

Norms

A norm || • || measures size
Definition:
A norm is a function $\|\cdot\|: \Omega \rightarrow \mathbb{R}^{+}$, such that for all $x, y \in \Omega$

- $\|x\| \geq 0 \quad$ and $\quad\|x\|=0 \Leftrightarrow x=0$
- $\|x+y\| \leq\|x\|+\|y\|$
- $\|\alpha x\|=|\alpha| \cdot\|x\|$, for all $\alpha \in \mathbb{R}$

Examples:

Euclidean norm: $\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
Max norm: $\|x\|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$

Lecture 5

Eigenvalues are not gains

The spectral radius of a matrix M

$$
\rho(M)=\max _{i}\left|\lambda_{i}(M)\right|
$$

is not a gain.

Why? What amplification is described by the eigenvalues?

Gain of a Matrix

Every matrix $M \in \mathbf{C}^{n \times n}$ has a singular value decomposition

$$
M=U \Sigma V^{*}
$$

where

$$
\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} ; \quad U^{*} U=I ; \quad V^{*} V=I
$$

σ_{i} - the singular values
The "gain" of M is the largest singular value of M :

$$
\sigma_{\max }(M)=\sigma_{1}=\sup _{x \in \mathbb{R}^{n}} \frac{\|M x\|}{\|x\|}
$$

where $\|\cdot\|$ is the Euclidean norm.

Lecture 5

Signal Norms

A signal x is a function $x: \mathbb{R}^{+} \rightarrow \mathbb{R}$.
A signal norm $\|\cdot\|_{k}$ is a norm on the space of signals x.

Examples:

2-norm (energy norm): $\|x\|_{2}=\sqrt{\int_{0}^{\infty}|x(t)|^{2} d t}$
sup-norm: $\|x\|_{\infty}=\sup _{t \in \mathbb{R}^{+}}|x(t)|$

Parseval's Theorem

\mathcal{L}_{2} denotes the space of signals with bounded energy: $\|x\|_{2}<\infty$
Theorem: If $x, y \in \mathcal{L}_{2}$ have the Fourier transforms

$$
X(i \omega)=\int_{0}^{\infty} e^{-i \omega t} x(t) d t, \quad Y(i \omega)=\int_{0}^{\infty} e^{-i \omega t} y(t) d t
$$

then

$$
\int_{0}^{\infty} y(t) x(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} Y^{*}(i \omega) X(i \omega) d \omega
$$

In particular,

$$
\|x\|_{2}^{2}=\int_{0}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(i \omega)|^{2} d \omega
$$

The power calculated in the time domain equals the power calculated in the frequency domain

Lecture 5

2 minute exercise: Show that $\gamma\left(S_{1} S_{2}\right) \leq \gamma\left(S_{1}\right) \gamma\left(S_{2}\right)$.

System Gain

A system S is a map from \mathcal{L}_{2} to $\mathcal{L}_{2}: y=S(u)$.

The gain of S is defined as $\quad \gamma(S)=\sup _{u \in \mathcal{L}_{2}} \frac{\|y\|_{2}}{\|u\|_{2}}=\sup _{u \in \mathcal{L}_{2}} \frac{\|S(u)\|_{2}}{\|u\|_{2}}$
Example: The gain of a scalar static system $y(t)=\alpha u(t)$ is

$$
\gamma(\alpha)=\sup _{u \in \mathcal{L}_{2}} \frac{\|\alpha u\|_{2}}{\|u\|_{2}}=\sup _{u \in \mathcal{L}_{2}} \frac{|\alpha|\|u\|_{2}}{\|u\|_{2}}=|\alpha|
$$

Lecture 5

Gain of a Static Nonlinearity

Lemma: A static nonlinearity f such that $|f(x)| \leq K|x|$ and $f\left(x^{*}\right)=K x^{*}$ has gain $\gamma(f)=K$.

Proof: $\|y\|_{2}^{2}=\int_{0}^{\infty} f^{2}(u(t)) d t \leq \int_{0}^{\infty} K^{2} u^{2}(t) d t=K^{2}\|u\|_{2}^{2}$, where $u(t)=x^{*}, t \in(0,1)$, gives equality, so

$$
\gamma(f)=\sup _{u \in \mathcal{L}_{2}}\|y\|_{2} /\|u\|_{2}=K
$$

Gain of a Stable Linear System

 Lemma:$\gamma(G)=\sup _{u \in \mathcal{L}_{2}} \frac{\|G u\|_{2}}{\|u\|_{2}}=\sup _{\omega \in(0, \infty)}|G(i \omega)|$

Proof: Assume $|G(i \omega)| \leq K$ for $\omega \in(0, \infty)$ and $\left|G\left(i \omega^{*}\right)\right|=K$ for some ω^{*}. Parseval's theorem gives

$$
\begin{aligned}
\|y\|_{2}^{2} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|Y(i \omega)|^{2} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|G(i \omega)|^{2}|U(i \omega)|^{2} d \omega \leq K^{2}\|u\|_{2}^{2}
\end{aligned}
$$

Arbitrary close to equality by choosing $u(t)$ close to $\sin \omega^{*} t$.

The Small Gain Theorem

Theorem: Assume S_{1} and S_{2} are BIBO stable. If $\gamma\left(S_{1}\right) \gamma\left(S_{2}\right)<1$, then the closed-loop system is BIBO stable from $\left(r_{1}, r_{2}\right)$ to $\left(e_{1}, e_{2}\right)$

BIBO Stability

Definition

S is bounded-input bounded-output (BIBO) stable if $\gamma(S)<\infty$.

Example: If $\dot{x}=A x$ is asymptotically stable then $G(s)=C(s I-A)^{-1} B+D$ is BIBO stable.

Example-Static Nonlinear Feedback

$$
G(s)=\frac{2}{(s+1)^{2}}, \quad 0 \leq \frac{f(y)}{y} \leq K, \quad \forall y \neq 0, \quad f(0)=0
$$

$\gamma(G)=2$ and $\gamma(f) \leq K$.
Small Gain Theorem gives BIBO stability for $K \in(0,1 / 2)$.

"Proof" of the Small Gain Theorem

$$
\left.\left\|e_{1}\right\|_{2} \leq\left\|r_{1}\right\|_{2}+\gamma\left(S_{2}\right)\left\|r_{2}\right\|_{2}+\gamma\left(S_{1}\right)\left\|e_{1}\right\|_{2}\right]
$$

gives

$$
\left\|e_{1}\right\|_{2} \leq \frac{\left\|r_{1}\right\|_{2}+\gamma\left(S_{2}\right)\left\|r_{2}\right\|_{2}}{1-\gamma\left(S_{2}\right) \gamma\left(S_{1}\right)}
$$

$\gamma\left(S_{2}\right) \gamma\left(S_{1}\right)<1,\left\|r_{1}\right\|_{2}<\infty,\left\|r_{2}\right\|_{2}<\infty$ give $\left\|e_{1}\right\|_{2}<\infty$.
Similarly we get

$$
\left\|e_{2}\right\|_{2} \leq \frac{\left\|r_{2}\right\|_{2}+\gamma\left(S_{1}\right)\left\|r_{1}\right\|_{2}}{1-\gamma\left(S_{1}\right) \gamma\left(S_{2}\right)}
$$

so also e_{2} is bounded.
Note: Formal proof requires $\|\cdot\|_{2 e}$, see Khalil

Small Gain Theorem can be Conservative

Let $f(y)=K y$ in the previous example. Then the Nyquist Theorem proves stability for all $K \in[0, \infty)$, while the Small Gain Theorem only proves stability for $K \in(0,1 / 2)$.

EL2620

The Nyquist Theorem

Theorem: If G has no poles in the right half plane and the Nyquist curve $G(i \omega), \omega \in[0, \infty)$, does not encircle -1 , then the closed-loop system is stable.

Lecture 5

EL2620

The Circle Criterion

Theorem: Assume that $G(s)$ has no poles in the right half plane, and

$$
0 \leq k_{1} \leq \frac{f(y)}{y} \leq k_{2}, \quad \forall y \neq 0, \quad f(0)=0
$$

If the Nyquist curve of $G(s)$ does not encircle or intersect the circle defined by the points $-1 / k_{1}$ and $-1 / k_{2}$, then the closed-loop system is BIBO stable.

Example-Static Nonlinear Feedback (cont'd)

The "circle" is defined by $-1 / k_{1}=-\infty$ and $-1 / k_{2}=-1 / K$
Since

$$
\min \operatorname{Re} G(i \omega)=-1 / 4
$$

the Circle Criterion gives that the system is BIBO stable if $K \in(0,4)$.

Small Gain Theorem gives stability if $|\widetilde{G}(i \omega)| R<1$, where $\widetilde{G}=\frac{G}{1+k G}$ is stable (This has to be checked later). Hence,

$$
\frac{1}{|\widetilde{G}(i \omega)|}=\left|\frac{1}{G(i \omega)}+k\right|>R
$$

Proof of the Circle Criterion

$$
\text { Let } k=\left(k_{1}+k_{2}\right) / 2, \tilde{f}(y)=f(y)-k y \text {, and } \widetilde{r}_{1}=r_{1}-k r_{2} \text { : }
$$

$$
\left|\frac{\tilde{f}(y)}{y}\right| \leq \frac{k_{2}-k_{1}}{2}=: R, \quad \forall y \neq 0, \quad \widetilde{f}(0)=0
$$

Lecture 5
22

EL2620

The curve $G^{-1}(i \omega)$ and the circle $\{z \in \mathbf{C}:|z+k|>R\}$ mapped through $z \mapsto 1 / z$ gives the result:

Note that $\frac{G}{1+k G}$ is stable since $-1 / k$ is inside the circle.
Note that $G(s)$ may have poles on the imaginary axis, e.g., integrators are allowed

Scalar Product

Scalar product for signals y and u

$$
\langle y, u\rangle_{T}=\int_{0}^{T} y^{T}(t) u(t) d t
$$

Passivity and BIBO Stability

The main result: Feedback interconnections of passive systems are passive, and BIBO stable (under some additional mild criteria)

Passive System

Definition: Consider signals $u, y:[0, T] \rightarrow \mathbb{R}^{m}$. The system S is passive if

$$
\langle y, u\rangle_{T} \geq 0, \quad \text { for all } T>0 \text { and all } u
$$

and strictly passive if there exists $\epsilon>0$ such that

$$
\langle y, u\rangle_{T} \geq \epsilon\left(|y|_{T}^{2}+|u|_{T}^{2}\right), \quad \text { for all } T>0 \text { and all } u
$$

Warning: There exist many other definitions for strictly passive

2 minute exercise: Is the pure delay system $y(t)=u(t-\theta)$ passive? Consider for instance the input $u(t)=\sin ((\pi / \theta) t)$.

Example—Passive Electrical Components

$\square u(t)=\operatorname{Ri}(t):\langle u, i\rangle_{T}=\int_{0}^{T} R i^{2}(t) d t \geq R\langle i, i\rangle_{T} \geq 0$
$-\Vdash \quad i=C \frac{d u}{d t}:\langle u, i\rangle_{T}=\int_{0}^{T} u(t) C \frac{d u}{d t} d t=\frac{C u^{2}(T)}{2} \geq 0$
$\neg^{-m} u=L \frac{d i}{d t}:\langle u, i\rangle_{T}=\int_{0}^{T} L \frac{d i}{d t} i(t) d t=\frac{L i^{2}(T)}{2} \geq 0$

Lecture 5
29

Passivity of Linear Systems

Theorem: An asymptotically stable linear system $G(s)$ is passive if and only if

$$
\operatorname{Re} G(i \omega) \geq 0, \quad \forall \omega>0
$$

It is strictly passive if and only if there exists $\epsilon>0$ such that

$$
\operatorname{Re} G(i \omega-\epsilon) \geq 0, \quad \forall \omega>0
$$

Example:

$G(s)=\frac{1}{s+1}$ is strictly passive,
$G(s)=\frac{1}{s}$ is passive but not strictly

Feedback of Passive Systems is Passive

Lemma: If S_{1} and S_{2} are passive then the closed-loop system from $\left(r_{1}, r_{2}\right)$ to $\left(y_{1}, y_{2}\right)$ is also passive.
Proof:

$$
\begin{aligned}
\langle y, e\rangle_{T} & =\left\langle y_{1}, e_{1}\right\rangle_{T}+\left\langle y_{2}, e_{2}\right\rangle_{T}=\left\langle y_{1}, r_{1}-y_{2}\right\rangle_{T}+\left\langle y_{2}, r_{2}+y_{1}\right\rangle_{T} \\
& =\left\langle y_{1}, r_{1}\right\rangle_{T}+\left\langle y_{2}, r_{2}\right\rangle_{T}=\langle y, r\rangle_{T}
\end{aligned}
$$

Hence, $\langle y, r\rangle_{T} \geq 0$ if $\left\langle y_{1}, e_{1}\right\rangle_{T} \geq 0$ and $\left\langle y_{2}, e_{2}\right\rangle_{T} \geq 0$.

Lecture 5

A Strictly Passive System Has Finite Gain

Lemma: If S is strictly passive then $\gamma(S)=\sup _{u \in \mathcal{L}_{2}} \frac{\|y\|_{2}}{\|u\|_{2}}<\infty$.

Proof:

$$
\epsilon\left(|y|_{\infty}^{2}+|u|_{\infty}^{2}\right) \leq\langle y, u\rangle_{\infty} \leq|y|_{\infty} \cdot|u|_{\infty}=\|y\|_{2} \cdot\|u\|_{2}
$$

Hence, $\epsilon\|y\|_{2}^{2} \leq\|y\|_{2} \cdot\|u\|_{2}$, so

$$
\|y\|_{2} \leq \frac{1}{\epsilon}\|u\|_{2}
$$

The Passivity Theorem

Theorem: If S_{1} is strictly passive and S_{2} is passive, then the closed-loop system is BIBO stable from r to y.

The Passivity Theorem is a "Small Phase Theorem"

$$
\begin{aligned}
& S_{2} \text { passive } \Rightarrow \cos \phi_{2} \geq 0 \Rightarrow\left|\phi_{2}\right| \leq \pi / 2 \\
& S_{1} \text { strictly passive } \Rightarrow \cos \phi_{1}>0 \Rightarrow\left|\phi_{1}\right|<\pi / 2
\end{aligned}
$$

Proof

S_{1} strictly passive and S_{2} passive give

$$
\epsilon\left(\left|y_{1}\right|_{T}^{2}+\left|e_{1}\right|_{T}^{2}\right) \leq\left\langle y_{1}, e_{1}\right\rangle_{T}+\left\langle y_{2}, e_{2}\right\rangle_{T}=\langle y, r\rangle_{T}
$$

Therefore

$$
\left|y_{1}\right|_{T}^{2}+\left\langle r_{1}-y_{2}, r_{1}-y_{2}\right\rangle_{T} \leq \frac{1}{\epsilon}\langle y, r\rangle_{T}
$$

or

$$
\left|y_{1}\right|_{T}^{2}+\left|y_{2}\right|_{T}^{2}-2\left\langle y_{2}, r_{2}\right\rangle_{T}+\left|r_{1}\right|_{T}^{2} \leq \frac{1}{\epsilon}\langle y, r\rangle_{T}
$$

Hence

$$
|y|_{T}^{2} \leq 2\left\langle y_{2}, r_{2}\right\rangle_{T}+\frac{1}{\epsilon}\langle y, r\rangle_{T} \leq\left(2+\frac{1}{\epsilon}\right)|y|_{T}|r|_{T}
$$

Let $T \rightarrow \infty$ and the result follows.

Lecture 5

2 minute exercise: Apply the Passivity Theorem and compare it with the Nyquist Theorem. What about conservativeness? [Compare the discussion on the Small Gain Theorem.]

Example-Gain Adaptation

Applications in telecommunication channel estimation and in noise cancellation etc.

Adaptation law:

$$
\frac{d \theta}{d t}=-c u(t)\left[y_{m}(t)-y(t)\right], \quad c>0
$$

Gain Adaptation is BIBO Stable

S is passive (see exercises).
If $G(s)$ is strictly passive, the closed-loop system is BIBO stable

Storage Function

Consider the nonlinear control system

$$
\dot{x}=f(x, u), \quad y=h(x)
$$

A storage function is a C^{1} function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

- $V(0)=0$ and $V(x) \geq 0, \quad \forall x \neq 0$
- $\dot{V}(x) \leq u^{T} y, \quad \forall x, u$

Remark:

- $V(T)$ represents the stored energy in the system
- $\underbrace{V(x(T))}_{\text {stored energy at } t=T} \leq \underbrace{\int_{0}^{T} y(t) u(t) d t}_{\text {absorbed energy }}+\underbrace{V(x(0))}_{\text {stored energy at } t=0}, \forall T>0$ Lecture 5

Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: "Energy is decreasing"

$$
\dot{V} \leq 0
$$

Passivity idea: "Increase in stored energy \leq Added energy"

$$
\dot{V} \leq u^{T} y
$$

Storage Function and Passivity

Lemma: If there exists a storage function V for a system

$$
\dot{x}=f(x, u), \quad y=h(x)
$$

with $x(0)=0$, then the system is passive.

Proof: For all $T>0$,
$\langle y, u\rangle_{T}=\int_{0}^{T} y(t) u(t) d t \geq V(x(T))-V(x(0))=V(x(T)) \geq 0$

Example-KYP Lemma

Consider an asymptotically stable linear system

$$
\dot{x}=A x+B u, \quad y=C x
$$

Assume there exists positive definite matrices P, Q such that

$$
A^{T} P+P A=-Q, \quad B^{T} P=C
$$

Consider $V=0.5 x^{T} P x$. Then

$$
\begin{aligned}
\dot{V} & =0.5\left(\dot{x}^{T} P x+x^{T} P \dot{x}\right)=0.5 x^{T}\left(A^{T} P+P A\right) x+u B^{T} P x \\
& =-0.5 x^{T} Q x+u y<u y, \quad x \neq 0
\end{aligned}
$$

and hence the system is strictly passive. This fact is part of the Kalman-Yakubovich-Popov lemma.

