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EL2620 Nonlinear Control

Lecture 5

• Input–output stability

u y
S
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Today’s Goal

You should be able to

• derive the gain of a system

• analyze stability using

– Small Gain Theorem

– Circle Criterion

– Passivity
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History

−

r y
G(s)

f(·)

y

f(y)

For what G(s) and f(·) is the closed-loop system stable?

• Luré and Postnikov’s problem (1944)

• Aizerman’s conjecture (1949) (False!)

• Kalman’s conjecture (1957) (False!)

• Solution by Popov (1960) (Led to the Circle Criterion)
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Gain

Idea: Generalize the concept of gain to nonlinear dynamical systems

u y
S

The gain γ of S is the largest amplification from u to y

Here S can be a constant, a matrix, a linear time-invariant system, etc

Question: How should we measure the size of u and y?
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Norms

A norm ‖ · ‖ measures size

Definition:
A norm is a function ‖ · ‖ : Ω → R

+, such that for all x, y ∈ Ω

• ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0

• ‖x + y‖ ≤ ‖x‖ + ‖y‖

• ‖αx‖ = |α| · ‖x‖, for all α ∈ R

Examples:

Euclidean norm: ‖x‖ =
√

x2
1 + · · · + x2

n

Max norm: ‖x‖ = max{|x1|, . . . , |xn|}
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Gain of a Matrix

Every matrix M ∈ C
n×n has a singular value decomposition

M = UΣV ∗

where

Σ = diag {σ1, . . . , σn} ; U∗U = I ; V ∗V = I

σi - the singular values

The “gain” of M is the largest singular value of M :

σmax(M) = σ1 = sup
x∈Rn

‖Mx‖

‖x‖

where ‖ · ‖ is the Euclidean norm.

Lecture 5 6

EL2620 2010

Eigenvalues are not gains

The spectral radius of a matrix M

ρ(M) = max
i

|λi(M)|

is not a gain .

Why? What amplification is described by the eigenvalues?
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Signal Norms

A signal x is a function x : R
+ → R.

A signal norm ‖ · ‖k is a norm on the space of signals x.

Examples:

2-norm (energy norm): ‖x‖2 =
√∫ ∞

0
|x(t)|2dt

sup-norm: ‖x‖∞ = supt∈R+ |x(t)|
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Parseval’s Theorem
L2 denotes the space of signals with bounded energy: ‖x‖2 < ∞

Theorem: If x, y ∈ L2 have the Fourier transforms

X(iω) =

∫ ∞

0

e−iωtx(t)dt, Y (iω) =

∫ ∞

0

e−iωty(t)dt,

then ∫ ∞

0

y(t)x(t)dt =
1

2π

∫ ∞

−∞

Y ∗(iω)X(iω)dω.

In particular,

‖x‖2
2 =

∫ ∞

0

|x(t)|2dt =
1

2π

∫ ∞

−∞

|X(iω)|2dω.

The power calculated in the time domain equals the power calculated
in the frequency domain
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System Gain

A system S is a map from L2 to L2: y = S(u).

u y
S

The gain of S is defined as γ(S) = sup
u∈L2

‖y‖2

‖u‖2

= sup
u∈L2

‖S(u)‖2

‖u‖2

Example: The gain of a scalar static system y(t) = αu(t) is

γ(α) = sup
u∈L2

‖αu‖2

‖u‖2

= sup
u∈L2

|α|‖u‖2

‖u‖2

= |α|
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2 minute exercise: Show that γ(S1S2) ≤ γ(S1)γ(S2).

u y
S2 S1
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Gain of a Static Nonlinearity
Lemma: A static nonlinearity f such that |f(x)| ≤ K|x| and
f(x∗) = Kx∗ has gain γ(f) = K .

u(t) y(t)
f(·) x

x∗

Kx
f(x)

Proof: ‖y‖2
2 =

∫ ∞

0
f 2

(
u(t)

)
dt ≤

∫ ∞

0
K2u2(t)dt = K2‖u‖2

2,

where u(t) = x∗, t ∈ (0, 1), gives equality, so

γ(f) = sup
u∈L2

‖y‖2

/
‖u‖2 = K
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Gain of a Stable Linear System

Lemma:

γ
(
G

)
= sup

u∈L2

‖Gu‖2

‖u‖2

= sup
ω∈(0,∞)

|G(iω)|

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

γ(G) |G(iω)|

Proof: Assume |G(iω)| ≤ K for ω ∈ (0,∞) and |G(iω∗)| = K
for some ω∗. Parseval’s theorem gives

‖y‖2
2 =

1

2π

∫ ∞

−∞

|Y (iω)|2dω

=
1

2π

∫ ∞

−∞

|G(iω)|2|U(iω)|2dω ≤ K2‖u‖2
2

Arbitrary close to equality by choosing u(t) close to sin ω∗t.
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BIBO Stability

Definition:
S is bounded-input bounded-output (BIBO) stable if γ(S) < ∞.

u y
S γ

(
S
)

= sup
u∈L2

‖S(u)‖2

‖u‖2

Example: If ẋ = Ax is asymptotically stable then
G(s) = C(sI − A)−1B + D is BIBO stable.
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The Small Gain Theorem

r1

r2

e1

e2

S1

S2

Theorem: Assume S1 and S2 are BIBO stable. If γ(S1)γ(S2) < 1,
then the closed-loop system is BIBO stable from (r1, r2) to (e1, e2)
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Example—Static Nonlinear Feedback

−

r y
G(s)

f(·)

y

Ky
f(y)

G(s) =
2

(s + 1)2
, 0 ≤

f(y)

y
≤ K, ∀y 6= 0, f(0) = 0

γ(G) = 2 and γ(f) ≤ K .

Small Gain Theorem gives BIBO stability for K ∈ (0, 1/2).
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“Proof” of the Small Gain Theorem

‖e1‖2 ≤ ‖r1‖2 + γ(S2)[‖r2‖2 + γ(S1)‖e1‖2]

gives

‖e1‖2 ≤
‖r1‖2 + γ(S2)‖r2‖2

1 − γ(S2)γ(S1)

γ(S2)γ(S1) < 1, ‖r1‖2 < ∞, ‖r2‖2 < ∞ give ‖e1‖2 < ∞.
Similarly we get

‖e2‖2 ≤
‖r2‖2 + γ(S1)‖r1‖2

1 − γ(S1)γ(S2)

so also e2 is bounded.

Note: Formal proof requires ‖ · ‖2e, see Khalil
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The Nyquist Theorem

−
G(s)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
From: U(1)

T
o:

 Y
(1

)

Theorem: If G has no poles in the right half plane and the Nyquist
curve G(iω), ω ∈ [0,∞), does not encircle −1, then the
closed-loop system is stable.
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Small Gain Theorem can be Conservative

Let f(y) = Ky in the previous example. Then the Nyquist Theorem
proves stability for all K ∈ [0,∞), while the Small Gain Theorem
only proves stability for K ∈ (0, 1/2).

−

r y
G(s)

f(·)

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

 

G(iω)
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The Circle Criterion

−
r y

G(s)

f(·)

y

k1y

k2y f(y)

− 1
k1

− 1
k2

G(iω)

Theorem: Assume that G(s) has no poles in the right half plane, and

0 ≤ k1 ≤
f(y)

y
≤ k2, ∀y 6= 0, f(0) = 0

If the Nyquist curve of G(s) does not encircle or intersect the circle
defined by the points −1/k1 and −1/k2, then the closed-loop
system is BIBO stable.
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Example—Static Nonlinear Feedback (cont’d)

y

Ky
f(y)

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

 

−
1

K
G(iω)

The “circle” is defined by −1/k1 = −∞ and −1/k2 = −1/K .
Since

min Re G(iω) = −1/4

the Circle Criterion gives that the system is BIBO stable if K ∈ (0, 4).
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Proof of the Circle Criterion

Let k = (k1 + k2)/2, f̃(y) = f(y) − ky, and r̃1 = r1 − kr2:

∣∣∣∣
f̃(y)

y

∣∣∣∣ ≤
k2 − k1

2
=: R, ∀y 6= 0, f̃(0) = 0

y1

y2

r1

r2

e1

e2

G(s)

−f(·)

r̃1

G̃

G

−k

y1

r2
−f̃(·)
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r̃1

r2

G̃(s)

−f̃(·)

−k

R

1

G(iω)

Small Gain Theorem gives stability if |G̃(iω)|R < 1, where

G̃ =
G

1 + kG
is stable (This has to be checked later). Hence,

1

|G̃(iω)|
=

∣∣∣∣
1

G(iω)
+ k

∣∣∣∣ > R
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The curve G−1(iω) and the circle {z ∈ C : |z + k| > R} mapped
through z 7→ 1/z gives the result:

−k2 − k1

R

1

G(iω)

− 1
k1

− 1
k2

G(iω)

Note that
G

1 + kG
is stable since −1/k is inside the circle.

Note that G(s) may have poles on the imaginary axis, e.g.,
integrators are allowed
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Passivity and BIBO Stability

The main result: Feedback interconnections of passive systems are
passive, and BIBO stable (under some additional mild criteria)
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Scalar Product
Scalar product for signals y and u

〈y, u〉T =

∫ T

0

yT (t)u(t)dt

u y
S

If u and y are interpreted as vectors then 〈y, u〉T = |y|T |u|T cos φ

|y|T =
√

〈y, y〉T - length of y, φ - angle between u and y

Cauchy-Schwarz Inequality: 〈y, u〉T ≤ |y|T |u|T

Example: u = sin t and y = cos t are orthogonal if T = kπ,
because

cos φ =
〈y, u〉T
|y|T |u|T

= 0
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Passive System

u y
S

Definition: Consider signals u, y : [0, T ] → R
m. The system S is

passive if
〈y, u〉T ≥ 0, for all T > 0 and all u

and strictly passive if there exists ǫ > 0 such that

〈y, u〉T ≥ ǫ(|y|2T + |u|2T ), for all T > 0 and all u

Warning: There exist many other definitions for strictly passive
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2 minute exercise: Is the pure delay system y(t) = u(t − θ)
passive? Consider for instance the input u(t) = sin ((π/θ)t).
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Example—Passive Electrical Components

u(t) = Ri(t) : 〈u, i〉T =

∫ T

0

Ri2(t)dt ≥ R〈i, i〉T ≥ 0

i = C
du

dt
: 〈u, i〉T =

∫ T

0

u(t)C
du

dt
dt =

Cu2(T )

2
≥ 0

u = L
di

dt
: 〈u, i〉T =

∫ T

0

L
di

dt
i(t)dt =

Li2(T )

2
≥ 0
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Feedback of Passive Systems is Passive

−

r1

r2

y1

y2

e1

e2

S1

S2

Lemma: If S1 and S2 are passive then the closed-loop system from
(r1, r2) to (y1, y2) is also passive.

Proof:

〈y, e〉T = 〈y1, e1〉T + 〈y2, e2〉T = 〈y1, r1 − y2〉T + 〈y2, r2 + y1〉T

= 〈y1, r1〉T + 〈y2, r2〉T = 〈y, r〉T

Hence, 〈y, r〉T ≥ 0 if 〈y1, e1〉T ≥ 0 and 〈y2, e2〉T ≥ 0.
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Passivity of Linear Systems

Theorem: An asymptotically stable linear system G(s) is passive if
and only if

Re G(iω) ≥ 0, ∀ω > 0

It is strictly passive if and only if there exists ǫ > 0 such that

Re G(iω − ǫ) ≥ 0, ∀ω > 0

Example:

G(s) =
1

s + 1
is strictly passive,

G(s) =
1

s
is passive but not strictly

passive. 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6
 

 

G(iω)
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A Strictly Passive System Has Finite Gain

u y
S

Lemma: If S is strictly passive then γ(S) = supu∈L2

‖y‖2

‖u‖2
< ∞.

Proof:

ǫ(|y|2∞ + |u|2∞) ≤ 〈y, u〉∞ ≤ |y|∞ · |u|∞ = ‖y‖2 · ‖u‖2

Hence, ǫ‖y‖2
2 ≤ ‖y‖2 · ‖u‖2, so

‖y‖2 ≤
1

ǫ
‖u‖2
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The Passivity Theorem

−

r1

r2

y1

y2

e1

e2

S1

S2

Theorem: If S1 is strictly passive and S2 is passive, then the
closed-loop system is BIBO stable from r to y.
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Proof
S1 strictly passive and S2 passive give

ǫ
(
|y1|

2
T + |e1|

2
T

)
≤ 〈y1, e1〉T + 〈y2, e2〉T = 〈y, r〉T

Therefore

|y1|
2
T + 〈r1 − y2, r1 − y2〉T ≤

1

ǫ
〈y, r〉T

or

|y1|
2
T + |y2|

2
T − 2〈y2, r2〉T + |r1|

2
T ≤

1

ǫ
〈y, r〉T

Hence

|y|2T ≤ 2〈y2, r2〉T +
1

ǫ
〈y, r〉T ≤

(
2 +

1

ǫ

)
|y|T |r|T

Let T → ∞ and the result follows.
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The Passivity Theorem is a
“Small Phase Theorem”

−

r1

r2

y1

y2

e1

e2

S1

S2

φ2φ1

S2 passive ⇒ cos φ2 ≥ 0 ⇒ |φ2| ≤ π/2

S1 strictly passive ⇒ cos φ1 > 0 ⇒ |φ1| < π/2
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−
G(s)

2 minute exercise: Apply the Passivity Theorem and compare it with
the Nyquist Theorem. What about conservativeness? [Compare the
discussion on the Small Gain Theorem.]
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Example—Gain Adaptation
Applications in telecommunication channel estimation and in noise
cancellation etc.

Model

Process
u

θ∗

θ(t)

G(s)

G(s)

y

ym

Adaptation law:

dθ

dt
= −cu(t)[ym(t) − y(t)], c > 0.
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Gain Adaptation—Closed-Loop System

replacements

u

−
−

c

s

θ∗

θ(t)

G(s)

G(s)

y

ym

θ

Lecture 5 38

EL2620 2010

Gain Adaptation is BIBO Stable

u S

θ∗

θ

(θ − θ∗)u ym − y

−
−

c

s

G(s)

S is passive (see exercises).
If G(s) is strictly passive , the closed-loop system is BIBO stable
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Simulation of Gain Adaptation

Let G(s) =
1

s + 1
, c = 1, u = sin t, and θ(0) = 0.

0 5 10 15 20
−2

0

2

0 5 10 15 20
0

0.5

1

1.5

y, ym

θ
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Storage Function
Consider the nonlinear control system

ẋ = f(x, u), y = h(x)

A storage function is a C1 function V : R
n → R such that

• V (0) = 0 and V (x) ≥ 0, ∀x 6= 0

• V̇ (x) ≤ uT y, ∀x, u

Remark:

• V (T ) represents the stored energy in the system

• V (x(T ))︸ ︷︷ ︸
stored energy at t = T

≤

∫ T

0

y(t)u(t)dt

︸ ︷︷ ︸
absorbed energy

+ V (x(0))︸ ︷︷ ︸
stored energy at t = 0

, ∀T > 0
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Storage Function and Passivity

Lemma: If there exists a storage function V for a system

ẋ = f(x, u), y = h(x)

with x(0) = 0, then the system is passive.

Proof: For all T > 0,

〈y, u〉T =

∫ T

0

y(t)u(t)dt ≥ V (x(T ))−V (x(0)) = V (x(T )) ≥ 0
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Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: “Energy is decreasing”

V̇ ≤ 0

Passivity idea: “Increase in stored energy ≤ Added energy”

V̇ ≤ uT y
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Example—KYP Lemma

Consider an asymptotically stable linear system

ẋ = Ax + Bu, y = Cx

Assume there exists positive definite matrices P,Q such that

AT P + PA = −Q, BT P = C

Consider V = 0.5xT Px. Then

V̇ = 0.5(ẋT Px + xT Pẋ) = 0.5xT (AT P + PA)x + uBT Px

= −0.5xT Qx + uy < uy, x 6= 0

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.
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Today’s Goal

You should be able to

• derive the gain of a system

• analyze stability using

– Small Gain Theorem

– Circle Criterion

– Passivity

Lecture 5 45

EL2620 2010

Next Lecture

• Analysis of periodic solutions using describing functions
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