

2010

2

2010

#### **EL2620 Nonlinear Control Today's Goal** Lecture 5 You should be able to • derive the gain of a system Input-output stability • analyze stability using - Small Gain Theorem - Circle Criterion u yS- Passivity Lecture 5 1 Lecture 5 EL2620 2010 EL2620 **History** f(y)Gain yIdea: Generalize the concept of gain to nonlinear dynamical systems yU ySFor what G(s) and $f(\cdot)$ is the closed-loop system stable? The gain $\gamma$ of S is the largest amplification from u to yHere S can be a constant, a matrix, a linear time-invariant system, etc • Luré and Postnikov's problem (1944) • Aizerman's conjecture (1949) (False!) **Question:** How should we measure the size of *u* and *y*? • Kalman's conjecture (1957) (False!) • Solution by Popov (1960) (Led to the Circle Criterion) 3 Lecture 5 Lecture 5

4

5

2010

EL2620

2010

#### **Gain of a Matrix**

Every matrix  $M \in \mathbf{C}^{n imes n}$  has a singular value decomposition

 $M = U\Sigma V^*$ 

where

 $\Sigma = \operatorname{diag} \left\{ \sigma_1, \ldots, \sigma_n \right\} \, ; \quad U^*U = I \; ; \quad V^*V = I$ 

 $\sigma_i$  - the singular values

The "gain" of M is the largest singular value of M:

$$\sigma_{\max}(M) = \sigma_1 = \sup_{x \in \mathbb{R}^n} \frac{\|Mx\|}{\|x\|}$$

where  $\|\cdot\|$  is the Euclidean norm.

EL2620

Lecture 5

2010

6

#### **Signal Norms**

A signal x is a function  $x : \mathbb{R}^+ \to \mathbb{R}$ .

A signal norm  $\|\cdot\|_k$  is a norm on the space of signals x.

#### Examples:

2-norm (energy norm):  $||x||_2 = \sqrt{\int_0^\infty |x(t)|^2 dt}$ sup-norm:  $||x||_\infty = \sup_{t \in \mathbb{R}^+} |x(t)|$ 

#### Norms

A norm  $\|\cdot\|$  measures size

#### Definition:

A norm is a function  $\|\cdot\|:\Omega\to\mathbb{R}^+,$  such that for all  $x,y\in\Omega$ 

- $||x|| \ge 0$  and  $||x|| = 0 \Leftrightarrow x = 0$
- $||x+y|| \le ||x|| + ||y||$
- $\|\alpha x\| = |\alpha| \cdot \|x\|$ , for all  $\alpha \in \mathbb{R}$

#### Examples:

Lecture 5

EL2620

Euclidean norm: 
$$||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$$
  
Max norm:  $||x|| = \max\{|x_1|, \dots, |x_n|\}$ 

**Eigenvalues are not gains** 

The spectral radius of a matrix M

$$\rho(M) = \max_{i} |\lambda_i(M)|$$

is not a gain.

Why? What amplification is described by the eigenvalues?

#### 2010

EL2620

2010

#### **Parseval's Theorem**

 $\mathcal{L}_2$  denotes the space of signals with bounded energy:  $||x||_2 < \infty$ 

**Theorem:** If  $x, y \in \mathcal{L}_2$  have the Fourier transforms

$$X(i\omega) = \int_0^\infty e^{-i\omega t} x(t) dt, \qquad Y(i\omega) = \int_0^\infty e^{-i\omega t} y(t) dt,$$

then

$$\int_0^\infty y(t)x(t)dt = \frac{1}{2\pi} \int_{-\infty}^\infty Y^*(i\omega)X(i\omega)d\omega.$$

In particular,

$$\|x\|_{2}^{2} = \int_{0}^{\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(i\omega)|^{2} d\omega.$$

The power calculated in the time domain equals the power calculated in the frequency domain

# 9 Lecture 5 Lecture 5 EL2620 2010 EL2620 $f(x^*) = Kx^*$ has gain $\gamma(f) = K$ . **2** minute exercise: Show that $\gamma(S_1S_2) \leq \gamma(S_1)\gamma(S_2)$ . $S_1$ $S_2$

Lecture 5

## **System Gain** A system S is a map from $\mathcal{L}_2$ to $\mathcal{L}_2$ : y = S(u).



The gain of 
$$S$$
 is defined as  $\gamma(S) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} \frac{\|S(u)\|_2}{\|u\|_2}$ 

**Example:** The gain of a scalar static system  $y(t) = \alpha u(t)$  is

$$\gamma(\alpha) = \sup_{u \in \mathcal{L}_2} \frac{\|\alpha u\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} \frac{|\alpha| \|u\|_2}{\|u\|_2} = |\alpha|$$

2010

10

#### **Gain of a Static Nonlinearity**

**Lemma:** A static nonlinearity f such that  $|f(x)| \leq K|x|$  and Kxf(x)xProof:  $\|y\|_2^2 = \int_0^\infty f^2 (u(t)) dt \le \int_0^\infty K^2 u^2(t) dt = K^2 \|u\|_2^2$ , where  $u(t) = x^*$ ,  $t \in (0, 1)$ , gives equality, so  $\gamma(f) = \sup_{u \in \mathcal{L}_2} \|y\|_2 / \|u\|_2 = K$ 

Lemma:

Proof:

 $\nabla |G(i\omega)|$ 

2010

#### **BIBO Stability**

#### Definition:

EL2620

stable if  $\gamma(S) < \infty$ .



le then ble.

| Lecture 5 | 13   | Lecture 5 | 14   |
|-----------|------|-----------|------|
| EL2620    | 2010 | EL2620    | 2010 |

#### ear Feedback



Small Gain Theorem gives BIBO stability for  $K \in (0, 1/2)$ .

$$\gamma(G) = \sup_{u \in \mathcal{L}_2} \frac{||Gu||_2}{||u||_2} = \sup_{\omega \in (0,\infty)} |G(i\omega)| = I \\ for some  $\omega^*$ . Parseval's theorem gives  

$$||y||_2^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(i\omega)|^2 d\omega \\ = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ Arbitrary close to equality by choosing  $u(t)$  close to  $\sin \omega^* t$ .  
Lecture 5 13  
**Lecture 5**  
**The Small Gain Theorem**  

$$\int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le V^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 ||u||_2^2 \\ I = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega$$$$$$

 $e_2$  $r_2$  $S_2$ 

Gain of a Stable Linear System

 $\gamma(G)^{10}$ 

**Theorem:** Assume  $S_1$  and  $S_2$  are BIBO stable. If  $\gamma(S_1)\gamma(S_2) < 1$ , then the closed-loop system is BIBO stable from  $(r_1, r_2)$  to  $(e_1, e_2)$ 

2010

2010

## "Proof" of the Small Gain Theorem

 $||e_1||_2 \le ||r_1||_2 + \gamma(S_2)[||r_2||_2 + \gamma(S_1)||e_1||_2]$ 

gives

$$||e_1||_2 \le \frac{||r_1||_2 + \gamma(S_2)||r_2||_2}{1 - \gamma(S_2)\gamma(S_1)}$$

 $\gamma(S_2)\gamma(S_1)<1,$   $\|r_1\|_2<\infty,$   $\|r_2\|_2<\infty$  give  $\|e_1\|_2<\infty.$  Similarly we get

$$\|e_2\|_2 \le \frac{\|r_2\|_2 + \gamma(S_1)\|r_1\|_2}{1 - \gamma(S_1)\gamma(S_2)}$$

so also  $e_2$  is bounded.

Note: Formal proof requires 
$$\|\cdot\|_{2e}$$
, see Khalil

Lecture 5

EL2620

2010

17

## **Small Gain Theorem can be Conservative**

Let f(y) = Ky in the previous example. Then the Nyquist Theorem proves stability for all  $K \in [0, \infty)$ , while the Small Gain Theorem only proves stability for  $K \in (0, 1/2)$ .





#### **The Nyquist Theorem**



**Theorem:** If G has no poles in the right half plane and the Nyquist curve  $G(i\omega), \omega \in [0, \infty)$ , does not encircle -1, then the closed-loop system is stable.

| Lecture 5 | 18   |
|-----------|------|
| EL2620    | 2010 |

#### **The Circle Criterion**



**Theorem:** Assume that G(s) has no poles in the right half plane, and

$$0 \le k_1 \le \frac{f(y)}{y} \le k_2, \quad \forall y \ne 0, \qquad f(0) = 0$$

If the Nyquist curve of G(s) does not encircle or intersect the circle defined by the points  $-1/k_1$  and  $-1/k_2$ , then the closed-loop system is BIBO stable.

2010

EL2620

**Proof of the Circle Criterion** 

 $\left|\frac{\widetilde{f}(y)}{y}\right| \le \frac{k_2 - k_1}{2} =: R, \quad \forall y \neq 0, \qquad \widetilde{f}(0) = 0$ 

Let  $k = (k_1 + k_2)/2$ ,  $\tilde{f}(y) = f(y) - ky$ , and  $\tilde{r}_1 = r_1 - kr_2$ :

 $y_1$ 

 $r_2$ 

22

2010

#### Example—Static Nonlinear Feedback (cont'd)



The "circle" is defined by  $-1/k_1 = -\infty$  and  $-1/k_2 = -1/K$ . Since

 $\min \operatorname{Re} G(i\omega) = -1/4$ 

the Circle Criterion gives that the system is BIBO stable if  $K \in (0, 4)$ .



**Passivity and BIBO Stability** 

**The main result:** Feedback interconnections of passive systems are passive, and BIBO stable (under some additional mild criteria)

#### **Scalar Product**

Scalar product for signals y and u

$$\langle y, u \rangle_T = \int_0^T y^T(t) u(t) dt$$

$$u \longrightarrow S \longrightarrow y$$

If u and y are interpreted as vectors then  $\langle y, u \rangle_T = |y|_T |u|_T \cos \phi$  $|y|_T = \sqrt{\langle y, y \rangle_T}$  - length of  $y, \phi$  - angle between u and y

Cauchy-Schwarz Inequality:  $\langle y, u \rangle_T \leq |y|_T |u|_T$ 

**Example:**  $u = \sin t$  and  $y = \cos t$  are orthogonal if  $T = k\pi$ , because

$$\cos\phi = \frac{\langle y, u \rangle_T}{|y|_T |u|_T} = 0$$



2010

## Feedback of Passive Systems is Passive



$$-||--| i = C\frac{du}{dt} : \langle u, i \rangle_T = \int_0^T u(t)C\frac{du}{dt}dt = \frac{Cu^2(T)}{2} \ge 0$$

$$-\cdots - u = L\frac{di}{dt} : \langle u, i \rangle_T = \int_0^T L\frac{di}{dt}i(t)dt = \frac{Li^2(T)}{2} \ge 0$$

| $\xrightarrow{r_1} \underbrace{e_1}_{\bigstar}$ | $S_1$ | $y_1$       |
|-------------------------------------------------|-------|-------------|
| $y_2$                                           | $S_2$ | $e_2$ $r_2$ |

**Lemma:** If  $S_1$  and  $S_2$  are passive then the closed-loop system from  $(r_1, r_2)$  to  $(y_1, y_2)$  is also passive.

Proof:

$$y, e\rangle_T = \langle y_1, e_1 \rangle_T + \langle y_2, e_2 \rangle_T = \langle y_1, r_1 - y_2 \rangle_T + \langle y_2, r_2 + y_1 \rangle_T = \langle y_1, r_1 \rangle_T + \langle y_2, r_2 \rangle_T = \langle y, r \rangle_T$$

Hence,  $\langle y, r \rangle_T > 0$  if  $\langle y_1, e_1 \rangle_T > 0$  and  $\langle y_2, e_2 \rangle_T > 0$ .

| 29   | Lecture 5 |    | 30  |
|------|-----------|----|-----|
| 2010 | EL2620    | 20 | )10 |

#### **Passivity of Linear Systems**

**Theorem:** An asymptotically stable linear system G(s) is **passive** if and only if

 $\operatorname{Re} G(i\omega) > 0, \quad \forall \omega > 0$ 

It is **strictly passive** if and only if there exists  $\epsilon > 0$  such that

$$\operatorname{Re} G(i\omega - \epsilon) \ge 0, \qquad \forall \omega > 0$$

Example:

Lecture 5

EL2620



31

2010

## A Strictly Passive System Has Finite Gain



Lemma: If S is strictly passive then  $\gamma(S) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2} < \infty$ .

Proof:

$$\begin{aligned} \epsilon(|y|_{\infty}^{2}+|u|_{\infty}^{2}) &\leq \langle y,u\rangle_{\infty} \leq |y|_{\infty}\cdot |u|_{\infty} = \|y\|_{2}\cdot \|u\|_{2} \\ \text{Hence, } \epsilon\|y\|_{2}^{2} \leq \|y\|_{2}\cdot \|u\|_{2} \text{, so} \end{aligned}$$

$$\|y\|_2 \le \frac{1}{\epsilon} \|u\|_2$$

32

**The Passivity Theorem** 

 $S_1$ 

 $S_2$ 

 $e_1$ 

 $y_2$ 

closed-loop system is BIBO stable from r to y.

**Theorem:** If  $S_1$  is strictly passive and  $S_2$  is passive, then the

 $y_1$ 

 $e_2$ 

 $r_2$ 

 $r_1$ 

2010

2010

#### Proof

 $S_1$  strictly passive and  $S_2$  passive give

$$\epsilon \left( |y_1|_T^2 + |e_1|_T^2 \right) \le \langle y_1, e_1 \rangle_T + \langle y_2, e_2 \rangle_T = \langle y, r \rangle_T$$

Therefore

$$|y_1|_T^2 + \langle r_1 - y_2, r_1 - y_2 \rangle_T \le \frac{1}{\epsilon} \langle y, r \rangle_T$$

or

$$y_1|_T^2 + |y_2|_T^2 - 2\langle y_2, r_2 \rangle_T + |r_1|_T^2 \le \frac{1}{\epsilon} \langle y, r \rangle_T$$

Hence

$$y|_T^2 \le 2\langle y_2, r_2 \rangle_T + \frac{1}{\epsilon} \langle y, r \rangle_T \le \left(2 + \frac{1}{\epsilon}\right) |y|_T |r|_T$$

Let  $T \to \infty$  and the result follows.

| Lecture 5                                                                                                                                                                                                                            | 33       | Lecture 5                                                                                                                                           | 34                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| EL2620                                                                                                                                                                                                                               | 2010     | EL2620                                                                                                                                              | 2010                           |
| The Passivity Theorem is a<br>"Small Phase Theorem" $r_1 \rightarrow e_1 \qquad S_1 \qquad y_1 \qquad \qquad$ | $\phi_2$ | <b>2 minute exercise</b> : Apply the Passivity Theorem and the Nyquist Theorem. What about conservativeness? discussion on the Small Gain Theorem.] | compare it with<br>Compare the |

#### **Example—Gain Adaptation**

Applications in telecommunication channel estimation and in noise cancellation etc.



Adaptation law:

Lecture 5

EL2620

$$\frac{d\theta}{dt} = -cu(t)[y_m(t) - y(t)], \qquad c > 0$$

Gain Adaptation—Closed-Loop System





## **Gain Adaptation is BIBO Stable**



S is **passive** (see exercises). If G(s) is **strictly passive**, the closed-loop system is BIBO stable

## **Simulation of Gain Adaptation**



2010

#### **Storage Function**

Consider the nonlinear control system

$$\dot{x} = f(x, u), \qquad y = h(x)$$

A storage function is a  $C^1$  function  $V:\mathbb{R}^n\to\mathbb{R}$  such that

• V(0) = 0 and  $V(x) \ge 0$ ,  $\forall x \ne 0$ •  $\dot{V}(x) \le u^T y$ ,  $\forall x, u$ 

#### Remark:

• V(T) represents the stored energy in the system

• 
$$\underbrace{V(x(T))}_{\text{stored energy at }t = T} \leq \underbrace{\int_{0}^{T} y(t)u(t)dt}_{\text{absorbed energy}} + \underbrace{V(x(0))}_{\text{stored energy at }t = 0}$$
,  $\forall T > 0$ 

## **Storage Function and Passivity**

**Lemma:** If there exists a storage function V for a system

 $\dot{x} = f(x, u), \qquad y = h(x)$ 

with x(0) = 0, then the system is passive.

*Proof:* For all T > 0,

$$\langle y, u \rangle_T = \int_0^T y(t)u(t)dt \ge V(x(T)) - V(x(0)) = V(x(T)) \ge 0$$

| Lecture 5 | 41   | Lecture 5 | 42   |
|-----------|------|-----------|------|
| EL2620    | 2010 | EL2620    | 2010 |

# Example—KYP Lemma

Consider an asymptotically stable linear system

$$\dot{x} = Ax + Bu, \qquad y = Cx$$

Assume there exists positive definite matrices P, Q such that

$$A^T P + P A = -Q, \qquad B^T P = C$$

Consider  $V = 0.5x^T P x$ . Then

$$\dot{V} = 0.5(\dot{x}^T P x + x^T P \dot{x}) = 0.5x^T (A^T P + P A)x + uB^T P x$$
$$= -0.5x^T Q x + uy < uy, \quad x \neq 0$$

and hence the system is strictly passive. This fact is part of the Kalman-Yakubovich-Popov lemma.

## Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: "Energy is decreasing"

 $\dot{V} \leq 0$ 

**Passivity idea:** "Increase in stored energy  $\leq$  Added energy"

$$\dot{V} \leq u^T y$$

**Next Lecture** 

• Analysis of periodic solutions using describing functions

# Today's Goal

You should be able to

- derive the gain of a system
- analyze stability using
  - Small Gain Theorem
  - Circle Criterion
  - Passivity

Lecture 5

45

Lecture 5

46