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EL2620 Nonlinear Control

Lecture 5

e Input—output stability
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Today’s Goal

You should be able to
e derive the gain of a system

e analyze stability using
— Small Gain Theorem
— Circle Criterion

u Yy
S — Passivity
Lecture 5 1 Lecture 5 2
EL2620 2010 EL2620 2010
History
f(y) :
Galin
T
—O—(Gs) |+ | - |
— y Idea: Generalize the concept of gain to nonlinear dynamical systems

For what G(s) and f(+) is the closed-loop system stable?
e Luré and Postnikov’s problem (1944)
e Aizerman’s conjecture (1949) (False!)
e Kalman’s conjecture (1957) (False!)

e Solution by Popov (1960) (Led to the Circle Criterion)
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The gain 7y of S is the largest amplification ~ from u to y

Here S can be a constant, a matrix, a linear time-invariant system, etc

Question: How should we measure the size of u and y?
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Norms

Anorm || - || measures size
Definition:
Anormis afunction || - || :  — R, such that for all -, y € )

e |z]| >0 and |[z]|=0 < 2=0
o [lz+yll < llzll + vl

2010
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Gain of a Matrix

Every matrix M € C™*™ has a singular value decomposition
M=UxV"
where
Y =dag{o1,...,0,}; UU=1; VV=I

o; - the singular values

2010

o |az|| =|of - ||z|, foralla € R
The “gain” of M is the largest singular value of M :
Examples: HM{BH
M pum— pum— —_—
Euclidean norm: ||z|| = /a2 + -+ + 22 Pmax (M) = 01 555 |
Max norm: ||z|| = max{|z1], ..., |z,|} where || - || is the Euclidean norm.
Lecture 5 5 Lecture 5 6
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. . Signal Norms
Eigenvalues are not gains
A signal z is a function z : RT — R.
The spectral radius of a matrix M
A signal norm || - || is @ norm on the space of signals .

p(M) = max | \i(M)|
is not a gain .

Why? What amplification is described by the eigenvalues?

Lecture 5

Examples:

2-norm (energy norm): ||z lo = /[y~ |« (t)[dt

sup-norm: ||z||oc = Sup;ep+ |(t)]

Lecture 5
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Parseval’'s Theorem
L, denotes the space of signals with bounded energy: ||z |2 < oo

Theorem: If z,y € L4 have the Fourier transforms

X(iw) = /000 e “a(t)dt, Y(iw)= /000 e~y (t)dt,

EL2620 2010

System Gain

A system S'is amap from Lo to Lo: y = S(u).

u Y

— S [

then

o0 1 o0

y(t)z(t)dt = 27r/ Y7 (iw) X (iw)de. The gain of S is defined as  (S) = sup lyllz _ sup 150wz
In particularo - ueks ||u||2 ueks HUHQ
2l = /00 2(0) Pt = 1 [® X (i) P Example: The gain of a scalar static system y(t) = au(t) is
2 —_— —_ .
0 27 oo ) = sup Jelz _ o lallel

The power calculated in the time domain equals the power calculated u€Lly HUH2 u€Llo HUH2
in the frequency domain
Lecture 5 9 Lecture 5 10
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2 minute exercise:  Show that (S5152) < (S1)7y(S2).

u Y

— S, s,
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Gain of a Static Nonlinearity

Lemma: A static nonlinearity f such that | f(z)| < K|z| and

f(z*) = Ka* hasgainy(f) = K Ko

(@)
u(?) y(t)

— fO) z

proot: [[yl3 = 2 £2(u(t)dt < [° K2u2(t)dt = K|ul,
where u(t) = z*, t € (0, 1), gives equality, so

v(f) = sup [lylla/lulls = K
u€Lo
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Gain of a Stable Linear System

Lemma: fy(G ) Bl

Gz _ iy (6] o

welz flulla weo0)

|G (iw)]

1(G) =

Proof: Assume |G (iw)| < K forw € (0,00) and |G(iw*)| = K
for some w*. Parseval’s theorem gives

1 o9}
ol = 5= [ ¥ (i)

1 o0

:% N

|G(iw)P|U (i) Pdw < K?|Jull3
Arbitrary close to equality by choosing u(t) close to sin w*t.

Lecture 5
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BIBO Stability

Definition:
S'is bounded-input bounded-output (BIBO) stable if v(S) < oo.

u Y S(u
(5) = aup 15001
u€eLo ||U||2

Example: If £ = Ax is asymptotically stable then
G(s) = C(sI — A)"'B + D is BIBO stable.

Lecture 5 14
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The Small Gain Theorem

1 €1
— Sh

€2 )
Sz I~

Theorem: Assume S; and S5 are BIBO stable. If v(S7)v(S2) < 1,

then the closed-loop system is BIBO stable from (71, 7) to (€1, €3)

Lecture 5
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Example—Static Nonlinear Feedback

Ky
"Lo—as) Y f )
§ s
0
G = —— o<W ok wyz0, f0)=0

(s +1)% Y
Y(G) =2andy(f) < K.

Small Gain Theorem gives BIBO stability for X € (0,1/2).
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“Proof” of the Small Gain Theorem

lewllz < flrilla +~v(S2)[l|72ll2 +v(S1)llell2]
gives
712 + 7 (S2)[r2 |2

1 —7(S2)7(51)

Y(S2)7(S1) < 1, [[r1ll2 < oo, [[rall2 < oo give [leq ||z < oo.
Similarly we get

el <

[ralla +~v(S)|l71 ]2
L —(S1)7(S2)

ezl <

so also e5 is bounded.
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The Nyquist Theorem

From: U(1)

—O—|G(s) o

s

5

g
-0.5

-1 05 0 05 1

Theorem: If (G has no poles in the right half plane and the Nyquist
curve G(iw), w € [0, 00), does not encircle —1, then the
closed-loop system is stable.

Note: Formal proof requires || - ||2., see Khalil
Lecture 5 17 Lecture 5 18
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Small Gain Theorem can be Conservative

Let f(y) = Ky in the previous example. Then the Nyquist Theorem
proves stability for all K € [0, 00), while the Small Gain Theorem
only proves stability for K € (0,1/2).

T y 1
—®O—G() .
o+
-0.5
fC) .
-1
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The Circle Criterion
kay f(y)
1
k

H%G(S)T by
y -
® 4V
G(iw)

Theorem: Assume that G(s) has no poles in the right half plane, and

ogms%?s@,w¢a 7(0) =0

x|

@,

If the Nyquist curve of G(s) does not encircle or intersect the circle
defined by the points —1/k; and —1/k,, then the closed-loop
system is BIBO stable.
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Example—Static Nonlinear Feedback (cont'd)

Ky
f(y) :
05 1
y e

-1 -05 0 0.5 1 15 2

The “circle” is defined by —1/k; = —oco and —1/ky = —1/K.
Since
minRe G(iw) = —1/4

the Circle Criterion gives that the system is BIBO stable if X € (0,4).

Lecture 5 21
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Proof of the Circle Criterion

Letk = (k1 + k2)/2, f(y) = f(y) — ky,and 7y = 11 — kry:

‘f(yy)‘g’“?gkl — R Wy A0, J(0)=0

TL@_,elg(S)ﬁ
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2-0O—(G(s) -
(e &

Small Gain Theorem gives stability if |G/(iw)| R < 1, where

¢

G(iw)

G —

is stable (This has to be checked later). Hence,

‘

+k’>R

Lecture 5 23
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The curve G~!(iw) and the circle {z € C : |z + k| > R} mapped
through 2 — 1/2 gives the result:

S S
12 | _k}/—\ km kFQﬁ
& \i
1 .
G i) Giw)
Note that ¢ is stable since —1/k is inside the circle
1+ kG '

Note that G(s) may have poles on the imaginary axis, e.g.,
integrators are allowed

Lecture 5 24
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Passivity and BIBO Stability

The main result: Feedback interconnections of passive systems are
passive, and BIBO stable (under some additional mild criteria)

Lecture 5 25
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Scalar Product

Scalar product for signals y and u

T
e = [ o (o)
0
If u and y are interpreted as vectors then (y, u)r = |y|r|u|r cos ¢

lylr = +/{y,y)r - length of y, ¢ - angle between v and ¥
Cauchy-Schwarz Inequality: (y, u)r < |y|r|u|r

Example: u = sint and y = cost are orthogonal if T = k,
because
<y7 u>T

lylr|ulr

=0

cos ¢ =

Lecture 5 26
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Passive System

u y

— S F——

Definition: Consider signals u, y : [0, 7] — R™. The system S'is
passive if
(y,u)p >0, forallT > 0andallu

and strictly passive if there exists € > (0 such that

(y,u)r > €(|y| + ul3), forall T > 0andallu

Warning: There exist many other definitions for strictly passive

Lecture 5 27
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2 minute exercise: Is the pure delay system y(t) = u(t —
passive? Consider for instance the input u(t) = sin ((7T/9) ).

Lecture 5 28
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Example—Passive Electrical Components

{Emw:m@;w@T:/Z#@ﬁzR@szo

. Adu .:/T du  Cu*(T)
i Cdt S (u, i) i u(t)C’dtdt 5 2 0

RN di T di Li*(T
u:Li:m@T:/%#®ﬁ: CD
0
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Feedback of Passive Systems is Passive

1 €1 U1
. Sy

Y2 €2 T2
SZ |-

Lemma: If Sy and S are passive then the closed-loop system from
(r1,72) to (y1, y2) is also passive.
Proof:

(y,e)r = (y1,e1)r + (Y2, e2)r = (y1,71 — Yo)7 + (Y2, 72 + y1)7
= (y1, )7 + (Y2, m2)7 = (Y, 7)1

Hence, (y, )7 > 0if (y1,e1)7 > 0and (y2, ea)7 > 0.

Lecture 5 30
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Passivity of Linear Systems

Theorem: An asymptotically stable linear system G(s) is passive if
and only if

ReG(iw) >0, VYw>0

It is strictly passive if and only if there exists € > 0 such that

ReG(iw—¢€) >0, VYw>0

Example: 05—
1 o |
G(s) = is strictly passive, ol
() s+1 1
]- . . . -0.2
G(s) = — is passive but not strictly |
S |
passive. ¢oT e v o5 i
Lecture 5 31
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A Strictly Passive System Has Finite Gain

— ] S e

Lemma: If S is strictly passive then (.5) = S |I|Z|IIIZ < 0.

Proof:
e(JylZ + [ul2) < (W w)oo < [Yloo - [uloe = llyll2 - [Jull2

Hence, €||y[|3 < ||yll2 - ||ull2, so

1
< —
lyllz < —llullz

Lecture 5 32
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The Passivity Theorem

T1 €1 U1
| Sl

Y2 €2 T2
Sy -

Theorem: If S} is strictly passive and S5 is passive, then the
closed-loop system is BIBO stable from r to y.

2010

EL2620

Proof
S strictly passive and S5 passive give
E(|?J1|2T + |€1|2T) < (y1,e1)r + (Y2, e2)7 = (Y, 7)1

Therefore

[+ (1 = w1 — wabr < <y
or
i+ ool — 2 b + il < )
Hence
1

)|y|T|rrT

1
‘?JEP < 2<?J277’2>T + E<y’T>T < (2 + -

Let T" — oo and the result follows.

2010

34
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The Passivity Theorem is a
“Small Phase Theorem”
1 €1 U1 -

A
Y2 S, ]:412 \\
o1 o5

Sy passive = cosgp >0 = |po| < m/2

Sy strictly passive = cos¢; >0 = o] <7/2

Lecture 5
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2 minute exercise: Apply the Passivity Theorem and compare it with
the Nyquist Theorem. What about conservativeness? [Compare the

discussion on the Small Gain Theorem.]

Lecture 5
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Example—Gain Adaptation
Applications in telecommunication channel estimation and in noise
cancellatonetc. Gain Adaptation—Closed-Loop System
! Process
u LY
3 o = G(s) = y
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, u o |~ G(s) ‘l
’4 i Ym p ¢ 6
o(t) —~ G(s) = 4 y@"@" s
L,,,,,/,,,,,,,,,,,,,Mp,qgl,‘ 9/(%) | G(S)
Adaptation law: ' f
db
= = —eulym() —y(@), >0
Lecture 5 37 Lecture 5 38
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Gain Adaptation is BIBO Stable Simulation of Gain Adaptation
_ 6 1
(0 —0")u Let G(s) = ,c=1,u=sint, and (0) = 0.
s+1
2 T T -
/m
o /
2 5 10 15 20
15
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1
S'is passive (see exercises). o
If G(s) is strictly passive , the closed-loop system is BIBO stable %
Lecture 5 39 Lecture 5
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Storage Function
Consider the nonlinear control system
&= f(z,u), y=h(z)

A storage function is a C'! function V' : R” — R such that

e V(0)=0and V(z) >0, Vz#0

° V(l’) <uly, Vz,u
Remark:

e V(T) represents the stored energy in the system

o V(z(T)) < /Ty(t)u(t)dt+ V(z(0)) ,VI'>0

— 0

——
stored energy att = T' N stored energyatt = 0

absorbed energy

Lecture 5 41
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Storage Function and Passivity

Lemma: If there exists a storage function V' for a system

i:f<$,u), y:h(x)

with 2(0) = 0, then the system is passive.

Proof: Forall 7" > 0,

(, ur = / y(tyu(t)dt > V(x(T))~V(2(0)) = V(x(T)) > 0

Lecture 5 42
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Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: “Energy is decreasing”
V<0
Passivity idea: “Increase in stored energy < Added energy”

VguTy
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Example—KYP Lemma
Consider an asymptotically stable linear system
& = Ax + Bu, y=Cx
Assume there exists positive definite matrices P, () such that
ATP+PA=—-Q, B'™P=C
Consider V' = 0.5z7 Pz. Then
V =0.5(i" Pz + 2T Pi) = 0527 (ATP 4+ PA)z + uBT Pz
= 0527 Qr +uy <uy, r#0

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.
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Today’s Goal

You should be able to
e derive the gain of a system

e analyze stability using
— Small Gain Theorem
— Circle Criterion
— Passivity

Lecture 5
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e Analysis of periodic solutions using describing functions

Lecture 5

Next Lecture

2010

46




