

Lecture 3

EL2620

2011

3

1

How to Draw Phase Portraits

By hand:

- 1. Find equilibria
- 2. Sketch local behavior around equilibria
- 3. Sketch (\dot{x}_1, \dot{x}_2) for some other points. Notice that

$$\frac{dx_2}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1}$$

- 4. Try to find possible periodic orbits
- 5. Guess solutions

By computer:

1. Matlab: dee or pplane

Phase-Plane Analysis for Nonlinear Systems

Close to equilibrium points "nonlinear system" \approx "linear system" $% 10^{-1}$ Theorem: Assume

$$\dot{x} = f(x) = Ax + g(x),$$

with $\lim_{\|x\|\to 0} \|g(x)\|/\|x\| = 0$. If $\dot{z} = Az$ has a focus, node, or saddle point, then $\dot{x} = f(x)$ has the same type of equilibrium at the origin.

Remark: If the linearized system has a center, then the nonlinear system has either a center or a focus.

Example: Phase-Locked Loop

A PLL tracks phase $\theta_{in}(t)$ of a signal $s_{in}(t) = A \sin[\omega t + \theta_{in}(t)]$.

Lecture 3

EL2620

2011

Phase-Plane Analysis of PLL

Let
$$(x_1, x_2) = (\theta_{\text{out}}, \dot{\theta}_{\text{out}}), K, T > 0$$
, and $\theta_{\text{in}}(t) \equiv \theta_{\text{in}}$.
 $\dot{x}_1(t) = x_2(t)$
 $\dot{x}_2(t) = -T^{-1}x_2(t) + KT^{-1}\sin(\theta_{\text{in}} - x_1(t))$

(KTH Vieten biometry)

Equilibria are $(\theta_{\rm in}+n\pi,0)$ since

$$\begin{aligned} x_1 &= 0 \Rightarrow x_2 = 0 \\ \dot{x}_2 &= 0 \Rightarrow \sin(\theta_{in} - x_1) = 0 \Rightarrow x_1 = \theta_{in} + n\pi \end{aligned}$$

 $\begin{array}{c} \mbox{Classification of Equilibria}\\ \mbox{Linearization gives the following characteristic equations:}\\ \hline \underline{n \ even:}\\ & \lambda^2 + T^{-1}\lambda + KT^{-1} = 0\\ K > (4T)^{-1} \ \mbox{gives stable focus}\\ & 0 < K < (4T)^{-1} \ \mbox{gives stable node}\\ \hline \underline{n \ \mbox{odd:}}\\ & \lambda^2 + T^{-1}\lambda - KT^{-1} = 0 \end{array}$

Saddle points for all K, T > 0

Lecture 3	5	Lecture 3	6
EL2620	2011	EL2620	2011

Phase-Plane for PLL

(K,T) = (1/2,1): focuses $(2k\pi,0)$, saddle points $((2k+1)\pi,0)$

Example of an asymptotically stable periodic solution:

$$\dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2)$$

$$\dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2)$$
 (1)

Lecture 3

EL2620

2011

EL2620

t Exercised Registering	Periodic solution: Polar coordinate $x_{1} = r \cos \theta \implies \dot{x}_{1} = \cos \theta \dot{r} - r \sin \theta \dot{\theta}$ $x_{2} = r \sin \theta \implies \dot{x}_{2} = \sin \theta \dot{r} + r \cos \theta \dot{\theta}$ implies $\begin{pmatrix} \dot{r} \\ \dot{\theta} \end{pmatrix} = \frac{1}{r} \begin{pmatrix} r \cos \theta & r \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{pmatrix}$ Now, from (1) $\dot{x}_{1} = r(1 - r^{2}) \cos \theta - r \sin \theta$ $\dot{x}_{2} = r(1 - r^{2}) \sin \theta + r \cos \theta$ gives $\dot{r} = r(1 - r^{2})$ $\dot{\theta} = 1$ Only $r = 1$ is a stable equilibrium!))	A system has a periodic soluti x(t+T) = A periodic orbit is the image of • When does there exist a periodic • When is it stable? Note that $x(t) \equiv$ const is by const • When the track of t	$\forall t \geq 0$ f x in the phase portrait.
Le	cture 3	9	Lecture 3	10
EL	.2620	2011	EL2620	2011
	Flow The solution of $\dot{x} = f(x)$ is sometimes denoted $\phi_t(x_0)$ to emphasize the dependence on the initial point $x_0 \in \mathbb{R}^n$ $\phi_t(\cdot)$ is called the flow.	8	Assume $\phi_t(x_0)$ is a periodic so Let $\Sigma \subset \mathbb{R}^n$ be an $n-1$ -dim be Definition: The Poincaré map	hyperplane transverse to f at x_0 . $P: \Sigma \to \Sigma$ is $= \phi_{\tau(x)}(x)$

EL2620	2011	EL2620	2011
Existence of Periodic Or A point x^* such that $P(x^*) = x^*$ corresponds to a $P(x^*) = x^*$ x^* is called a fixed point of P .		$\begin{array}{l} \textbf{Stable Periodic} \\ \textbf{The linearization of } P \text{ around } x^* \text{ gives a management} \\ P(x) \approx Wx \\ \hline \textbf{Mathematical States} \\ \textbf{if } x \text{ is close to } x^*. \\ \bullet \lambda_j(W) = 1 \text{ for some } j \\ \bullet \text{ If } \lambda_i(W) < 1 \text{ for all } i \neq j, \text{ then the coordinates} \\ \bullet \text{ If } \lambda_i(W) > 1 \text{ for some } i, \text{ then the period} \\ \end{array}$	atrix W such that
Lecture 3 EL2620	13	Lecture 3 EL2620	2011
Example—Stable Unit C Rewrite (1) in polar coordinates: $\dot{r} = r(1 - r^2)$ $\dot{\theta} = 1$	ircle	The Poincaré map is $P(r_0,\theta_0) = \begin{pmatrix} [1+(r_0^{-2}-1)] \\ \theta_0 + 1 \end{pmatrix}$	$\left(e^{-2\cdot 2\pi}\right]^{-1/2}$
Choose $\Sigma = \{(r, \theta) : r > 0, \theta = 2\pi k\}.$ The solution is $\phi_t(r_0, \theta_0) = \left([1 + (r_0^{-2} - 1)e^{-2t}]^{-1/2}\right)$ First return time from any point $(r_0, \theta_0) \in \Sigma$ is $\tau(r_0, \theta_0) = 2\pi.$	$^{2},t+ heta_{0}\Big)$	$(r_0, \theta_0) = (1, 2\pi k) \text{ is a fixed point.}$ The periodic solution that corresponds to (r_0, θ_0) $W = \frac{dP}{d(r_0, \theta_0)}(1, 2\pi k) =$ $\Rightarrow \text{ Stable periodic orbit (as we already knew)}$	$\begin{pmatrix} e^{-4\pi} & 0\\ 0 & 1 \end{pmatrix}$

2011

Next Lecture

• Lyapunov methods for stability analysis

Lecture 3