EL2620 Nonlinear Control

Lecture 9

• Nonlinear control design based on high-gain control

Today's Goal

You should be able to analyze and design

- High-gain control systems
- Sliding mode controllers

History of the Feedback Amplifier

New York–San Francisco communication link 1914. High signal amplification with low distortion was needed.

Feedback amplifiers were the solution!

Black, Bode, and Nyquist at Bell Labs 1920–1950.

Linearization Through High Gain $\alpha_2 e_{-f(e)}$

$$\alpha_1 \le \frac{f(e)}{e} \le \alpha_2 \qquad \Rightarrow \qquad \frac{\alpha_1}{1 + \alpha_1 K} r \le y \le \frac{\alpha_2}{1 + \alpha_2 K} r$$

choose $K \gg 1/\alpha_1$, yields

$$y \approx \frac{1}{K}r$$

 $\alpha_1 e$

P

Inverting Nonlinearities

Compensation of static nonlinearity through inversion:

Example—Linearization of Static Nonlinearity

Linearization of $f(u)=u^2$ through feedback. The case K=100 is shown in the plot: $y(r)\approx r.$

A Word of Caution

Nyquist: high loop-gain may induce oscillations (due to dynamics)!

$$\dot{u} = k \big(v - f(u) \big)$$

If k>0 large and df/du>0, then $\dot{u}
ightarrow 0$ and

$$0 = k(v - f(u)) \qquad \Leftrightarrow \qquad f(u) = v \qquad \Leftrightarrow \qquad u = f^{-1}(v)$$

Lecture 9

EL2620

2010

The Sensitivity Function ${\cal S}=(1+GF)^{-1}$

The closed-loop system is

$$G_{\rm cl} = \frac{G}{1+GF}$$

Small perturbations dG in G gives

$$\frac{dG_{\rm cl}}{dG} = \frac{1}{(1+GF)^2} \qquad \Rightarrow \qquad \frac{dG_{\rm cl}}{G_{\rm cl}} = \frac{1}{1+GF}\frac{dG}{G} = S\frac{dG}{G}$$

S is the closed-loop **sensitivity** to open-loop perturbations.

Distortion Reduction via Feedback

The feedback reduces distortion in each link.

Several links give distortion-free high gain.

Transcontinental Communication Revolution

The feedback amplifier was patented by Black 1937.

Year	Channels	Loss (dB)	No amp's
1914	1	60	3–6
1923	1–4	150–400	6–20
1938	16	1000	40
1941	480	30000	600

Example—Distortion Reduction

Let G = 1000, distortion dG/G = 0.1

Choose
$$K = 0.1$$

EL2620

$$\label{eq:second} \begin{split} & \fbox{K} \\ S = (1+GK)^{-1} \approx 0.01. \ \text{Then} \end{split}$$

G

$$\frac{dG_{\rm cl}}{G_{\rm cl}} = S \frac{dG}{G} \approx 0.001$$

100 feedback amplifiers in series give total amplification

 \Rightarrow

$$G_{\rm tot} = (G_{\rm cl})^{100} \approx 10^{100}$$

and total distortion

$$\frac{dG_{\rm tot}}{G_{\rm tot}} = (1+10^{-3})^{100} - 1 \approx 0.1$$

Lecture 9

12

2010

Consider a circle $\mathcal{C} := \{z \in \mathbb{C} : |z+1| = r\}, r \in (0,1).$ $GF(i\omega)$ stays outside \mathcal{C} if

$$1 + GF(i\omega)| > r \quad \Leftrightarrow \quad |S(i\omega)| \le r^{-1}$$

Then, the Circle Criterion gives stability if $\frac{1}{1+r} \leq \frac{f(y)}{y} \leq \frac{1}{1-r}$

Lecture 9	13
EL2620	2010

On–Off Control

On–off control is the simplest control strategy. Common in temperature control, level control etc.

The relay corresponds to infinite high gain.

Small Sensitivity Allows Large Uncertainty

If $|S(i\omega)|$ is small, we can choose r large (close to one). This corresponds to a large sector for $f(\cdot)$.

Hence, $|S(i\omega)|$ small implies low sensitivity to nonlinearities.

Lecture 9

EL2620

2010

14

A Control Design Idea

Assume $V(x) = x^T P x$, $P = P^T > 0$, represents the energy of

$$\dot{x} = Ax + Bu, \qquad u \in [-1, 1]$$

Choose u such that V decays as fast as possible:

$$\dot{V} = x^T (A^T P + P A) x + 2 B^T P x u$$

is minimized if $u=-\operatorname{sgn}(B^TPx)$ (Notice that $\dot{V}=a+bu,$ i.e. just a segment of line in $u,\,-1< u<1.$ Hence the lowest value is at an endpoint, depending on the sign of the slope b.)

$$\dot{x} = Ax - B \\ B^T Q P x = 0 \\ \dot{x} = Ax + B$$

Lecture 9

16

2010

Example

$$\dot{x} = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix} u = Ax + Bu$$
$$u = -\operatorname{sgn} \sigma(x) = -\operatorname{sgn} x_2 = -\operatorname{sgn}(Cx)$$

is equivalent to

EL2620

$$\dot{x} = \begin{cases} Ax - B, & x_2 > 0 \\ Ax + B, & x_2 < 0 \end{cases}$$

 $\sigma(x) = 0\}.$ J Lecture 9 18 EL2620 2010 EL2620 2010

Sliding Mode Dynamics

The dynamics along the sliding surface S is obtained by setting $u = u_{eq} \in [-1, 1]$ such that x(t) stays on S.

 $u_{\rm eq}$ is called the ${\rm equivalent\ control}.$

$$\dot{x} = \begin{cases} f^+(x), & \sigma(x) > 0 \\ f^-(x), & \sigma(x) < 0 \end{cases} \qquad \overbrace{f^+}^{f^+} \sigma(x) > 0 \\ f^-(x), & \sigma(x) < 0 \end{cases}$$

The sliding mode is $\dot{x}=\alpha f^++(1-\alpha)f^-$, where α satisfies $\alpha f_n^++(1-\alpha)f_n^-=0$ for the normal projections of f^+,f^-

The sliding surface is
$$S = \{x : \sigma(x) = 0\}$$

Lecture 9	17

For small x_2 we have

$$\begin{cases} \dot{x}_2(t) \approx x_1 - 1, \ \frac{dx_2}{dx_1} \approx 1 - x_1 & x_2 > 0 \\ \\ \dot{x}_2(t) \approx x_1 + 1, \ \frac{dx_2}{dx_1} \approx 1 + x_1 & x_2 < 0 \end{cases}$$

This implies the following behavior

2010

EL2620

Deriving the Equivalent Control

Assume

$$\dot{x} = f(x) + g(x)u$$
$$u = -\operatorname{sgn} \sigma(x)$$

has a stable sliding surface $S = \{x : \sigma(x) = 0\}$. Then, for $x \in S$,

$$0 = \dot{\sigma}(x) = \frac{d\sigma}{dx} \cdot \frac{dx}{dt} = \frac{d\sigma}{dx} \left(f(x) + g(x)u \right)$$

The equivalent control is thus given by

$$u_{\rm eq} = -\left(\frac{d\sigma}{dx}g(x)\right)^{-1}\frac{d\sigma}{dx}f(x)$$

if the inverse exists.

Lecture 9 21 Lecture 9 22 EL2620 2010

Equivalent Control for Linear System

Example (cont'd)

Finding $u = u_{\rm eq}$ such that $\dot{\sigma}(x) = \dot{x}_2 = 0$ on $\sigma(x) = x_2 = 0$ gives

 $0 = \dot{x}_2 = x_1 - \underbrace{x_2}_{\circ} + u_{\text{eq}} = x_1 + u_{\text{eq}} \quad \Rightarrow \ u_{\text{eq}} = -x_1$

 $\dot{x}_1 = -\underbrace{x_2}_0 + u_{\mathsf{eq}} = -x_1$

gives the dynamics on the sliding surface $S = \{x : x_2 = 0\}$.

$$\dot{x} = Ax + Bu$$

 $u = -\operatorname{sgn}\sigma(x) = -\operatorname{sgn}(Cx)$

Assume CB > 0. The sliding surface $S = \{x : Cx = 0\}$ so

$$0 = \dot{\sigma}(x) = \frac{d\sigma}{dx} \left(f(x) + g(x)u \right) = C \left(Ax + Bu_{eq} \right)$$

gives $u_{eq} = -CAx/CB$.

Insert this in the equation for \dot{x}_1 :

Example (cont'd): For the example:

$$u_{eq} = -CAx/CB = -(1 \ -1)x = -x_1,$$

because $\sigma(x) = x_2 = 0$. (Same result as before.)

2010

Sliding Dynamics

The dynamics on $S = \{x : Cx = 0\}$ is given by

$$\dot{x} = Ax + Bu_{eq} = \left(I - \frac{1}{CB}BC\right)Ax,$$

under the constraint Cx = 0, where the eigenvalues of (I - BC/CB)A are equal to the zeros of $sG(s) = sC(sI - A)^{-1}B.$

Remark: The condition that Cx = 0 corresponds to the zero at s = 0, and thus this dynamic disappears on $S = \{x : Cx = 0\}$.

EL2620

2010

Proof

$$\dot{x} = Ax + Bu$$

$$y = Cx \Rightarrow \dot{y} = CAx + CBu \Rightarrow u = \frac{1}{CB}CAx - \frac{1}{CB}\dot{y} \Rightarrow$$

$$\dot{x} = \left(I - \frac{1}{CB}BC\right)Ax - \frac{1}{CB}B\dot{y}$$

Hence, the transfer function from \dot{y} to u equals

$$\frac{-1}{CB} + \frac{1}{CB}CA(sI - ((I - \frac{1}{CB}BC)A))^{-1}\frac{-1}{CB}B$$

but this transfer function is also 1/(sG(s)) Hence, the eigenvalues of (I - BC/CB)A are equal to the zeros of sG(s).

Design of Sliding Mode Controller

Idea: Design a control law that forces the state to $\sigma(x) = 0$. Choose $\sigma(x)$ such that the sliding mode tends to the origin. Assume

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} f_1(x) + g_1(x)u \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix} = f(x) + g(x)u$$

Choose control law

EL2620

$$u = -\frac{p^T f(x)}{p^T g(x)} - \frac{\mu}{p^T g(x)} \operatorname{sgn} \sigma(x),$$

where $\mu > 0$ is a design parameter, $\sigma(x) = p^T x$, and $p^T = \begin{pmatrix} p_1 & \dots & p_n \end{pmatrix}$ are the coefficients of a stable polynomial.

Lecture 9	25	Lecture 9	26
EL2620	2010	EL2620	2010

Consider $V(x) = \sigma^2(x)/2$ with $\sigma(x) = p^T x$. Then, $\dot{V} = \sigma^T(x)\dot{\sigma}(x) = x^T p \left(p^T f(x) + p^T g(x)u\right)$

With the chosen control law, we get

$$\dot{V} = -\mu\sigma(x)\operatorname{sgn}\sigma(x) < 0$$

Closed-Loop Stability

so x tend to $\sigma(x) = 0$.

$$0 = \sigma(x) = p_1 x_1 + \dots + p_{n-1} x_{n-1} + p_n x_n$$
$$= p_1 x_n^{(n-1)} + \dots + p_{n-1} x_n^{(1)} + p_n x_n^{(0)}$$

where $x^{(k)}$ denote time derivative. Now p corresponds to a stable differential equation, and $x_n \to 0$ exponentially as $t \to \infty$. The state relations $x_{k-1} = \dot{x}_k$ now give $x \to 0$ exponentially as $t \to \infty$.

Time to Switch

Consider an initial point x_0 such that $\sigma_0 = \sigma(x_0) > 0$. Since

$$\sigma(x)\dot{\sigma}(x) = -\mu\sigma(x)\operatorname{sgn}\sigma(x)$$

it follows that as long as $\sigma(x) > 0$:

$$\dot{\sigma}(x) = -\mu$$

Hence, the time to the first switch ($\sigma(x) = 0$) is

$$t_{\rm s} = \frac{\sigma_0}{\mu} < \infty$$

Note that $t_s \to 0$ as $\mu \to \infty$.

Lecture 9

28

given by

Lecture 9

EL2620

2010

EL2620

2010

Phase Portrait

Simulation with $\mu = 0.5$. Note the sliding surface $\sigma(x) = x_1 + x_2$.

Time Plots

Example—Sliding Mode Controller

 $\dot{x} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u$

Choose $p_1s + p_2 = s + 1$ so that $\sigma(x) = x_1 + x_2$. The controller is

 $u = -\frac{p^T A x}{p^T B} - \frac{\mu}{p^T B} \operatorname{sgn} \sigma(x)$

 $= 2x_1 - \mu \operatorname{sgn}(x_1 + x_2)$

 $y = \begin{pmatrix} 0 & 1 \end{pmatrix} x$

Design state-feedback controller for

S

The Sliding Mode Controller is Robust

Assume that only a model $\dot{x}=\widehat{f}(x)+\widehat{g}(x)u$ of the true system $\dot{x}=f(x)+g(x)u$ is known. Still, however,

$$\dot{V} = \sigma(x) \left[\frac{p^T (f \hat{g}^T - \hat{f} g^T) p}{p^T \hat{g}} - \mu \frac{p^T g}{p^T \hat{g}} \operatorname{sgn} \sigma(x) \right] < 0$$

if $\mathrm{sgn}(p^Tg)=\mathrm{sgn}(p^T\widehat{g})$ and $\mu>0$ is sufficiently large.

The closed-loop system is thus robust against model errors! (High gain control with stable open loop zeros)

Comments on Sliding Mode Control

- Efficient handling of model uncertainties
- Often impossible to implement infinite fast switching
- Smooth version through low pass filter or boundary layer
- Applications in robotics and vehicle control
- Compare puls-width modulated control signals

Today's Goal

You should be able to analyze and design

- High-gain control systems
- Sliding mode controllers

 Leture 9
 3
 Leture 9
 3