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EL2620 Nonlinear Control

Lecture 6

• Describing function analysis
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Today’s Goal

You should be able to

• Derive describing functions for static nonlinearities

• Analyze existence and stability of periodic solutions by describing
function analysis
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Motivating Example
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G(s) =
4

s(s + 1)2
and u = sat e give a stable oscillation.

• How can the oscillation be predicted?
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A Frequency Response Approach

Nyquist / Bode:

A (linear) feedback system will have sustained oscillations
(center) if the loop-gain is 1 at the frequency where the phase lag
is −180o

But, can we talk about the frequency response, in terms of gain and
phase lag, of a static nonlinearity?
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Fourier Series

A periodic function u(t) = u(t + T ) has a Fourier series expansion

u(t) =
a0

2
+

∞∑

n=1

(an cos nωt + bn sin nωt)

=
a0

2
+

∞∑

n=1

√
a2

n + b2
n sin[nωt + arctan(an/bn)]

where ω = 2π/T and

an(ω) =
2

T

∫ T

0

u(t) cos nωt dt, bn(ω) =
2

T

∫ T

0

u(t) sin nωt dt

Note: Sometimes we make the change of variable t → φ/ω
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The Fourier Coefficients are Optimal

The finite expansion

ûk(t) =
a0

2
+

k∑

n=1

(an cos nωt + bn sin nωt)

solves

min
û

2

T

∫ T

0

[
u(t) − ûk(t)

]2
dt
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Key Idea
r e u y

−
N.L. G(s)

e(t) = A sin ωt gives

u(t) =

∞∑

n=1

√
a2

n + b2
n sin[nωt + arctan(an/bn)]

If |G(inω)| ≪ |G(iω)| for n ≥ 2, then n = 1 suffices, so that

y(t) ≈ |G(iω)|
√

a2
1 + b2

1 sin[ωt + arctan(a1/b1) + arg G(iω)]

That is, we assume all higher harmonics are filtered out by G
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Definition of Describing Function

The describing function is

N(A,ω) =
b1(ω) + ia1(ω)

A

e(t) u(t)
N.L.

e(t) û1(t)
N(A,ω)

If G is low pass and a0 = 0, then

û1(t) = |N(A,ω)|A sin[ωt + arg N(A,ω)]

can be used instead of u(t) to analyze the system.

Amplitude dependent gain and phase shift!
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Describing Function for a Relay
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φ = 2πt/T

a1 =
1

π

∫
2π

0

u(φ) cosφ dφ = 0

b1 =
1

π

∫
2π

0

u(φ) sinφ dφ =
2

π

∫
π

0

H sinφ dφ =
4H

π

The describing function for a relay is thus

N(A) =
b1(ω) + ia1(ω)

A
=

4H

πA
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Odd Static Nonlinearities

Assume f(·) and g(·) are odd (i.e. f(−e) = −f(e)) static
nonlinearities with describing functions Nf and Ng. Then,

• Im Nf (A,ω) = 0

• Nf (A,ω) = Nf (A)

• Nαf (A) = αNf (A)

• Nf+g(A) = Nf (A) + Ng(A)
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Existence of Periodic Solutions
replacements

0 e u y
− f(·) G(s)

−1/N(A)

A

G(iω)

Proposal: sustained oscillations if loop-gain 1 and phase-lag −180o

G(iω)N(A) = −1

The intersections of the curves G(iω) and −1/N(A)
give ω and A for a possible periodic solution.
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Periodic Solutions in Relay System
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−1/N(A)

G(s) =
3

(s + 1)3
with feedback u = −sgn y

No phase lag in f(·), arg G(iω) = −π for ω =
√

3 = 1.7

G(i
√

3) = −3/8 = −1/N(A) = −πA/4 ⇒ A = 12/8π ≈ 0.48
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The prediction via the describing function agrees very well with the
true oscillations:
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Note that G filters out almost all higher-order harmonics.
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Describing Function for a Saturation
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Let e(t) = A sin ωt = A sin φ. First set H = D. Then for
φ ∈ (0, π)

u(φ) =

{
A sin φ, φ ∈ (0, φ0) ∪ (π − φ0, π)

D, φ ∈ (φ0, π − φ0)

where φ0 = arcsin D/A.
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a1 =
1

π

∫
2π

0

u(φ) cos φ dφ = 0

b1 =
1

π

∫
2π

0

u(φ) sinφ dφ =
4

π

∫ π/2

0

u(φ) sin φ dφ

=
4A

π

∫ φ0

0

sin2 φ dφ +
4D

π

∫ π/2

φ0

sin φ dφ

=
A

π

(
2φ0 + sin 2φ0

)
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Hence, if H = D, then N(A) =
1

π

(
2φ0 + sin 2φ0

)
.

If H 6= D, then the rule Nαf (A) = αNf (A) gives

N(A) =
H

Dπ

(
2φ0 + sin 2φ0

)
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N(A) for H = D = 1
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5 minute exercise: What oscillation amplitude and frequency do the
describing function analysis predict for the “Motivating Example”?
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The Nyquist Theorem

−
KG(s)

−1/K

G(iω)

Assume that G is stable, and K is a positive gain.

• If G(iω) goes through the point −1/K the closed-loop system
displays sustained oscillations

• If G(iω) encircles the point −1/K , then the closed-loop system
is unstable (growing amplitude oscillations).

• If G(iω) does not encircle the point −1/K , then the closed-loop
system is stable (damped oscillations)
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Stability of Periodic Solutions

Ω

−1/N(A)

G(Ω)

Assume that G(s) is stable.

• If G(Ω) encircles the point −1/N(A), then the oscillation
amplitude is increasing.

• If G(Ω) does not encircle the point −1/N(A), then the
oscillation amplitude is decreasing.
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An Unstable Periodic Solution

−1/N(A)

G(Ω)

An intersection with amplitude A0 is unstable if A < A0 leads to
decreasing amplitude and A > A0 leads to increasing.
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Stable Periodic Solution in Relay System
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G(s) =
(s + 10)2

(s + 1)3
with feedback u = −sgn y

gives one stable and one unstable limit cycle. The left most
intersection corresponds to the stable one.
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Automatic Tuning of PID Controller
Period and amplitude of relay feedback limit cycle can be used for
autotuning:

Σ Process

PID

Relay
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Describing Function for a Quantizer
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Let e(t) = A sin ωt = A sin φ. Then for φ ∈ (0, π)

u(φ) =

{
0, φ ∈ (0, φ0)

1, φ ∈ (φ0, π − φ0)

where φ0 = arcsin D/A.
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a1 =
1

π

∫
2π

0

u(φ) cos φ dφ = 0

b1 =
1

π

∫
2π

0

u(φ) sin φdφ =
4

π

∫ π/2

φ0

sinφdφ

=
4

π
cos φ0 =

4

π

√
1 − D2/A2

N(A) =

{
0, A < D
4

πA

√
1 − D2/A2, A ≥ D
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Plot of Describing Function Quantizer
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Notice that N(A) ≈ 1.3/A for large amplitudes
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Describing Function Pitfalls

Describing function analysis can give erroneous results.

• A DF may predict a limit cycle even if one does not exist.

• A limit cycle may exist even if the DF does not predict it.

• The predicted amplitude and frequency are only approximations
and can be far from the true values.
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Accuracy of Describing Function Analysis

Control loop with friction F = sgn y:

_

_
GC

Friction

yref

F

y

Corresponds to

G

1 + GC
=

s(s − z)

s3 + 2s2 + 2s + 1
with feedback u = −sgn y

The oscillation depends on the zero at s = z.
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DF gives period times and amplitudes (T,A) = (11.4, 1.00) and
(17.3, 0.23), respectively.

Accurate results only if y is close to sinusoidal!
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2 minute exercise: What is N(A) for f(x) = x2?
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Harmonic Balance

e(t) = A sin ωt u(t)
f(·)

A few more Fourier coefficients in the truncation

ûk(t) =
a0

2
+

k∑

n=1

(an cos nωt + bn sin nωt)

may give much better result. Describing function corresponds to
k = 1 and a0 = 0.

Example: f(x) = x2 gives u(t) = (1 − cos 2ωt)/2. Hence by
considering a0 = 1 and a2 = 1/2 we get the exact result.
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Analysis of Oscillations—A Summary

Time-domain:

• Poincaré maps and Lyapunov functions

• Rigorous results but only for simple examples

• Hard to use for large problems

Frequency-domain:

• Describing function analysis

• Approximate results

• Powerful graphical methods
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Today’s Goal

You should be able to

• Derive describing functions for static nonlinearities

• Analyze existence and stability of periodic solutions by describing
function analysis
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Next Lecture

• Saturation and anti-windup compensation

• Friction modeling and compensation
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