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EL2620 Nonlinear Control

Lecture 10

• Exact feedback linearization

• Input-output linearization

• Lyapunov-based control design methods
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Output Feedback and State Feedback

ẋ = f(x, u)

y = h(x)

• Output feedback: Find u = k(y) such that the closed-loop
system

ẋ = f
(
x, k

(
h(x)

))

has nice properties.

• State feedback: Find u = ℓ(x) such that

ẋ = f(x, ℓ(x))

has nice properties.

k and ℓ may include dynamics.
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Nonlinear Controllers

• Nonlinear dynamical controller: ż = a(z, y), u = c(z)

• Linear dynamics, static nonlinearity: ż = Az + By, u = c(z)

• Linear controller: ż = Az + By, u = Cz
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Nonlinear Observers
What if x is not measurable?

ẋ = f(x, u), y = h(x)

Simplest observer
˙̂x = f(x̂, u)

Feedback correction, as in linear case,

˙̂x = f(x̂, u) + K(y − h(x̂))

Choices of K

• Linearize f at x0, find K for the linearization

• Linearize f at x̂(t), find K = K(x̂) for the linearization

Second case is called Extended Kalman Filter

Lecture 10 4



EL2620 2010

Some state feedback control approaches

• Exact feedback linearization

• Input-output linearization

• Lyapunov-based design - backstepping control
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Exact Feedback Linearization
Consider the nonlinear control-affine system

ẋ = f(x) + g(x)u

idea: use a state-feedback controller u(x) to make the system linear

Example 1:

ẋ = cos x − x3 + u

The state-feedback controller

u(x) = − cos x + x3 − kx + v

yields the linear system

ẋ = −kx + v
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Another Example

ẋ1 = a sin x2

ẋ2 = −x2
1 + u

How do we cancel the term sin x2?

Perform transformation of states into linearizable form:

z1 = x1, z2 = ẋ1 = a sin x2

yields
ż1 = z2, ż2 = a cos x2(−x2

1 + u)

and the linearizing control becomes

u(x) = x2
1 +

v

a cos x2
, x2 ∈ [−π/2, π/2]
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Diffeomorphisms
A nonlinear state transformation z = T (x) with

• T invertible for x in the domain of interest

• T and T−1 continuously differentiable

is called a diffeomorphism

Definition: A nonlinear system

ẋ = f(x) + g(x)u

is feedback linearizable if there exist a diffeomorphism T whose
domain contains the origin and transforms the system into the form

ẋ = Ax + Bγ(x) (u − α(x))

with (A,B) controllable and γ(x) nonsingular for all x in the domain
of interest.
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Exact vs. Input-Output Linearization
The example again, but now with an output

ẋ1 = a sin x2, ẋ2 = −x2
1 + u, y = x2

• The control law u = x2
1 + v/a cos x2 yields

ż1 = z2 ; ż2 = v ; y = sin−1(z2/a)

which is nonlinear in the output.

• If we want a linear input-output relationship we could instead use

u = x2
1 + v

to obtain
ẋ1 = a sin x2, ẋ2 = v, y = x2

which is linear from v to y (but what about the unobservable state
x1?)
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Input-Output Linearization

Use state feedback u(x) to make the control-affine system

ẋ = f(x) + g(x)u

y = h(x)

linear from the input v to the output y

• The general idea: differentiate the output, y = h(x), p times

untill the control u appears explicitly in y(p), and then determine u
so that

y(p) = v

i.e., G(s) = 1/sp

Lecture 10 10

EL2620 2010

Example: controlled van der Pol equation

ẋ1 = x2

ẋ2 = −x1 + ǫ(1 − x2
1)x2 + u

y = x1

Differentiate the output

ẏ = ẋ1 = x2

ÿ = ẋ2 = −x1 + ǫ(1 − x2
1)x2 + u

The state feedback controller

u = x1 − ǫ(1 − x2
1)x2 + v ⇒ ÿ = v
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Lie Derivatives
Consider the nonlinear SISO system

ẋ = f(x) + g(x)u ; x ∈ R
n, u ∈ R

1

y = h(x), y ∈ R

The derivative of the output

ẏ =
dh

dx
ẋ =

dh

dx
(f(x) + g(x)u) , Lfh(x) + Lgh(x)u

where Lfh(x) and Lgh(x) are the Lie derivatives (Lfh is the
derivative of h along the vector field of ẋ = f(x))

Repeated derivatives

Lk
fh(x) =

d(Lk−1
f h)

dx
f(x), LgLfh(x) =

d(Lfh)

dx
g(x)
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Lie derivatives and relative degree

• The relative degree p of a system is defined as the number of
integrators between the input and the output (the number of times
y must be differentiated for the input u to appear)

• A linear system

Y (s)

U(s)
=

b0s
m + . . . + bm

sn + a1sn−1 + . . . + an

has relative degree p = n − m

• A nonlinear system has relative degree p if

LgL
i−1
f h(x) = 0, i = 1, . . . , p−1 ; LgL

p−1
f h(x) 6= 0 ∀x ∈ D
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Example

The controlled van der Pol equation

ẋ1 = x2

ẋ2 = −x1 + ǫ(1 − x2
1)x2 + u

y = x1

Differentiating the output

ẏ = ẋ1 = x2

ÿ = ẋ2 = −x1 + ǫ(1 − x2
1)x2 + u

Thus, the system has relative degree p = 2
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The input-output linearizing control

Consider a nth order SISO system with relative degree p

ẋ = f(x) + g(x)u

y = h(x)

Differentiating the output

ẏ =
dh

dx
ẋ = Lfh(x) +

=0︷ ︸︸ ︷
Lgh(x)u

...

y(p) = Lp
fh(x) + LgL

p−1
f h(x)u
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and hence the state-feedback controller

u =
1

LgL
p−1
f h(x)

(
−Lp

fh(x) + v
)

results in the linear input-output system

y(p) = v
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Zero Dynamics

• Note that the order of the linearized system is p, corresponding to
the relative degree of the system

• Thus, if p < n then n − p states are unobservable in y.

• The dynamics of the n − p states not observable in the linearized
dynamics of y are called the zero dynamics . Corresponds to the
dynamics of the system when y is forced to be zero for all times.

• A system with unstable zero dynamics is called non-minimum
phase (and should not be input-output linearized!)
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van der Pol again

ẋ1 = x2

ẋ2 = −x1 + ǫ(1 − x2
1)x2 + u

• With y = x1 the relative degree p = n = 2 and there are no
zero dynamics, thus we can transform the system into ÿ = v. Try
it yourself!

• With y = x2 the relative degree p = 1 < n and the zero
dynamics are given by ẋ1 = 0, which is not asymptotically stable
(but bounded)
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Lyapunov-Based Control Design Methods

ẋ = f(x, u)

• Find stabilizing state feedback u = u(x)

• Verify stability through Control Lyapunov function

• Methods depend on structure of f

Here we limit discussion to Back-stepping control design , which
require certain f discussed later.
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A simple introductory example

Consider
ẋ = cos x − x3 + u

Apply the linearizing control

u = − cos x + x3 − kx

Choose the Lyapunov candidate V (x) = x2/2

V (x) > 0 , V̇ = −kx2 < 0

Thus, the system is globally asymptotically stable

But, the term x3 in the control law may require large control moves!
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The same example
ẋ = cos x − x3 + u

Now try the control law

u = − cos x − kx

Choose the same Lyapunov candidate V (x) = x2/2

V (x) > 0 , V̇ = −x4 − kx2 < 0

Thus, also globally asymptotically stable (and more negative V̇ )
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Simulating the two controllers
Simulation with x(0) = 10

State trajectory Control input
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The linearizing control is slower and uses excessive input

Lecture 10 22

EL2620 2010

Back-Stepping Control Design

We want to design a state feedback u = u(x) that stabilizes

ẋ1 = f(x1) + g(x1)x2

ẋ2 = u
(1)

at x = 0 with f(0) = 0.

Idea: See the system as a cascade connection. Design controller first
for the inner loop and then for the outer.

u x2 x1
∫

g(x1)

f()

∫
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Suppose the partial system

ẋ1 = f(x1) + g(x1)v̄

can be stabilized by v̄ = φ(x1) and there exists Lyapunov fcn
V1 = V1(x1) such that

V̇1(x1) =
dV1

dx1

(
f(x1) + g(x1)φ(x1)

)
≤ −W (x1)

for some positive definite function W .

This is a critical assumption in backstepping control!
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The Trick

Equation (1) can be rewritten as

ẋ1 = f(x1) + g(x1)φ(x1) + g(x1)[x2 − φ(x1)]

ẋ2 = u

−φ(x1)

u x2 x1
∫

g(x1)

f + gφ

∫
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Introduce new state ζ = x2 − φ(x1) and control v = u − φ̇:

ẋ1 = f(x1) + g(x1)φ(x1) + g(x1)ζ

ζ̇ = v

where

φ̇(x1) =
dφ

dx1

ẋ1 =
dφ

dx1

(
f(x1) + g(x1)x2

)

−φ̇(x1)

u ζ x1
∫

g(x1)

f + gφ

∫
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Consider V2(x1, x2) = V1(x1) + ζ2/2. Then,

V̇2(x1, x2) =
dV1

dx1

(
f(x1) + g(x1)φ(x1)

)
+

dV1

dx1
g(x1)ζ + ζv

≤ −W (x1) +
dV1

dx1
g(x1)ζ + ζv

Choosing

v = −
dV1

dx1

g(x1) − kζ, k > 0

gives
V̇2(x1, x2) ≤ −W (x1) − kζ2

Hence, x = 0 is asymptotically stable for (1) with control law
u(x) = φ̇(x) + v(x).

If V1 radially unbounded, then global stability.
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Back-Stepping Lemma

Lemma: Let z = (x1, . . . , xk−1)
T and

ż = f(z) + g(z)xk

ẋk = u

Assume φ(0) = 0, f(0) = 0,

ż = f(z) + g(z)φ(z)

stable, and V (z) a Lyapunov fcn (with V̇ ≤ −W ). Then,

u =
dφ

dz

(
f(z) + g(z)xk

)
−

dV

dz
g(z) − (xk − φ(z))

stabilizes x = 0 with V (z) + (xk − φ(z))2/2 being a Lyapunov fcn.
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Strict Feedback Systems

Back-stepping Lemma can be applied to stabilize systems on strict
feedback form:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4

...

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u

where gk 6= 0

Note: x1, . . . , xk do not depend on xk+2, . . . , xn.
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2 minute exercise: Give an example of a linear system
ẋ = Ax + Bu on strict feedback form.
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Back-Stepping

Back-Stepping Lemma can be applied recursively to a system

ẋ = f(x) + g(x)u

on strict feedback form.

Back-stepping generates stabilizing feedbacks φk(x1, . . . , xk)
(equal to u in Back-Stepping Lemma) and Lyapunov functions

Vk(x1, . . . , xk) = Vk−1(x1, . . . , xk−1) + [xk − φk−1]
2/2

by “stepping back” from x1 to u (see Khalil pp. 593–594 for details).

Back-stepping results in the final state feedback

u = φn(x1, . . . , xn)
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Example

Design back-stepping controller for

ẋ1 = x2
1 + x2, ẋ2 = x3, ẋ3 = u

Step 0 Verify strict feedback form
Step 1 Consider first subsystem

ẋ1 = x2
1 + φ1(x1), ẋ2 = u1

where φ1(x1) = −x2
1 − x1 stabilizes the first equation. With

V1(x1) = x2
1/2, Back-Stepping Lemma gives

u1 = (−2x1 − 1)(x2
1 + x2) − x1 − (x2 + x2

1 + x1) = φ2(x1, x2)

V2 = x2
1/2 + (x2 + x2

1 + x1)
2/2
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Step 2 Applying Back-Stepping Lemma on

ẋ1 = x2
1 + x2

ẋ2 = x3

ẋ3 = u

gives

u = u2 =
dφ2

dz

(
f(z) + g(z)xn

)
−

dV2

dz
g(z) − (xn − φ2(z))

=
∂φ2

∂x1

(x2
1 + x2) +

∂φ2

∂x2

x3 −
∂V2

∂x2

− (x3 − φ2(x1, x2))

which globally stabilizes the system.
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Next Lecture

• Gain scheduling

• Nonlinear controllability (How to park a car )
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