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Output Feedback and State Feedback
&= f(z,u)
EL2620 Nonlinear Control y = h(z)

e Output feedback: Find u = k(y) such that the closed-loop

Lecture 10 system
i = f(z, k(h(z)))
e Exact feedback linearization

has nice properties.
e Input-output linearization e State feedback: Find u = ¢(x) such that

e Lyapunov-based control design methods &= f(x,l(x))

has nice properties.
k and ¢ may include dynamics.
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Nonlinear Observers

What if 2 is not measurable?

. jj:f(xvu)v y:h<$)
Nonlinear Controllers
Simplest observer

e Nonlinear dynamical controller: 2 = a(z,y), u = ¢(2) z=[f(T,u)
Feedback correction, as in linear case,

e Linear dynamics, static nonlinearity: 2 = Az + By, u = ¢(2) )
T = f(@u) + K(y — h(z))

e Linear controller: 2 = Az + By, u = Cz Choices of K

e Linearize f at xg, find K for the linearization
e Linearize f at Z(t), find K = K (&) for the linearization

Second case is called Extended Kalman Filter
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Some state feedback control approaches

e Exact feedback linearization
e [nput-output linearization

e Lyapunov-based design - backstepping control
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Exact Feedback Linearization
Consider the nonlinear control-affine system
&= f(z) + g(x)u
idea: use a state-feedback controller u(x) to make the system linear
Example 1:
& =cosz — x> 4+ u
The state-feedback controller
u(z) = —cosz + 2° — kx + v
yields the linear system

T =—kx + v
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Another Example
T1 = asin xy
i’g = —l'% +u
How do we cancel the term sin z5?
Perform transformation of states into linearizable form:
21 =T, 29 =T1 = asinrs

yields
21 = Z9, 2.2 = CLCOS.’EQ(—I% + U)

and the linearizing control becomes

w(z) =2t + ——— wy € [-7/2,7/2]
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Diffeomorphisms
A nonlinear state transformation z = T'(x) with
e T’ invertible for = in the domain of interest
e 7 and T~ continuously differentiable
is called a diffeomorphism
Definition: A nonlinear system
i = f(2) + g(a)u

is feedback linearizable if there exist a diffeomorphism 7" whose
domain contains the origin and transforms the system into the form

&= Ax + By(z) (u — a(z))

with (A, B) controllable and () nonsingular for all - in the domain
of interest.
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Exact vs. Input-Output Linearization

The example again, but now with an output
T1 =asinry, To= —x% +u, Y=
e The control law u = 2% + v/a cos x; yields
Sl=20; Zy=wv; y=sin '(2/a)
which is nonlinear in the output.

e |f we want a linear input-output relationship we could instead use
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Input-Output Linearization

Use state feedback u(x) to make the control-affine system

i = f(x) +g(x)u
y = h(r)

linear from the input v to the output ¥y

e The general idea: differentiate the output, y = h(x), p times

u = x? + v untill the control © appears explicitly in y(p), and then determine u
. so that
to obtain . . . y(p) —
Ty = asinTy, Ty =171, Y =2=T9
R e, G(s)=1/sP

which is linear from v to y (but what about the unobservable state

z17?)
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Example: controlled van der Pol equation

.T'lzafg
iy = —x1 +e(l — 23wy +u
y=n

Differentiate the output
j=d9=—x+€(l —a])as+u
The state feedback controller

u=1a,—€e(l =)z +v = j=v
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Lie Derivatives
Consider the nonlinear SISO system
i=f(z)+g(@)u; r e R" ueR
y=nh(x), yeR
The derivative of the output
. dh. dh
V=t T I

where Lh(z) and Lyh(x) are the Lie derivatives (L ¢h is the
derivative of / along the vector field of & = f(z))

(f(z) + g(x)u) & Lyh(x) + Lyh(z)u

Repeated derivatives

_d(Lfh)

Lih(e) = =—2=f(@), LyLyh(z) =

d(Lsh)
dx

g()
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Lie derivatives and relative degree

e The relative degree p of a system is defined as the number of
integrators between the input and the output (the number of times
1 must be differentiated for the input u to appear)

e A linear system

Y(s)  bos™ 4 ...+ by
U(s) s"+as" 1 +...+ap,

has relative degree p =n —m

e A nonlinear system has relative degree p if

LyLi'h(z) =0,i=1,...,p=1; LyLi 'h(z) #0 Vo €D
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Example

The controlled van der Pol equation

.’I.,‘lzﬂi'g
By = —11 +€(1 — 27)79 + 1
Y=

Differentiating the output
j=dy=—x1 +e(l—a)ry+u

Thus, the system has relative degree p = 2
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The input-output linearizing control
Consider a nth order SISO system with relative degree p

&= f(x)+g(x)u
y = h(z)

Differentiating the output

=0
. dh. —
y=o-i= Lih(x) + Lgh(z)u

yW) = LEh(x) + LyLE ™ h(z)u
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and hence the state-feedback controller

1 p
u= W (—=Lih(z) +v)

results in the linear input-output system

Yy =y
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Zero Dynamics
e Note that the order of the linearized system is p, corresponding to
the relative degree of the system
e Thus, if p < n then n — p states are unobservable in y.

e The dynamics of the n — p states not observable in the linearized
dynamics of y are called the zero dynamics . Corresponds to the
dynamics of the system when ¥ is forced to be zero for all times.

e A system with unstable zero dynamics is called non-minimum
phase (and should not be input-output linearized!)
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van der Pol again

.fl = T2
S 2
o =—x1+€(l —a))ry+u
e With y = x; the relative degree p = n. = 2 and there are no

zero dynamics, thus we can transform the system into §j = v. Try
it yourself!

e With y = x5 the relative degree p = 1 < n and the zero
dynamics are given by 21 = 0, which is not asymptotically stable
(but bounded)
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Lyapunov-Based Control Design Methods

T = f(x,u)
e Find stabilizing state feedback u = u(x)
e Verify stability through Control Lyapunov function
e Methods depend on structure of f

Here we limit discussion to Back-stepping control design , which
require certain f discussed later.
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A simple introductory example

Consider
i=cosr —a>+u

Apply the linearizing control
u=—cosx+a° — kx
Choose the Lyapunov candidate V (z) = 2% /2
V(z) >0, V=—ki®<0

Thus, the system is globally asymptotically stable

But, the term 22 in the control law may require large control moves!
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Simulating the two controllers

Simulation with z(0) = 10
The same example
& =cosx — x>+ u State trajectory Control input

Now try the control law

linearizing
- - - non-linearizing

u=—cosxr — kx

Choose the same Lyapunov candidate V' (z) = z?%/2

State x
Input u

Viz)>0, V=—a'—Fka?<0 )

Thus, also globally asymptotically stable (and more negative V)

The linearizing control is slower and uses excessive input
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Back-Stepping Control Design
We want to design a state feedback © = () that stabilizes

i1 = f(z1) + g(x1)22
jjz =Uu

Suppose the partial system
1) iy = f(z1) + g(x1)0

can be stabilized by v = gb(xl) and there exists Lyapunov fcn

atx = 0 with f(0) = 0. Vi = Vi(x1) such that

Idea: See the system as a cascade connection. Design controller first

: : dV;
for the inner loop and then for the outer. Vi(z) = i (f(%) + g(x1)¢(x1)> < —W(x)
u T2 T dml
] f - Hg(a1) f

for some positive definite function 11/,

This is a critical assumption in backstepping control!
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The Trick

Equation (1) can be rewritten as

EL2620 2010

Introduce new state ( = 25 — ¢(z,) and control v = u — ¢

iy = f(21) + g(x1)9(21) + g(21)¢

(o
&1 = f(z1) + g(z1)o(z1) + g(@1)[22 — d(21)]
-y where 06 i
o) = 4in = 50 (£ + ol
Ieted-o 01 et i)
U ¢ Z1
() ﬁ% J e J
f+99 '
*Qb(xl) f+go
Consider Vs (1, T9) = Vi(x1) + (/2. Then, Back-Stepping Lemma
. dvy A% Lemma: Letz = (zy,...,7,_1)" and
17 _ o o
2(3717-’/32> dzy <f(371) (‘;j](l’ﬂ(ﬁ(l’ﬂ) + dxlg(xl)g“ + CU L f(z) N g(z)mk
< —Wi(x) + d—lg(ﬂfl)C + (v Ty =u
Ty

Choosing
v=——"lg(z1) —k(, k>0

gives )
Va(z1, m9) < =W (zy) — kC?
Hence, v = 0 is asymptotically stable for (1) with control law

u(x) = ¢(z) + v(x).

If V; radially unbounded, then global stability.
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Assume ¢(0) =0, f(0) =0,
2= [f(z) +9(2)9(2)
stable, and V(2) a Lyapunov fen (with V' < —W). Then,

- (f(z) ; g(z)xk) ~ B (e~ (i~ 9(2)

stabilizes = = 0 with V(z) + (zx — ¢(2))?/2 being a Lyapunov fen.

u
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Strict Feedback Systems

Back-stepping Lemma can be applied to stabilize systems on strict
feedback form:

&1 = fi(z1) + g1(21)w2
&y = fo(z1,22) + g2(x1, 22) 23
&3 = f3(z1, 22, x3) + g3(x1, 22, x3) T4

Tn = fo(®1,. . ) + gn(T1, ..., 2n)u

where g # 0

Note: z1,...,x donotdepend on Ty4o,...,Ty,.
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2 minute exercise: Give an example of a linear system
T = Az + Bu on strict feedback form.
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Back-Stepping
Back-Stepping Lemma can be applied recursively to a system
&= f(z) +g(x)u

on strict feedback form.

Back-stepping generates stabilizing feedbacks <bk(x1, ceey xk)
(equal to u in Back-Stepping Lemma) and Lyapunov functions

‘/;ﬂ(xh s 7Ik) = ‘/;c—l(xb s Jmk—l) + [:Uk - ¢k—1}2/2

by “stepping back” from x| to u (see Khalil pp. 593-594 for details).

Back-stepping results in the final state feedback

U= ¢p(T1,...,2,)
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Example

Design back-stepping controller for

2 .
Ty =]+ To, To=2T3, T3=1U

Step 0 Verify strict feedback form
Step 1 Consider first subsystem

T = f% + ¢1(551)7 T = Uy

where ¢ (z1) = —2% — 1, stabilizes the first equation. With
Vi(x1) = 22 /2, Back-Stepping Lemma gives

up = (=21 — 1)(95% +x2) — 1 — (22 + 96? + 21) = @21, 22)

Vo = 21/2 + (22 + 2t +1)%/2
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Step 2 Applying Back-Stepping Lemma on

. 2
$1:$1+$2

i’z = T3
i‘g =Uu
gives
d dv;
u=n =52+ ote)en ) - o) = (o0 - ()
0 0 V.
= 8;;)?@% + 9) + %963 - 8—1’2 — (23 — P2(71, 22))

which globally stabilizes the system.

Lecture 10 33

EL2620

Next Lecture

e Gain scheduling

e Nonlinear controllability (How to park a car)
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