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EL2620 Nonlinear Control

Lecture 9

• Nonlinear control design based on high-gain control
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Today’s Goal

You should be able to analyze and design

• High-gain control systems

• Sliding mode controllers
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History of the Feedback Amplifier

New York–San Francisco communication link 1914.

High signal amplification with low distortion was needed.

f(·)f(·)
−

r y
f(·)

k

Feedback amplifiers were the solution!

Black, Bode, and Nyquist at Bell Labs 1920–1950.
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Linearization Through High Gain

−

r y
f(·)

K

e

α1e

α2e f(e)

α1 ≤
f(e)

e
≤ α2 ⇒

α1

1 + α1K
r ≤ y ≤

α2

1 + α2K
r

choose K ≫ 1/α1, yields

y ≈
1

K
r
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A Word of Caution

Nyquist: high loop-gain may induce oscillations (due to dynamics)!
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Inverting Nonlinearities

Compensation of static nonlinearity through inversion:

F (s) f̂−1(·) f(·) G(s)
−

Controller

Should be combined with feedback as in the figure!
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Remark: How to Obtain f−1 from f using
Feedback

−

v uk

s

f(·)

u

f(u)

u̇ = k
(
v − f(u)

)

If k > 0 large and df/du > 0, then u̇ → 0 and

0 = k
(
v − f(u)

)
⇔ f(u) = v ⇔ u = f−1(v)
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Example—Linearization of Static Nonlinearity

r e u y

−
K f(·)
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1

y(r)

f(u)

Linearization of f(u) = u2 through feedback.

The case K = 100 is shown in the plot: y(r) ≈ r.
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The Sensitivity Function S = (1 + GF )−1

The closed-loop system is

Gcl =
G

1 + GF

−

r y
G

F

Small perturbations dG in G gives

dGcl

dG
=

1

(1 + GF )2
⇒

dGcl

Gcl

=
1

1 + GF

dG

G
= S

dG

G

S is the closed-loop sensitivity to open-loop perturbations.
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Distortion Reduction via Feedback

The feedback reduces distortion in each link.

Several links give distortion-free high gain.

− −
f(·)f(·)

KK
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Example—Distortion Reduction

Let G = 1000,
distortion dG/G = 0.1

−
r y

G

K

Choose K = 0.1 ⇒ S = (1 + GK)−1 ≈ 0.01. Then

dGcl

Gcl

= S
dG

G
≈ 0.001

100 feedback amplifiers in series give total amplification

Gtot = (Gcl)
100 ≈ 10100

and total distortion

dGtot

Gtot

= (1 + 10−3)100 − 1 ≈ 0.1
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Transcontinental Communication Revolution

The feedback amplifier was patented by Black 1937.

Year Channels Loss (dB) No amp’s

1914 1 60 3–6

1923 1–4 150–400 6–20

1938 16 1000 40

1941 480 30000 600
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Sensitivity and the Circle Criterion

r

−1

GF (iω)

−

r y
GF

f(·)

Consider a circle C := {z ∈ C : |z + 1| = r}, r ∈ (0, 1).

GF (iω) stays outside C if

|1 + GF (iω)| > r ⇔ |S(iω)| ≤ r−1

Then, the Circle Criterion gives stability if
1

1 + r
≤

f(y)

y
≤

1

1 − r
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Small Sensitivity Allows Large Uncertainty

If |S(iω)| is small, we can choose r large (close to one).

This corresponds to a large sector for f(·).

Hence, |S(iω)| small implies low sensitivity to nonlinearities.

k1 =
1

1 + r

k2 =
1

1 − r

y

k1y

k2y f(y)
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On–Off Control

On–off control is the simplest control strategy.

Common in temperature control, level control etc.

r e u y

−
G(s)

The relay corresponds to infinite high gain.
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A Control Design Idea
Assume V (x) = xT Px, P = P T > 0, represents the energy of

ẋ = Ax + Bu, u ∈ [−1, 1]

Choose u such that V decays as fast as possible:

V̇ = xT (AT P + PA)x + 2BT Pxu

is minimized if u = − sgn(BT Px) (Notice that V̇ = a + bu, i.e. just
a segment of line in u, −1 < u < 1. Hence the lowest value is at an
endpoint, depending on the sign of the slope b. )

BT QPx = 0
ẋ = Ax − B

ẋ = Ax + B
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Sliding Modes

ẋ =

{
f+(x), σ(x) > 0

f−(x), σ(x) < 0

σ(x) > 0

σ(x) < 0
f+

f−

The sliding mode is ẋ = αf+ + (1 − α)f−, where α satisfies
αf+

n
+ (1 − α)f−

n
= 0 for the normal projections of f+, f−

αf+ + (1 − α)f−

f+

f−

The sliding surface is S = {x : σ(x) = 0}.
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Example

ẋ =

(
0 −1

1 −1

)
x +

(
1

1

)
u = Ax + Bu

u = − sgn σ(x) = − sgn x2 = − sgn(Cx)

is equivalent to

ẋ =

{
Ax − B, x2 > 0

Ax + B, x2 < 0
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For small x2 we have





ẋ2(t) ≈ x1 − 1,
dx2

dx1

≈ 1 − x1 x2 > 0

ẋ2(t) ≈ x1 + 1,
dx2

dx1

≈ 1 + x1 x2 < 0

This implies the following behavior

x2 > 0

x2 < 0

x2 = 0
x1 = −1 x1 = 1
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Sliding Mode Dynamics

The dynamics along the sliding surface S is obtained by setting
u = ueq ∈ [−1, 1] such that x(t) stays on S.

ueq is called the equivalent control .
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Example (cont’d)

Finding u = ueq such that σ̇(x) = ẋ2 = 0 on σ(x) = x2 = 0 gives

0 = ẋ2 = x1 − x2︸︷︷︸
=0

+ ueq = x1 + ueq ⇒ ueq = −x1

Insert this in the equation for ẋ1:

ẋ1 = − x2︸︷︷︸
=0

+ ueq = −x1

gives the dynamics on the sliding surface S = {x : x2 = 0}.
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Deriving the Equivalent Control

Assume

ẋ = f(x) + g(x)u

u = − sgn σ(x)

has a stable sliding surface S = {x : σ(x) = 0}. Then, for x ∈ S,

0 = σ̇(x) =
dσ

dx
·
dx

dt
=

dσ

dx

(
f(x) + g(x)u

)

The equivalent control is thus given by

ueq = −

(
dσ

dx
g(x)

)
−1

dσ

dx
f(x)

if the inverse exists.
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Equivalent Control for Linear System

ẋ = Ax + Bu

u = − sgn σ(x) = − sgn(Cx)

Assume CB > 0. The sliding surface S = {x : Cx = 0} so

0 = σ̇(x) =
dσ

dx

(
f(x) + g(x)u

)
= C

(
Ax + Bueq

)

gives ueq = −CAx/CB.

Example (cont’d): For the example:

ueq = −CAx/CB = −
(
1 −1

)
x = −x1,

because σ(x) = x2 = 0. (Same result as before.)

Lecture 9 23

EL2620 2010

Sliding Dynamics

The dynamics on S = {x : Cx = 0} is given by

ẋ = Ax + Bueq =

(
I −

1

CB
BC

)
Ax,

under the constraint Cx = 0, where the eigenvalues of
(I − BC/CB)A are equal to the zeros of
sG(s) = sC(sI − A)−1B.

Remark: The condition that Cx = 0 corresponds to the zero at
s = 0, and thus this dynamic disappears on S = {x : Cx = 0}.
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Proof

ẋ = Ax + Bu

y = Cx ⇒ ẏ = CAx + CBu ⇒ u =
1

CB
CAx −

1

CB
ẏ ⇒

ẋ =

(
I −

1

CB
BC

)
Ax −

1

CB
Bẏ

Hence, the transfer function from ẏ to u equals

−1

CB
+

1

CB
CA(sI − ((I −

1

CB
BC)A))−1 −1

CB
B

but this transfer function is also 1/(sG(s)) Hence, the eigenvalues of
(I − BC/CB)A are equal to the zeros of sG(s).
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Design of Sliding Mode Controller
Idea: Design a control law that forces the state to σ(x) = 0. Choose
σ(x) such that the sliding mode tends to the origin. Assume

d

dt





x1

x2
...

xn




=





f1(x) + g1(x)u

x1
...

xn−1




= f(x) + g(x)u

Choose control law

u = −
pTf(x)

pTg(x)
−

µ

pT g(x)
sgn σ(x),

where µ > 0 is a design parameter, σ(x) = pT x, and

pT =
(
p1 . . . pn

)
are the coefficients of a stable polynomial.
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Closed-Loop Stability
Consider V (x) = σ2(x)/2 with σ(x) = pT x. Then,

V̇ = σT (x)σ̇(x) = xT p
(
pT f(x) + pT g(x)u

)

With the chosen control law, we get

V̇ = −µσ(x) sgnσ(x) < 0

so x tend to σ(x) = 0.

0 = σ(x) = p1x1 + · · · + pn−1xn−1 + pnxn

= p1x
(n−1)
n

+ · · · + pn−1x
(1)
n

+ pnx
(0)
n

where x(k) denote time derivative. Now p corresponds to a stable
differential equation, and xn → 0 exponentially as t → ∞ . The
state relations xk−1 = ẋk now give x → 0 exponentially as t → ∞.
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Time to Switch

Consider an initial point x0 such that σ0 = σ(x0) > 0. Since

σ(x)σ̇(x) = −µσ(x) sgnσ(x)

it follows that as long as σ(x) > 0:

σ̇(x) = −µ

Hence, the time to the first switch (σ(x) = 0) is

ts =
σ0

µ
< ∞

Note that ts → 0 as µ → ∞.
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Example—Sliding Mode Controller

Design state-feedback controller for

ẋ =

(
1 0

1 0

)
x +

(
1

0

)
u

y =
(
0 1

)
x

Choose p1s + p2 = s + 1 so that σ(x) = x1 + x2. The controller is
given by

u = −
pTAx

pTB
−

µ

pTB
sgn σ(x)

= 2x1 − µ sgn(x1 + x2)
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Phase Portrait

Simulation with µ = 0.5. Note the sliding surface σ(x) = x1 + x2.

−2 −1 0 1 2

−1

0

1

x1

x2
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Time Plots

Initial condition

x(0) =
(
1.5 0

)T

.

Simulation agrees well with
time to switch

ts =
σ0

µ
= 3

and sliding dynamics

ẏ = −y

x1

x2

u
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The Sliding Mode Controller is Robust

Assume that only a model ẋ = f̂(x) + ĝ(x)u of the true system
ẋ = f(x) + g(x)u is known. Still, however,

V̇ = σ(x)

[
pT (fĝT − f̂ gT )p

pT ĝ
− µ

pTg

pT ĝ
sgn σ(x)

]
< 0

if sgn(pTg) = sgn(pT ĝ) and µ > 0 is sufficiently large.

The closed-loop system is thus robust against model errors!

(High gain control with stable open loop zeros)
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Comments on Sliding Mode Control

• Efficient handling of model uncertainties

• Often impossible to implement infinite fast switching

• Smooth version through low pass filter or boundary layer

• Applications in robotics and vehicle control

• Compare puls-width modulated control signals
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Today’s Goal

You should be able to analyze and design

• High-gain control systems

• Sliding mode controllers
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Next Lecture

• Lyapunov design methods

• Exact feedback linearization
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