1$
- A nonlinear system can be controllable, even if the linearized system is not controllable

Le	ecture 11	5	Lecture 11
El	L2620	2010	EL2620

Linearization for $u_1 = u_2 = 0$ gives

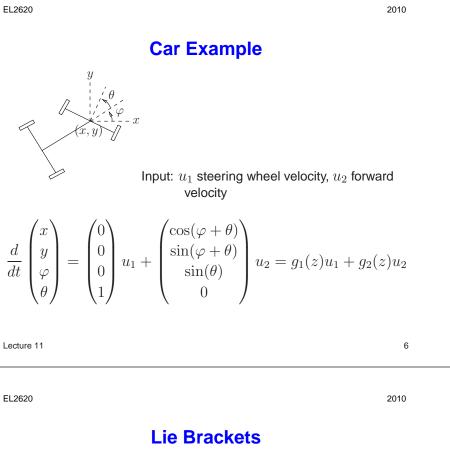
$$\dot{z} = Az + B_1u_1 + B_2u_2$$

with A = 0 and

$$B_1 = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} \cos(\varphi_0 + \theta_0)\\\sin(\varphi_0 + \theta_0)\\\sin(\theta_0)\\0 \end{pmatrix}$$

rank $W_n = \operatorname{rank} (B \ AB \ \dots \ A^{n-1}B) = 2 < 4$, so the linearization is not controllable. Still the car is controllable!

Linearization does not capture the controllability good enough



Lie bracket between vector fields $f, g: \mathbb{R}^n \to \mathbb{R}^n$ is a vector field defined by

$$[f,g] = \frac{\partial g}{\partial x}f - \frac{\partial f}{\partial x}g$$

Example:

$$f = \begin{pmatrix} \cos x_2 \\ x_1 \end{pmatrix}, \quad g = \begin{pmatrix} x_1 \\ 1 \end{pmatrix}$$
$$[f,g] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos x_2 \\ x_1 \end{pmatrix} - \begin{pmatrix} 0 & -\sin x_2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} \cos x_2 + \sin x_2 \\ -x_1 \end{pmatrix}$$

Lecture 11

Lecture 11

8

2010

EL2620

2010

Lie Bracket Direction

For the system

$$\dot{x} = g_1(x)u_1 + g_2(x)u_2$$

the control

$$(u_1, u_2) = \begin{cases} (1, 0), & t \in [0, \epsilon) \\ (0, 1), & t \in [\epsilon, 2\epsilon) \\ (-1, 0), & t \in [2\epsilon, 3\epsilon) \\ (0, -1), & t \in [3\epsilon, 4\epsilon) \end{cases}$$

gives motion

$$x(4\epsilon) = x(0) + \epsilon^2[g_1, g_2] + O(\epsilon^3)$$

The system can move in the $\left[g_{1},g_{2} ight]$ direction!

Lecture 11	9	Lecture 11	10
EL2620	2010	EL2620	2010

Proof, continued

3. Similarly, for $t \in [2\epsilon, 3\epsilon]$

$$x(3\epsilon) = x_0 + \epsilon g_2 + \epsilon^2 \left(\frac{dg_2}{dx}g_1 - \frac{dg_1}{dx}g_2 + \frac{1}{2}\frac{dg_2}{dx}g_2\right)$$

4. Finally, for $t \in [3\epsilon, 4\epsilon]$

$$x(4\epsilon) = x_0 + \epsilon^2 \left(\frac{dg_2}{dx}g_1 - \frac{dg_1}{dx}g_2\right)$$

1. For $t \in [0, \epsilon]$, assuming ϵ small and $x(0) = x_0$, Taylor series yields

$$x(\epsilon) = x_0 + g_1(x_0)\epsilon + \frac{1}{2}\frac{dg_1}{dx}g_1(x_0)\epsilon^2 + \mathcal{O}(\epsilon^3)$$
(1)

2. Similarly, for
$$t \in [\epsilon, 2\epsilon]$$

$$x(2\epsilon) = x(\epsilon) + g_2(x(\epsilon))\epsilon + \frac{1}{2}\frac{dg_2}{dx}g_2(x(\epsilon))\epsilon^2$$

and with
$$x(\epsilon)$$
 from (1), and $g_2(x(\epsilon)) = g_2(x_0) + \frac{dg_2}{dx}\epsilon g_1(x_0)$
 $x(2\epsilon) = x_0 + \epsilon(g_1(x_0) + g_2(x_0)) + \epsilon^2 \left(\frac{1}{2}\frac{dg_1}{dx}(x_0)g_1(x_0) + \frac{dg_2}{dx}(x_0)g_1(x_0) + \frac{1}{2}\frac{dg_2}{dx}(x_0)g_2(x_0)\right)$

Car Example (Cont'd)

$$g_3 := [g_1, g_2] = \frac{\partial g_2}{\partial x} g_1 - \frac{\partial g_1}{\partial x} g_2$$
$$= \begin{pmatrix} 0 & 0 & -\sin(\varphi + \theta) & -\sin(\varphi + \theta) \\ 0 & 0 & \cos(\varphi + \theta) & \cos(\varphi + \theta) \\ 0 & 0 & 0 & \cos(\theta) \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - 0$$
$$= \begin{pmatrix} -\sin(\varphi + \theta) \\ \cos(\varphi + \theta) \\ \cos(\theta) \\ 0 \end{pmatrix}$$

12

the control sequence

We can hence move the car in the q_3 direction ("wriggle") by applying

2010

EL2620

The car can also move in the direction

2010

14

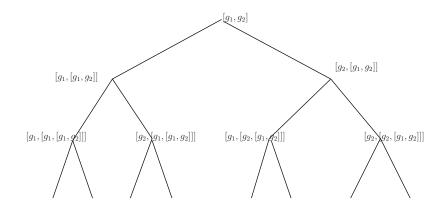
2010

 $g_4 := [g_3, g_2] = \frac{\partial g_2}{\partial x} g_3 - \frac{\partial g_3}{\partial x} g_2 = \dots = \begin{pmatrix} -\sin(\varphi + 2\theta) \\ \cos(\varphi + 2\theta) \\ 0 \\ 0 \end{pmatrix}$ $(u_1, u_2) = \{(1, 0), (0, 1), (-1, 0), (0, -1)\}\$ $(-\sin(\varphi),\cos(\varphi))$ g_4 direction corresponds to sideways movement Lecture 11 13 Lecture 11 EL2620 2010 EL2620 **Parking Theorem** You can get out of any parking lot that is $\epsilon > 0$ bigger than your car **2 minute exercise:** What does the direction $[g_1, g_2]$ correspond to for by applying control corresponding to g_4 , that is, by applying the a linear system $\dot{x} = q_1(x)u_1 + q_2(x)u_2 = B_1u_1 + B_2u_2$? control sequence Wriggle, Drive, -Wriggle, -Drive

2010

EL2620

2010



Controllability Theorem

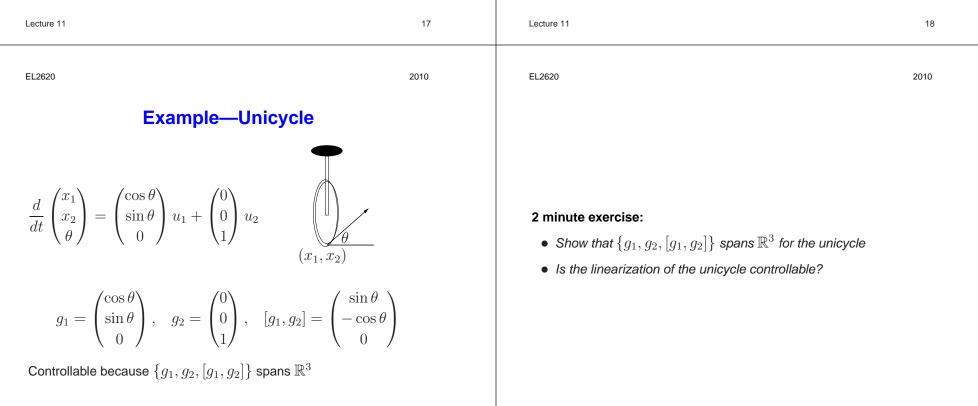
Theorem: The system

$$\dot{x} = g_1(x)u_1 + g_2(x)u_2$$

is controllable if the Lie bracket tree (together with g_1 and $g_2)$ spans \mathbb{R}^n for all x

Remark:

• The system can be steered in any direction of the Lie bracket tree



Example—Rolling Penny

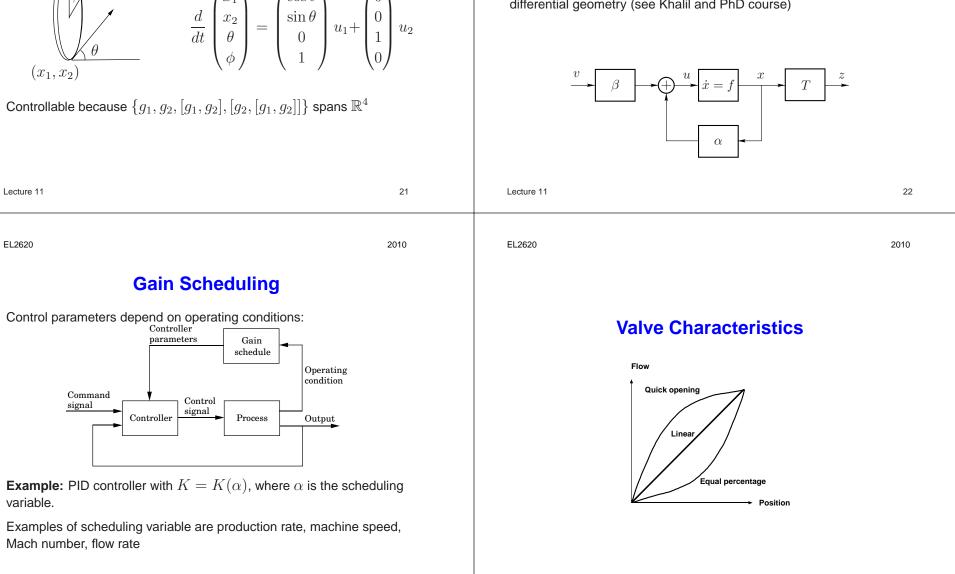
 $\cos\theta$

2010

When is Feedback Linearization Possible?

Q: When can we transform $\dot{x} = f(x) + g(x)u$ into $\dot{z} = Az + bv$ by means of feedback $u = \alpha(x) + \beta(x)v$ and change of variables z = T(x) (see previous lecture)?

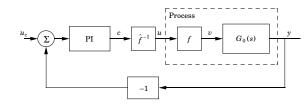
A: The answer requires Lie brackets and further concepts from differential geometry (see Khalil and PhD course)



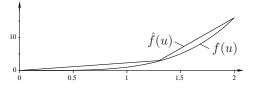
Lecture 11

EL2620

Nonlinear Valve

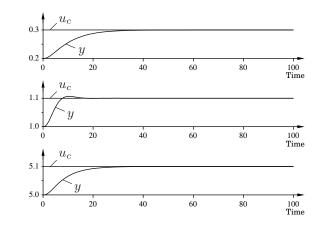


Valve characteristics

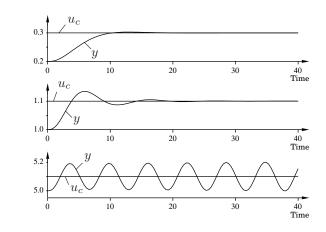


Lecture 11	25
EL2620	2010

With gain scheduling:

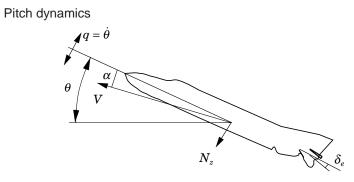


Without gain scheduling:



EL2620

Flight Control



Lecture 11

EL2620

2010

The Pitch Control Channel

