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EL2620 Nonlinear Control

Lecture 4

• Lyapunov methods for stability analysis
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Today’s Goal

You should be able to

• Prove local and global stability of equilibria using
Lyapunov’s method

• Prove stability of a set (e.g., a periodic orbit) using
LaSalle’s invariant set theorem
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Alexandr Mihailovich Lyapunov (1857–1918)

Master thesis “On the stability of ellipsoidal forms of equilibrium of
rotating fluids,” St. Petersburg University, 1884.

Doctoral thesis “The general problem of the stability of motion,” 1892.

Formalized the idea:

If the total energy is dissipated, the system must be stable.
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A Motivating Example

x

m

• Balance of forces yields

mẍ = − bẋ|ẋ|
︸ ︷︷ ︸

damping

− k0x − k1x
3

︸ ︷︷ ︸

spring

, b, k0, k1 > 0

• Total energy = kinetic + potential energy: V = mv2

2
+

∫ x

0
Fspringds

V (x, ẋ) = mẋ2/2 + k0x
2/2 + k1x

4/4 > 0, V (0, 0) = 0

• Change in energy along any solution x(t)

d

dt
V (x, ẋ) = mẋẍ + k0xẋ + k1x

3ẋ = −b|ẋ|3 < 0, ẋ 6= 0
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Stability Definitions

Recall from Lecture 3 that an equilibrium x = 0 of ẋ = f(x) is

Locally stable , if for every ǫ > 0 there exists δ > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ǫ, ∀t ≥ 0

Locally asymptotically stable , if locally stable and

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

Globally asymptotically stable , if asymptotically ∀x(0) ∈ R
n.
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Lyapunov Stability Theorem

Theorem: Let ẋ = f(x), f(0) = 0, and 0 ∈ Ω ⊂ R
n. If there

exists a C
1 function V : Ω → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x ∈ Ω, x 6= 0

(3) V̇ (x) ≤ 0 for all x ∈ Ω

then x = 0 is locally stable. Furthermore, if

(4) V̇ (x) < 0 for all x ∈ Ω, x 6= 0

then x = 0 is locally asymptotically stable.

The result is called Lyapunov’s Direct Method
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Lyapunov Function

A function V that fulfills (1)–(3) is called a Lyapunov function.

Condition (3) means that V is non-increasing along all trajectories
in Ω:

V̇ (x) =
d

dt
V (x) =

∂V

∂x
ẋ =

∂V

∂x
f(x) ≤ 0

x1

x2

V
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Conservation and Dissipation

Conservation of energy : V̇ (x) = ∂V
∂x

f(x) = 0, i.e. the vector field

f(x) is everywhere orthogonal to the normal ∂V
∂x

to the level surface
V (x) = c.

Example: Total energy of a lossless mechanical system or total fluid in
a closed system.

Dissipation of energy: V̇ (x) = ∂V
∂x

f(x) ≤ 0, i.e. the vector field

f(x) and the normal ∂V
∂x

to the level surface V (x) = c make an
obtuse angle.

Example: Total energy of a mechanical system with damping or total
fluid in a system that leaks.
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Geometric interpretation

f(x)

dV

dx

x(t)
V (x) =constant

Vector field points into sublevel sets

Trajectories can only go to lower values of V (x)
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Boundedness:

For an trajectory x(t)

V ((x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ ≤ V (x(0))

which means that the whole trajectory lies in the set

{z | V (z) ≤ V (x(0))}

For stability it is thus important that the sublevel sets
{z | V (z) ≤ c)} are locally bounded.
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Example—Pendulum
Is the origin stable for a mathematical pendulum?

ẋ1 = x2, ẋ2 = −
g

ℓ
sin x1

Lyapunov function candidate: V (x) = (1 − cos x1)g/ℓ + x2

2
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−10
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0
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(1) V (0) = 0

(2) V (x) > 0 for −2π < x1 < 2π and (x1, x2) 6= 0

(3) V̇ (x) = g

ℓ
ẋ1 sin x1 + x2ẋ2 = 0, ∀x

Hence, x = 0 is locally stable.

Note that x = 0 is not asymptotically stable, so, of course, (4) is not
fulfilled: V̇ (x) 6< 0, ∀x 6= 0.

Conservation of energy!
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5 minute exercise: Consider Example 2 from Lecture 3:

ẋ1 = x2(t)

ẋ2 = −x1(t) − ǫx2

1
(t)x2(t)

For what values of ǫ is the steady-state (0, 0) locally stable? Hint: try
the ”standard” Lyapunov function

V (x) = xT x

Can you say something about global stability of the equilibrium?
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Lyapunov Theorem for
Global Asymptotic Stability

Theorem: Let ẋ = f(x) and f(0) = 0. If there exists a C
1 function

V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x 6= 0

(3) V̇ (x) < 0 for all x 6= 0

(4) V (x) → ∞ as ‖x‖ → ∞

then x = 0 is globally asymptotically stable.
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Radial Unboundedness is Necessary

If (4) is not fulfilled, then global stability cannot be guaranteed.

Example: Assume V (x) = x2

1
/(1 + x2

1
) + x2

2
is a Lyapunov

function for some system. Then might x(t) → ∞ even if V̇ (x) < 0,
as shown by the contour plot of V (x):
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Somewhat Stronger Assumptions

Theorem: Let ẋ = f(x) and f(0) = 0. If there exists a C
1 function

V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x 6= 0

(3) V̇ (x) ≤ −αV (x) for all x

(4) The sublevel sets {x|V (x) ≤ c} are bounded for all c ≥ 0

then x = 0 is globally asymptotically stable.
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Proof Idea

Assume x(t) 6= 0 (otherwise we have x(τ) = 0 for all τ > t). Then

V̇ (x)

V (x)
≤ −α

Integrating from 0 to t gives

log V (x(t)) − log V (x(0) ≤ −αt ⇒ V (x(t)) ≤ e−αtV (x(0))

Hence, V (x(t)) → 0, t → ∞.

Using the properties of V it follows that x(t) → 0, t → ∞.
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Converse Lyapunov theorems

Example: If the system is globally exponentially stable

||x(t)|| ≤ Me−βt||x(0)||, M > 0, β > 0

then there is a Lyapunov function that proves that it is globally
asymptotically stable.

There exist also Lyapunov instability theorems!
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Positive Definite Matrices

Definition: A matrix M is positive definite if xT Mx > 0 for all
x 6= 0. It is positive semidefinite if xT Mx ≥ 0 for all x.

Lemma:

• M = MT is positive definite ⇐⇒ λi(M) > 0, ∀i

• M = MT is positive semidefinite ⇐⇒ λi(M) ≥ 0, ∀i

Note that if M = MT is positive definite, then the Lyapunov function
candidate V (x) = xT Mx fulfills V (0) = 0 and V (x) > 0,
∀x 6= 0.
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Symmetric Matrices

Assume that M = MT . Then

λmin(M)‖x‖2 ≤ xT Mx ≤ λmax(M)‖x‖2

Hint: Use the factorization M = UΛUT , where U is an orthogonal
matrix (UUT = I) and Λ = diag(λ1, . . . , λn).

Lecture 4 20



EL2620 2010

Lyapunov Stability for Linear Systems

Linear system: ẋ = Ax

Lyapunov equation: Consider the quadratic function

V (x) = xT Px, P = P T > 0

⇒ V̇ (x) = xT Pẋ + ẋT Px = xT (PA + AT P )
︸ ︷︷ ︸

Q

x = −xT Qx

Thus, V̇ < 0 ∀t if there exist a Q = QT > 0 such that

PA + AT P = −Q

Global Asymptotic Stability: If Q is positive definite, then the
Lyapunov Stability Theorem implies global asymptotic stability, and
hence the eigenvalues of A must satisfy Reλi(A) < 0 for all i
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Converse Theorem for Linear Systems

If Reλi(A) < 0, then for every symmetric positive definite Q there
exist a symmetric positive definite matrix P such that

PA + AT P = −Q

Proof: Choose P =
∫ ∞

0
eAT tQeAtdt. Then

AT P + PA =

∫ ∞

0

(

ATeAT tQeAt + eAT tQeAtA
)

dt

=

∫ ∞

0

(
d

dt
eAT tQeAt

)

dt =
[

eAT tQeAt
]∞

0

= −Q
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Interpretation

Assume ẋ = Ax, x(0) = z. Then
∫ ∞

0

xT (t)Qx(t)dt = zt

(∫ ∞

0

eAT tQeAtdt

)

z = ztPz

Thus v(z) = zT Pz is the cost-to-go from the point z (no input) with
integral quadratic cost function using weighting matrix Q.
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Lyapunov’s Linearization Method

Recall from Lecture 3:

Theorem: Let x0 be an equilibrium of ẋ = f(x) with f ∈ C
1.

Denote A = ∂f

∂x
(x0) and α(A) = max Re(λ(A)).

(1) If α(A) < 0 then x0 is asymptotically stable

(2) If α(A) > 0 then x0 is unstable
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Proof of (1) in Lyapunov’s Linearization

Let f(x) = Ax + g(x) where lim‖x‖→0 ‖g(x)‖/‖x‖ = 0. The

Lyapunov function candidate V (x) = xT Px satisfies V (0) = 0,
V (x) > 0 for x 6= 0, and

V̇ (x) = xT Pf(x) + fT (x)Px

= xT P [Ax + g(x)] + [xT AT + gT (x)]Px

= xT (PA + AT P )x + 2xT Pg(x)

= −xT Qx + 2xT Pg(x)

where
xT Qx ≥ λmin(Q)‖x‖2

• we need to show that ‖2xT Pg(x)‖ < λmin(Q)‖x‖2
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For all γ > 0 there exists r > 0 such that

‖g(x)‖ < γ‖x‖, ∀‖x‖ < r

Thus,

V̇ < −λmin(Q)‖x‖2 + 2γλmax(P )‖x‖2

which becomes strictly negative if we choose

γ <
1

2

λmin(Q)

λmax(P )
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LaSalle’s Theorem for Global Asymptotic
Stability

Theorem: Let ẋ = f(x) and f(0) = 0. If there exists a C
1 function

V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x 6= 0

(3) V̇ (x) ≤ 0 for all x

(4) V (x) → ∞ as ‖x‖ → ∞

(5) The only solution of ẋ = f(x) such that V̇ (x) = 0 is x(t) = 0
for all t

then x = 0 is globally asymptotically stable.
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A Motivating Example (cont’d)

mẍ = −bẋ|ẋ| − k0x − k1x
3

V (x) = (2mẋ2 + 2k0x
2 + k1x

4)/4 > 0, V (0, 0) = 0

V̇ (x) = −b|ẋ|3

Assume that there is a trajectory with ẋ(t) = 0, x(t) 6= 0. Then

d

dt
ẋ(t) = −

k0

m
x(t) −

k1

m
x3(t) 6= 0,

which means that ẋ(t) can not stay constant.

Hence, x(t) = 0 is the only possible trajectory for which V̇ (x) = 0,
and the LaSalle theorem gives global asymptotic stability.
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Invariant Sets

Definition: A set M is invariant with respect to ẋ = f(x), if
x(0) ∈ M implies that x(t) ∈ M for all t ≥ 0.

x(0)

x(t)

M

Definition: x(t) approaches a set M as t → ∞, if for each ǫ > 0
there is a T > 0 such that dist(x(t),M) < ǫ for all t > T . Here
dist(p,M) = infx∈M ‖p − x‖.
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LaSalle’s Invariant Set Theorem

Theorem: Let Ω ⊂ R
n be a compact set invariant with respect to

ẋ = f(x). Let V : R
n → R be a C1 function such that V̇ (x) ≤ 0

for x ∈ Ω. Let E be the set of points in Ω where V̇ (x) = 0. If M is
the largest invariant set in E, then every solution with x(0) ∈ Ω
approaches M as t → ∞.

Ω E M

V̇ (x)E
M

x

Note that V does not have to be a positive definite function.
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Example—Periodic Orbit

Show that x(t) approaches {x : ‖x‖ = 1} ∪ {0} for

ẋ1 = x1 − x2 − x1(x
2

1
+ x2

2
)

ẋ2 = x1 + x2 − x2(x
2

1
+ x2

2
)

It is possible to show that Ω = {‖x‖ ≤ R} is invariant for sufficiently
large R > 0. Let V (x) = (x2

1
+ x2

2
− 1)2.

V̇ (x) =
∂V

∂x
f(x) = 2(x2

1
+ x2

2
− 1)

d

dt
(x2

1
+ x2

2
− 1)

= −2(x2

1
+ x2

2
− 1)2(x2

1
+ x2

2
) ≤ 0, ∀x ∈ Ω
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E = {x ∈ Ω : V̇ (x) = 0} = {x : ‖x‖ = 1} ∪ {0}

The largest invariant set of E is M = E because

d

dt
(x2

1
+ x2

2
− 1) = −2(x2

1
+ x2

2
− 1)(x2

1
+ x2

2
) = 0 for x ∈ M
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