EL2620 2010

EL2620 2010

EL2620 Nonlinear Control

Lecture 8

- Backlash
- Quantization

Today's Goal

You should be able to analyze and design for

- Backlash
- Quantization

 Lecture 8
 1
 Lecture 8
 2

EL2620 2010

EL2620 2010

Linear and Angular Backlash

Backlash

Backlash (glapp) is

- present in most mechanical and hydraulic systems
- increasing with wear
- necessary for a gearbox to work in high temperature
- bad for control performance
- sometimes inducing oscillations

Lecture 8 3 Lecture 8 4

Lecture 8

EL2620

5

2010

Backlash Model

$$\dot{x}_{out} = egin{cases} \dot{x}_{in}, & \text{in contact} \\ 0, & \text{otherwise} \end{cases}$$

"in contact" denotes $|x_{out}-x_{in}| = D$ and $\dot{x}_{in}(x_{in}-x_{out}) > 0$.

Alternative Model

Not equivalent to "Backlash Model"

Lecture 8 6

EL2620 2010

Effects of Backlash

P-control of motor angle with gearbox having backlash with $D=0.2\,$

- ullet Oscillations for K=4 but not for K=0.25 or K=1. Why?
- Note that the amplitude will decrease with decreasing D, but never vanish

7

Lecture 8

EL2620

9

2010

11

Describing Function for Backlash

If A < D then N(A) = 0 else

$$\operatorname{Re} N(A) = \frac{1}{\pi} \left[\frac{\pi}{2} + \arcsin(1 - 2D/A) + 2(1 - 2D/A) \sqrt{\frac{D}{A} \left(1 - \frac{D}{A} \right)} \right]$$
$$\operatorname{Im} N(A) = -\frac{4D}{\pi A} \left(1 - \frac{D}{A} \right)$$

-1/N(A) for D = 0.2:

Note that $-1/N(A) \to -1$ as $A \to \infty$ (physical interpretation?)

Lecture 8

Describing Function Analysis

K = 4, D = 0.2:

DF analysis: Intersection at $A=0.33, \omega=1.24$

Simulation: $A = 0.33, \, \omega = 2\pi/5.0 = 1.26$

Describing function predicts oscillation well

EL2620 2010

Stability Proof for Backlash System

The describing function method is only approximate.

Do there exist conditions that guarantee stability?

Note that $heta_{in}$ and $heta_{out}$ will not converge to zero

Q: What about $\dot{\theta}_{in}$ and $\dot{\theta}_{out}$?

Lecture 8

Rewrite the system:

The block "BL" satisfies

$$\dot{ heta}_{out} = \left\{ egin{array}{ll} \dot{ heta}_{in} & ext{in contact} \ 0 & ext{otherwise} \end{array}
ight.$$

Homework 2

Analyze this backlash system with input-output stability results:

Passivity Theorem BL is passive

Small Gain Theorem BL has gain $\gamma(BL)=1$

Circle Criterion BL contained in sector $\left[0,1\right]$

Lecture 8 14

EL2620 2010

EL2620 2010

Backlash Compensation

- Mechanical solutions
- Deadzone
- Linear controller design
- Backlash inverse

Linear Controller Design

Introduce phase lead compensation:

EL2620

2010

EL2620 2010

Backlash Inverse

Idea: Let x_{in} jump $\pm 2D$ when \dot{x}_{out} should change sign

Oscillation removed!

 $F(s) = K \frac{1+sT_2}{1+sT_1}$ with $T_1 = 0.5, T_2 = 2.0$:

Lecture 8 17

Lecture 8 18

EL2620 2010

- If $\widehat{D} = D$ then perfect compensation $(x_{out} = u)$
- ullet If $\widehat{D} < D$ then under-compensation (decreased backlash)
- If $\widehat{D} > D$ then over-compensation (may give oscillation)

EL2620 2010

Example—Perfect Compensation

Motor with backlash on input in feedback with PD-controller

Lecture 8 19

Lecture 8

EL2620 2010

EL2620 2010

Example—Under-Compensation

Lecture 8

Example—Over-Compensation

Lecture 8 22

EL2620 2010

Quantization

- What precision is needed in A/D and D/A converters? (8–14 bits?)
- What precision is needed in computations? (8-64 bits?)

- Quantization in A/D and D/A converters
- Quantization of parameters
- Roundoff, overflow, underflow in computations

EL2620 2010

Linear Model of Quantization

Model quantization error as a uniformly distributed stochastic signal \boldsymbol{e} independent of \boldsymbol{u} with

$$Var(e) = \int_{-\infty}^{\infty} e^2 f_e \, de = \int_{-\Delta/2}^{\Delta/2} \frac{e^2}{\Delta} \, de = \frac{\Delta^2}{12}$$

May be reasonable if Δ is small compared to the variations in \boldsymbol{u}

Lecture 8

21

Describing Function for Deadzone Relay

Lecture $6 \Rightarrow$

Lecture 8

$$N(A) = \begin{cases} 0, & A < D \\ \frac{4}{\pi A} \sqrt{1 - D^2/A^2}, & A > D \end{cases}$$

25

Describing Function for Quantizer

2010

28

$$N(A) = \begin{cases} 0, & A < \frac{\Delta}{2} \\ \frac{4\Delta}{\pi A} \sum_{i=1}^{n} \sqrt{1 - \left(\frac{2i-1}{2A}\Delta\right)^2}, & \frac{2n-1}{2}\Delta < A < \frac{2n+1}{2}\Delta \end{cases}$$

Lecture 8 26

EL2620 2010

- The maximum value is $4/\pi \approx 1.27$ attained at $A \approx 0.71\Delta$.
- \bullet Predicts oscillation if Nyquist curve intersects negative real axis to the left of $-\pi/4\approx -0.79$
- \bullet Controller with gain margin >1/0.79=1.27 avoids oscillation
- ullet Reducing Δ reduces only the oscillation amplitude

EL2620 2010

Example—Motor with P-controller.

Quantization of process output with $\Delta=0.2\,$

Nyquist of linear part (K & ZOH & G(s)) intersects at -0.5K: Stability for K<2 without Q.

Stable oscillation predicted for K>2/1.27=1.57 with Q.

Lecture 8

EL2620

2010

EL2620 2010

Example— $1/s^2$ & 2nd-Order Controller

Lecture 8 29

K = 0.8

K = 1.2

Lecture 8 30

EL2620 2010

Quantization $\Delta=0.02$ in A/D converter:

Describing function: $A_y=0.01\ \mathrm{and}\ T=39$

Simulation: $A_y=0.01$ and T=28

EL2620 2010

Quantization $\Delta=0.01$ in D/A converter:

Describing function: $A_u=0.005$ and T=39

Simulation: $A_u=0.005$ and T=39

Lecture 8 31 Lecture 8 32

Quantization Compensation

- Improve accuracy (larger word length)
- ullet Avoid unstable controller and gain margins <1.3

• Use the tracking idea from anti-windup to improve D/A converter

• Use analog dither, oversampling, and digital lowpass filter to improve accuracy of A/D converter

Today's Goal

You should now be able to analyze and design for

- Backlash
- Quantization

33 Lecture 8 Lecture 8

EL2620 2010

Next Lecture

Nonlinear control design based on

- High-gain control
- Sliding-mode control

35 Lecture 8