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EL2620 Nonlinear Control

Lecture 9

e Nonlinear control design based on high-gain control
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Today’s Goal

You should be able to analyze and design

e High-gain control systems

e Sliding mode controllers
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Linearization Through High Gain
History of the Feedback Amplifier @2¢ f(e)
New York—San Francisco communication link 1914. L’@_—' f() / e
High signal amplification with low distortion was needed. L ‘
K
— s
—[rOF- 7O} L T
L a1§®§a2 = _ T§y§4a2 r
e 14+ a0 K 14+ anK
Feedback amplifiers were the solution! choose K > 1/a1, yields
Black, Bode, and Nyquist at Bell Labs 1920-1950. Y~ 1 .
K
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A Word of Caution

Nyquist: high loop-gain may induce oscillations (due to dynamics)!
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Inverting Nonlinearities

Compensation of static nonlinearity through inversion:

Controller

Should be combined with feedback as in the figure!
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Remark: How to Obtain ! from f using

Feedback
f(u)

u

—O—

w |

2 .

u=k(v—f(u))
If £ > 0 large and df /du > 0, then & — 0 and
0="k(v— f(u)) & fu)=wv s u=f10v)
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Example—Linearization of Static Nonlinearity

1

0.8]

L@_ﬁ K if(.) y y(r)
f(uw)

0.2]

CD 0.2 0.4 0.6 0.8 1

Linearization of f(u) = u? through feedback.

The case K = 100 is shown in the plot: y(r) ~ r.
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The Sensitivity Function

S=(1+GF)!

The closed-loop system is 4

—0O— G
o _
Co= 1 aF F

Small perturbations dG in (G gives

2010

Gy 1 L dGy_ 1 dG_ dG
dG ~ (1+ GF)? Gs 1+GFG °G

S is the closed-loop sensitivity to open-loop perturbations.
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Distortion Reduction via Feedback

The feedback reduces distortion in each link.

Several links give distortion-free high gain.

— O /() —O— /()

=l
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Example—Distortion Reduction

oG |

—

Let G = 1000,
distortion dG/G = 0.1

Choose K = 0.1 = S=(1+GK)™' =~ 0.01. Then
dGy d
=S— ~0.001
G G

100 feedback amplifiers in series give total amplification
Gt = (Gcl)loo ~ 10100
and total distortion

thot
Gtot

=(1+107%H" - 1~0.1
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Transcontinental Communication Revolution

The feedback amplifier was patented by Black 1937.

Year Channels Loss (dB) Noamp’s

1914 1 60 3-6
1923 1-4 150-400 6-20
1938 16 1000 40
1941 480 30000 600
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Sensitivity and the Circle Criterion

— GF
@ﬂ N
NI
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Small Sensitivity Allows Large Uncertainty

If \S(zw)\ is small, we can choose 1 large (close to one).
This corresponds to a large sector for f(+).

Hence, |S(iw)| small implies low sensitivity to nonlinearities.

f() kay f(y)
GF(Z(U) 1 k1y
Consideracircle C :={z € C: [z + 1| =r},r € (0,1). k= =7 ,
G F(iw) stays outside C if 1
ko =
1+ GF(iw)| >r <  |S(iw)] <r ! T 1
_ o I S i (1) 1
Then, the Circle Criterion gives stability if < <
1+7r Y 1—r
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On-Off Control

On-off control is the simplest control strategy.

Common in temperature control, level control etc.

O | 6)

The relay corresponds to infinite high gain.
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A Control Design ldea
Assume V (x) = 2T Pz, P = PT > 0, represents the energy of
&t =Axr+ Bu, wue[-1,1]
Choose u such that V' decays as fast as possible:
V =2 (ATP + PA)x 4+ 2B Pzu

is minimized if u = — sgn( BT Px) (Notice that V =a+buie. just
a segment of line in u, —1 < u < 1. Hence the lowest value is at an
endpoint, depending on the sign of the slope b. )
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Sliding Modes
£+ o(x) >0
T~ "0(x) <0
s @ o
f(x), o) <0 _——7 -

The sliding mode is @ = af* + (1 — a) f~, where « satisfies
aff + (1 —a)f, = 0forthe normal projections of f*, f~

The sliding surface is S = {z : o(z) = 0}.

Lecture 9
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Example
: 0 —1 1
x—(l _1)x+<1>u—Ax+Bu
u=—sgno(r) =—sgnry = —sgn(Cxr)

is equivalent to

i = A.%—B, T9 >0
N Ax + B, To < 0
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For small x5 we have

2010

dl’g
To(t) o1 —1, —=1—x T >0
2( ) 1 das 1 2
dx
$2(t>%$1+1,—2%1+.’1¢1 $2<O
del
This implies the following behavior
To >0
\zl =-1 ‘ T :/
To <0

Lecture 9
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Sliding Mode Dynamics
The dynamics along the sliding surface .S is obtained by setting
U = Ugq € [—1, 1] such that z() stays on S.
Ueq is called the equivalent control .

Phase plane

w2
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Example (cont'd)
Finding © = 1ueq Such that 6(x) = &2 = O on o(x) = o = 0 gives

O=a9 =21 — Ty +Ugq =21 +Uq = Ueq= —21
~—
=0
Insert this in the equation for Z1:
l"l = — X2 +U'eq = —T
~—
=0

gives the dynamics on the sliding surface S = {z : x93 = 0}.
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Deriving the Equivalent Control

Assume

i = f(@) + gla)u
u= —sgno(xr)

has a stable sliding surface S = {z : o(x) = 0}. Then, forx € S,

0=o(r)= .21 (f(x) +g<x>u)

The equivalent control is thus given by

va=(Lo) Lt

if the inverse exists.
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Equivalent Control for Linear System

& = Azr + Bu
u=—sgno(zr)=—sgn(Cx)
Assume C'B > 0. The sliding surface S = {z : Cx = 0} so

_ ‘;_Z ( @) + g(x)u) — O(Az + Buy)

gives Uy = —C Az /CB,

Example (contd): For the example:

Ueqg = —CAx/CB = — (1 —1) T = -,

0=ao(x)

because o(z) = x5 = 0. (Same result as before.)
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Sliding Dynamics

The dynamics on S = {z : C'x = 0} is given by

. 1
T = Az + Bueq = (I - C—BBC> Az,

under the constraint C'z = 0, where the eigenvalues of
(I — BC'/CB)A are equal to the zeros of
sG(s) = sC(sI — A)"'B.

Remark: The condition that C'x = 0 corresponds to the zero at
s = 0, and thus this dynamic disappears on S = {x : C'x = 0}.
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Proof
& = Az + Bu
y=Cr = y=CAx+ CBu = u:C—lBCA$_CLBy:>
T = ([ — CLBBC)Ax — O—lBBg’/
Hence, the transfer function from g to u equals
s g CAST — (1= o= BO)A) ™

but this transfer function is also 1/(sG(s)) Hence, the eigenvalues of

EL2620 2010

Design of Sliding Mode Controller

Idea: Design a control law that forces the state to o(x) = 0. Choose
o (x) such that the sliding mode tends to the origin. Assume

T fi(x) + gi(7)u

d | T2 T

e | = f(2) + g(x)u
Tp Tn—1

Choose control law
_ pf@) m
pTg(z)  pTg(x)

where y > ( is a design parameter, o(x) = p’ x, and

sgno(z),

(I — BC/CB)A are equal to the zeros of sG(s). pl = (p1 . pn) are the coefficients of a stable polynomial.
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Closed-Loop Stability
Consider V (z) = 0?(x)/2 with o(z) = pTx. Then,
V=0o"(x)5(x) =a"p(p" f(x) + p"g(x)u)
With the chosen control law, we get
V = —po(x)sgno(z) <0
soztendtoo(x) = 0.
0=0(x) =p121+ -+ Po1Tn_1 + P
= 4t paaal) 4 paal)

where z(*) denote time derivative. Now p corresponds to a stable
differential equation, and x,, — 0 exponentially as{ — oo . The
state relations z_1 = T, now give + — () exponentially as t — o0.
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Time to Switch
Consider an initial point z such that oy = o (xy) > 0. Since
o(x)o(x) = —po(x)sgno(x)
it follows that as long as o (x) > 0:
o(x) =—p
Hence, the time to the first switch (o (z) = 0) is
ot
ts = — <
i

Note that s — 0 as 1 — 00.
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Example—Sliding Mode Controller

Design state-feedback controller for

EL2620 2010

Phase Portrait

Simulation with ;2 = 0.5. Note the sliding surface o (x) = x1 + xs.

T = Lo T+ L u x
1o 0 ?
y=(0 1)z '
Choose p1s + ps = s+ 1 sothat o(x) = x1 + 5. The controller is
given by °
PAT I gnofo)
U= — — ——sgno(x 4
B pIB"
= 211 — psgn(zy + ) % . 5 7 S
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Time Plots
- The Sliding Mode Controller is Robust
Initial condition 1 T2 Assume that only a model & = f () + §()u of the true system

T
z(0) = (1.5 0) .
Simulation agrees well with
time to switch I

n

0'0 T‘ime
=20 3 2
1
and sliding dynamics !
. AT AT
Yy=-y
_4 .
1] z 4 fi ] 10
T‘j.me
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& = f(x) + g(x)u is known. Still, however,

T(rT 7. T T
p (fg" — fg )p_MpTgSgM(x) ~0

V:O'.’L' o~
() Ty Ty

if sgn(p’g) = segn(p’g) and 1 > 0 is sufficiently large.

The closed-loop system is thus robust against model errors!

(High gain control with stable open loop zeros)
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Comments on Sliding Mode Control

Efficient handling of model uncertainties

Often impossible to implement infinite fast switching

e Smooth version through low pass filter or boundary layer

Applications in robotics and vehicle control

e Compare puls-width modulated control signals
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Today’s Goal

You should be able to analyze and design
e High-gain control systems

e Sliding mode controllers
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Next Lecture

e |yapunov design methods

e Exact feedback linearization
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