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EL2620 Nonlinear Control

Lecture 6

e Describing function analysis

Lecture 6 1

EL2620 2010

Today’s Goal

You should be able to
e Derive describing functions for static nonlinearities

e Analyze existence and stability of periodic solutions by describing
function analysis
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Motivating Example

o4 e n e

G(s) =

——3 and u = sat e give a stable oscillation.
s(s+1)

e How can the oscillation be predicted?
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A Frequency Response Approach

Nyquist / Bode:

A (linear) feedback system will have sustained oscillations
(center) if the loop-gain is 1 at the frequency where the phase lag
is —180°

But, can we talk about the frequency response, in terms of gain and
phase lag, of a static nonlinearity?
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Fourier Series
A periodic function u(t) = u(t 4+ T') has a Fourier series expansion

u(t) = % + Z(an cos nwt + by, sin nwt)

n=1

EL2620

The Fourier Coefficients are Optimal

The finite expansion

2010

k

— @+Z 2 b2 sinfnwt + arctan(ay, /b,)] uR(t) = @JrZ(ancosnthrbnsinnwt)

=3 Va2 + b2 sin[nwt + arctan(a, /by, 9 1

n=1 n=
where w = 27 /T and solves 9 (T
: 12

L L min 2 / [u(t) — @ (t)]dt
an(w) = —/ u(t) cosnwt dt, b,(w) = —/ u(t) sin nwt dt 0

T Jo T Jo
Note: Sometimes we make the change of variable t — ¢ /w
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Key Idea Definition of Describing Function
r e u

—@®—{ N.L. G(s) J

e(t) = Asinwt gives

u(t) = Z Va2 + b2 sin[nwt + arctan(a, /by,)]
n=1
If |G (inw)| < |G(iw)| for n > 2, then n = 1 suffices, so that
y(t) = |G(iw)]y/a? + b3 sin[wt + arctan(a; /by) + arg G(iw)]
That is, we assume all higher harmonics are filtered out by G
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The describing function is

N(Aw) = y
6& N.L. —ﬁ(ﬂ e<t—>>N(A,w)—a»1(t)

If G is low pass and ag = 0, then
uy(t) = |IN(A,w)|Asinjwt 4+ arg N (A, w)]
can be used instead of u(t) to analyze the system.

Amplitude dependent gain and phase shift!
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Describing Function for a Relay
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. " " Odd Static Nonlinearities
I o e
e Assume f(-) and g(-) are odd (i.e. f(—e) = — f(e)) static
I nonlinearities with describing functions Nf and Ng. Then,
I T2 3 4 5 6 I N A, - O
2 ¢ = 2t /T * Im Ny(4, @)
1 ™
a1=;/0 u(¢) cospdp =0 o Ni(A,w) = N;(A)
I 2 [T 4H
by =— ingdp = — Hsingdp = —
=2 [ ut@sinods = 2 [ rsingds - o Noj(A) = aN;(4)
The describing function for a relay is thus
bi(w) +iay(w) A4H ® Niig(A) = Ny(A) + Ny(A)
N(A) = =
A TA
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Existence of Periodic Solutions

G(iw)

~1/N(A) -
NP

Proposal: sustained oscillations if loop-gain 1 and phase-lag —180°

G(iw)N(A) = -1

Co-4ro o) 4

The intersections of the curves G(iw) and —1 /N (A)
give w and A for a possible periodic solution.
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Periodic Solutions in Relay System

“=1/N(4)
Lo T Hee Y -

-1 -08 -06 -04 -02 0

with feedback © = —sgny

3
=Ty
No phase lag in f(-), arg G(iw) = —mforw = v/3 = 1.7

G(ivV3) = —3/8 = —1/N(A) = —1A/4 = A=12/87 ~0.48

Lecture 6 12




EL2620 2010

The prediction via the describing function agrees very well with the
true oscillations:

Y

NANAN'
Y/ VIV

_1 — L L L L ]
0 2 4 6 8 10

Note that (7 filters out almost all higher-order harmonics.
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Describing Function for a Saturation

1

0.5

__l) l) e | u

-0.5

-1

0 1 2 a) 4 5 6

Lete(t) = Asinwt = Asin ¢. Firstset H = D. Then for

¢ € (0,m)

[ Asing,  $ € (0,60) U (r — do,7)
“w“‘{D, 6 € (0,7 — o)

where ¢y = arcsin D/A.
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_ 1
Hence, if H = D, then N(A) = — <2¢0 + sin 2gz50>
T
If H # D, then the rule N, f(A) = ) gives
H .
N(A) = - 2¢0 -+ sin 2¢0
Dm

2m
al:%/ u(¢) cospdp =0
0
1 27 4 /2
— ingdp =— ingd
~ [ u@rsinodn == [ ue)sinodo

4A [P 4D [T/
:—/ sin2¢d¢+—/ sin ¢ do
T Jo T Jy

0

_4 (2¢0 + sin 2¢0)
T
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“I \N(A)for H=D =1
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5 minute exercise: What oscillation amplitude and frequency do the
describing function analysis predict for the “Motivating Example”?
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The Nyquist Theorem

G(iw)
_’®_’KG(5) —1/K/

Assume that (5 is stable, and K is a positive gain.

e If G(iw) goes through the point —1 /K the closed-loop system
displays sustained oscillations

e If G(iw) encircles the point —1/ K, then the closed-loop system
is unstable (growing amplitude oscillations).

e If G(iw) does not encircle the point —1 /K, then the closed-loop
system is stable (damped oscillations)
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Stability of Periodic Solutions

Q G(R) \\

1/

Assume that G(s) is stable.

e If G(12) encircles the point —1 /N (A), then the oscillation
amplitude is increasing.

e If G(£2) does not encircle the point —1/N(A), then the
oscillation amplitude is decreasing.
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An Unstable Periodic Solution

W 1/N(A) K
N v

An intersection with amplitude Ay is unstable if A < Ay leads to
decreasing amplitude and A > A leads to increasing.
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Stable Periodic Solution in Relay System
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Automatic Tuning of PID Controller

Period and amplitude of relay feedback limit cycle can be used for

, autotuning:
0.15] G(ZCU)
T (& u 0.1 PID
—»@—» I G(S) y 0.05| jl Y ! Process 4
g , ‘ *( :>—( r
-0.05 —1/N(A> \) ‘ Relay —T/_>
-0.15| m
S 4 3 2 = 0 L
(s 4 10)? | u
G(s) = ——%~ with feedback u = —sgn
gives one stable and one unstable limit cycle. The left most
intersection corresponds to the stable one. 1 '
0 5 10 Time
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Describing Function for a Quantizer
u 1]
1 03| (& 1 2
1 o/ \ a, = — / u(p)cospdp =0
e o u T Jo
R o 1 2 4 w/2
D by = —/ u(¢) sin ¢pdo = —/ sin ¢d¢
T T Jo T J o
-0.8| 4 4
_10 1 2 3 7 5 6 :_COS¢0:_\/1_D2/A2
T T

Lete(t) = Asinwt = Asin ¢. Thenfor ¢ € (0, 7)

[0 be0.60)
“(@‘{1, 6 € (o, — o)

where ¢y = arcsin D/A.
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0 A<D

N(A) ={
(4) { iA\/l—DQ/AQ, A>D
T
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Plot of Describing Function Quantizer

0.7

0.6f

osf N(A)forD =1
0.4f
0.3f

0.2f

0.1f

0 N N N N
0 2 4 6 8 10

Notice that N (A) ~ 1.3/A for large amplitudes
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Describing Function Pitfalls

Describing function analysis can give erroneous results.
e A DF may predict a limit cycle even if one does not exist.
e A limit cycle may exist even if the DF does not predict it.

e The predicted amplitude and frequency are only approximations
and can be far from the true values.
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Accuracy of Describing Function Analysis

Control loop with friction F' = sgny: iy .y

Fr
r Friction [=—
8 Y
4,®_.

G

Vegy ¢

Corresponds to

G s(s — 2)
1+GC  s3+2s2+2s5+1

with feedback © = —sgny

The oscillation depends on the zero at s = z.
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0

-1
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0.4

02t Y z=4 / 3
0
04 5 10 15 20 25 30

DF gives period times and amplitudes (7', A) = (11.4,1.00) and
(17.3,0.23), respectively.

Accurate results only if y is close to sinusoidal!
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2 minute exercise: Whatis N(A) for f(z) = 2?2

EL2620 2010

Harmonic Balance

e(t) = Asinwi u(t)

— )

A few more Fourier coefficients in the truncation
a k
—~ 0 .
u(t) = 5 ;(an cos nwt + by, sin nwt)

may give much better result. Describing function corresponds to
k= 1andag = 0.

Example: f(z) = x? gives u(t) = (1 — cos 2wt) /2. Hence by
considering ag = 1 and ay = 1/2 we get the exact result.

Lecture 6 29 Lecture 6 30
EL2620 2010 EL2620 2010
Analysis of Oscillations—A Summary
Time-domain:
e Poincaré maps and Lyapunov functions TOda)/’S Goal

e Rigorous results but only for simple examples

e Hard to use for large problems
Frequency-domain:

e Describing function analysis

e Approximate results

e Powerful graphical methods
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You should be able to
e Derive describing functions for static nonlinearities

e Analyze existence and stability of periodic solutions by describing
function analysis
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Next Lecture

e Saturation and anti-windup compensation

e Friction modeling and compensation
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