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Phase-Plane Analysis for Nonlinear Systems

Close to equilibrium points “nonlinear system” = “linear system”

Theorem: Assume

i = f(x) = Az + g(a),

with limy—o ||g(x)||/||z|| = 0. If £ = Az has a focus, node, or

saddle point, then & = f(x) has the same type of equilibrium at the

origin.

Remark: If the linearized system has a center, then the nonlinear
system has either a center or a focus.
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How to Draw Phase Portraits

By hand:
1. Find equilibria
2. Sketch local behavior around equilibria

3. Sketch (@1, &5) for some other points. Notice that

dre 9
dr, @y
4. Try to find possible periodic orbits
5. Guess solutions
By computer:

1. Matlab: dee or ppl ane
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Example: Phase-Locked Loop

A PLL tracks phase 6,,(t) of a signal s;,(t) = Asin|wt + 6;,(t)].
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Phase-Plane Analysis of PLL Classification of Equilibria
Let ($1 $2) _ (9 t 0 t) K. T >0 and 6 (t) =0 Linearization gives the following characteristic equations:
. n even:
iy (t) = xa(t)l 1 NATN+KT =0
Ta(t) = —T™ 2a(t) + KT sin(6n — 21(t)) K > (4T)~! gives stable focus
Equilibria are (6, + n, 0) since 0 < K < (4T)" gives stable node
21 =0=129=0 n_odd: , . )
y'cgzo:sin(em—xl):0:x1:9in+mr ANMHTA=KT =0
Saddle points for all K, T > 0
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(K,T) = (1/2,1): focuses (2l<:7r, 0)’ saddle points ((% + 1), O) Example of an asymptotically stable periodic solution:
a FPhaze Plane jjl =T — T2 — X1 (‘(L’% + .ZL'%) (1)
I S S B _ &2 = @1 + @2 — 22(af + 23)
| D N _— ] P Fi
-4 -2 i] 2 4
w1
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Periodic solution: Polar coordinates.
1 =rcos = 1I;=cosOr— 7 sin 60

Ty =rsinf = iy =sinOr + rcosdf

7 _1 rcosf rsinf T
0 ) r\ —sinf cosf To

Now, from (1)

implies

i1 =r(1—7r%)cosh —rsinf
ig =r(1—7?%)sinf +rcosd
gives
i =r(l—r?
f=1
Only r = 1 is a stable equilibrium!
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A system has a periodic solution if for some 17" > 0
x(t+T)=ux(t), Vt>0

A periodic orbit is the image of  in the phase portrait.

e When does there exist a periodic solution?

e When is it stable?

Note that z(¢) = const is by convention not regarded periodic
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Flow

The solution of & = f(z) is sometimes denoted

¢t($0)
to emphasize the dependence on the initial point xy € R"
&(+) is called the flow .
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Poincar &€ Map

Assume ¢y () is a periodic solution with period 7.
Let > C R™ be an n — 1-dim hyperplane transverse to f at .
Definition: The Poincaré map P : > — X is

P(r) = ¢r@)(z)

where 7(x) is the time of first return.
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Existence of Periodic Orbits

A point x* such that P(x*) = z* corresponds to a periodic orbit.

P(z*) ==z

2™ is called a fixed point of P.
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Stable Periodic Orbit

The linearization of P around z* gives a matrix 11/ such that
P(z) = Wz
if  is close to x*.
e )\;(W) =1 for some j

e If |\;(IW)| < 1foralli # j, then the corresponding periodic
orbit is asymptotically stable

e If |\;(IV)| > 1 for some ¢, then the periodic orbit is unstable .
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Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

Choose ¥ = {(r,0) : r > 0,6 = 27k}.

The solution is

d)t(’l”g,eo) = ([1 + (T’az — 1)672t]71/2,t + 90)

First return time from any point (ro, 90) €Xis

7(ro,6p) = 2.
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The Poincaré map is

[1 + (7"0_2 _ 1)672-%]71/2
90 + 27'('

P(ro,0) = (
(ro,00) = (1, 27k) is a fixed point.

The periodic solution that corresponds to ((t),0(t)) = (1,t) is
asymptotically stable because

dP e~ 0
= ——(1,27k) =
W d(?“o,@g)( ) &1 ) ( 0 1)

= Stable periodic orbit (as we already knew for this example)
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Next Lecture

e Lyapunov methods for stability analysis
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