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EL2620 Nonlinear Control

Lecture 4

e Lyapunov methods for stability analysis
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Today’s Goal

You should be able to

e Prove local and global stability of equilibria using
Lyapunov’s method

e Prove stability of a set (e.g., a periodic orbit) using
LaSalle’s invariant set theorem
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Alexandr Mihailovich Lyapunov (1857-1918)

Master thesis “On the stability of ellipsoidal forms of equilibrium of
rotating fluids,” St. Petersburg University, 1884.
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Doctoral thesis “The general problem of the stability of motion,” 1892.
Formalized the idea:

If the total energy is dissipated, the system must be stable.
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A Motivating Example

ST

O 0O
-
e Balance of forces yields
mi = — bi|i| — kox — k12>, b, ko, k1 >0
NV ad —
damping spring

e Total energy = kinetic + potential energy: V' = mTUQ + fox Fopringds
V(x, &) = mi?/2 + kox? /2 + k1t /4 >0, V(0,0) =0

e Change in energy along any solution x(t)

d
2V (@, @) = mii + ko + kixdi = —blz|® <0, ©#0
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Stability Definitions

Recall from Lecture 3 that an equilibrium x = 0 of & = f(x) is

Locally stable , if for every € > 0 there exists 0 > 0 such that
[z(0) <6 = flz(®)] <e VE=0
Locally asymptotically stable , if locally stable and

|z(0)|| <0 = tlim z(t)=0

Globally asymptotically stable , if asymptotically V(0) € R"™.
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Lyapunov Stability Theorem

Theorem: Let® = f(z), f(0) =0,and 0 € @ C R". If there
exists a C! function V' : 2 — R such that

@ V(0)=0

@ V(r)>0foralz € Q,z #0

@) V(z) < Oforallz € Q

then x = 0 is locally stable. Furthermore, if
@) V(z) < Oforallz € Q2 #0

then © = 0 is locally asymptotically stable.

The result is called Lyapunov’s Direct Method
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Lyapunov Function

A function V" that fulfills (1)—(3) is called a Lyapunov function.

Condition (3) means that 1/ is non-increasing along all trajectories
e d v oV
V(z) = =V(z) = L=

== () <0

A

X
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Conservation and Dissipation

Conservation of energy : V(z) = 9 f(z) = 0, i.e. the vector field

f(z) is everywhere orthogonal to the normal %—‘; to the level surface
V(z)=c

Example: Total energy of a lossless mechanical system or total fluid in
a closed system.

Dissipation of energy: V' (z) = 9 f(z) < 0, i.e. the vector field
() and the normal 2 to the level surface V' (z) = c make an

X
obtuse angle.

Example: Total energy of a mechanical system with damping or total
fluid in a system that leaks.
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Geometric interpretation
Boundedness:
av l
@ ) For an trajectory x(t)
V(z) =constant 3 z(t) t
V((z(t)) = V(x(0)) +/ V(z(r))dr < V(2(0))
0
which means that the whole trajectory lies in the set
{z|V(2) < V((0))}
Vector field points into sublevel sets For stability it is thus important that the sublevel sets
'¢Ic points Info SUbiev {z | V(z) < ¢)} are locally bounded.
Trajectories can only go to lower values of V(x)
Lecture 4 9 Lecture 4 10
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Example—Pendulum
Is the origin stable for a mathematical pendulum?
. 9.
Ty = T, T2 = 7 S1N Ty (1) V(O)

Lyapunov function candidate: V' (z) = (1 — cosz1)g/l + x3/2
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2 V(xz) > 0for =27 < 21 < 2mand (x1,22) # 0
(3) V(x) = %@y sinzy + x9d9 = 0, Vo

Hence, x = 0 is locally stable.
Note that x = (0 is not asymptotically stable, so, of course, (4) is not
fulfilled: V' (x) £ 0, Va # 0.

Conservation of energy!
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5 minute exercise: Consider Example 2 from Lecture 3:

jjl = Ig(t)
By = —x1(t) — ex?(t)xo(t)

For what values of € is the steady-state (0, 0) locally stable? Hint: try
the "standard” Lyapunov function

V(z)=a2"x

Can you say something about global stability of the equilibrium?
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Lyapunov Theorem for
Global Asymptotic Stability

Theorem: Leti = f(x)and f(0) = 0. If there exists a C* function
V: R" — R such that

@) V(0)=0

2 V(xz) > Oforallz # 0

@) V(z) < Oforallz #0

@ V(z) — coas ||z]| — o0

then x = 0 is globally asymptotically stable.
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Radial Unboundedness is Necessary

If (4) is not fulfilled, then global stability cannot be guaranteed.

Example: Assume V (z) = z7/(1 + %) + 23 is a Lyapunov
function for some system. Then might z(t) — oo evenif V(z) < 0,
as shown by the contour plot of V' (x):

=
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Somewhat Stronger Assumptions

Theorem: Let@ = f(z)and f(0) = 0. If there exists a C' function
V : R" — R such that

@) V(0)=0
2 V(xz) > Oforallz # 0
@) V(z) < —aV(x)forallz

(4) The sublevel sets {z|V (x) < c} are bounded for all ¢ > 0

then & = 0 is globally asymptotically stable.
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Proof Idea

Assume z(t) # 0 (otherwise we have z(7) = 0 for all 7 > t). Then

Integrating from O to ¢ gives
log V(z(t)) —log V(z(0) < —at = V(z(t)) < e *V(x(0))

Hence, V (z(t)) — 0,t — oc.
Using the properties of Vit follows that z:(¢) — 0, ¢ — oo.
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Converse Lyapunov theorems

Example: If the system is globally exponentially stable
le(@®)]] < Me™||z(0)||, M >0, >0

then there is a Lyapunov function that proves that it is globally
asymptotically stable.

There exist also Lyapunov instability theorems!
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Positive Definite Matrices

Definition: A matrix M is positive definite if 27 Mx > 0 for all
x # 0. Itis positive semidefinite  if T Max > 0 for all z.

Lemma:
o M = M7 is positive definite <= \;(M) > 0, Vi
e M = M7 is positive semidefinite <= \;(M) > 0, Vi
Note that if M = M7 is positive definite, then the Lyapunov function

candidate V (z) = x7 Mz fulfils V (0) = 0 and V (z) > 0,
Va # 0.
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Symmetric Matrices

Assume that M = M7T. Then

Ain(M)||2]]? < 27 M < Ao (M) |

Hint: Use the factorization M = UAU”, where U is an orthogonal
matrix UUT = I)and A = diag(\y, ..., \n).
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Lyapunov Stability for Linear Systems
Linear system: & = Ax

Lyapunov equation: Consider the quadratic function
V(z)=a"Pz, P=P'>0
= V(z) =2"Pi+i"Pr=a2" (PA+ ATP)x = —2"Qux
~—_————
Q

Thus, V < 0 V¢ if there exista Q = Q7 > 0 such that
PA+ATP=—-Q
Global Asymptotic Stability: I () is positive definite, then the

Lyapunov Stability Theorem implies global asymptotic stability, and
hence the eigenvalues of A must satisfy Re A\;(A) < 0 for all ¢

Lecture 4 21
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Converse Theorem for Linear Systems

If Re \;(A) < 0, then for every symmetric positive definite () there
exist a symmetric positive definite matrix P such that

PA+A"P=-Q

Proof: Choose P = [ et Qe dt. Then

ATP4+PA = / <ATeATthAt+eATthAtA> dt
0

_ /OOO (%eATthAt> dt — [eATthAt}ZO —_Q
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Interpretation

Assume & = Az, x(0) = z. Then

/OO 2" (1) Qu(t)dt = 2 (/00 6ATtQ€Atdt) z=2'Pz
0

0

Thus v(z) = 2" Pzisthe cost-to-go from the point z (no input) with
integral quadratic cost function using weighting matrix ().
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Lyapunov’s Linearization Method

Recall from Lecture 3:

Theorem: Let 1 be an equilibrium of & = f(z) with f € C'.
Denote A = %(1’0) and a(A) = max Re(\(A)).

(1) fa(A) < 0 then zy is asymptotically stable
() If a(A) > 0 then zy is unstable
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Proof of (1) in Lyapunov’s Linearization

Let f(x) = Az + g(x) where limyj,— ||g(2)]| /||| = 0. The
Lyapunov function candidate V (z) = =7 P satisfies V (0) = 0,
V(z) > Oforz # 0, and
V(z) =a"Pf(x) + fT(z)Pax
= 2" P[Az + g(2)] + [T AT + ¢" ()| Px
=21 (PA+ ATP)z + 227 Pg(z)

EL2620 2010

For all v > ( there exists 7 > 0 such that

lg@)l <All=ll, Vil <7

Thus, )
V < Ain (@) |21 + 29 Aaa (P) [ ]|

_ _xTQx + 2xTPg($) which becomes strictly negative if we choose
where v < 1 Anin(Q)
21 Q> Ain(Q) [l 2 Amaz (P)
e we need to show that || 227 Pg(z)|| < Amin(Q)||2]|?
Lecture 4 25 Lecture 4 26
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LaSalle’s Theorem for Global Asymptotic
Stability

Theorem: Let = f(x)and f(0) = 0. If there exists a C! function
Vi R™ — R such that

@) V(0)=0
2 V(x) > Oforallz # 0
@) V(z) < Oforallx

@) V(r) — ooas ||z]| — oo

(5) The only solution of & = f(z) such that V(z) = 0is z(t) = 0
forall t

then x = 0 is globally asymptotically stable.
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A Motivating Example (contd)

mi = —bi|i| — kox — ky2®
V(z) = (2mi® + 2koa® + kyz*) /4 >0, V(0,0) =0
V() = —blif*

Assume that there is a trajectory with &(t) = 0, z(¢) # 0. Then

L) = ()~ ad(r) 20

which means that @(%) can not stay constant.

Hence, z(t) = 0 is the only possible trajectory for which V(z) =0,
and the LaSalle theorem gives global asymptotic stability.
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Invariant Sets

Definition: A set M is invariant with respectto & = f(x), if
z(0) € M implies that z(t) € M forallt > 0.

Definition: x(t) approaches aset M as ¢ — oo, if for each € > 0
thereisal’ > 0 such that dist(x(t), M) < eforallt > T'. Here
dist(p, M) = infzenr [Ip — .
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LaSalle’s Invariant Set Theorem

Theorem: Let {2 C R" be a compact set invariant with respect to
i = f(x). LetV : R" — R be a C* function such that V (z:) < 0

for z € Q. Let E be the set of points in Q where V(z) = 0. If M is
the largest invariant set in F/, then every solution with 2:(0) € €2
approaches M ast — oo.

T

Note that V' does not have to be a positive definite function.
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Example—~Periodic Orbit

Show that x(t) approaches {z : ||z|| = 1} U {0} for
=11 — @y — 1 (2] + 73)
fy = &1 + @y — Ta(2F + 73)

Itis possible to show that 2 = {||z|| < R} is invariant for sufficiently

large R > 0. Let V(z) = (23 + 23 — 1)~

. oV d

V()= D fa) = 20 423 - 1)
x

E(ﬁ + a3 —1)
1)?

= —2(x]+ 25— 1)*(23 +13) <0, Ve
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E={zecQ:V(x)=0}={z: |z =1} U{0}

The largest invariant set of F/ is M = FE because

d
%(:1:?4—3:3 —1)=-2@i+a2 -1zt +23) =0 forx € M

Phase Plane
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