Equilibrium Points for Linear Systems

Lecture 3
1

EL2620

How to Draw Phase Portraits

By hand:

1. Find equilibria
2. Sketch local behavior around equilibria
3. Sketch $\left(\dot{x}_{1}, \dot{x}_{2}\right)$ for some other points. Notice that

$$
\frac{d x_{2}}{d x_{1}}=\frac{\dot{x}_{2}}{\dot{x}_{1}}
$$

4. Try to find possible periodic orbits
5. Guess solutions

By computer:

1. Matlab: dee or pplane

Phase-Plane Analysis of PLL

Let $\left(x_{1}, x_{2}\right)=\left(\theta_{\text {out }}, \dot{\theta}_{\text {out }}\right), K, T>0$, and $\theta_{\text {in }}(t) \equiv \theta_{\text {in }}$.

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2}(t) \\
& \dot{x}_{2}(t)=-T^{-1} x_{2}(t)+K T^{-1} \sin \left(\theta_{\text {in }}-x_{1}(t)\right)
\end{aligned}
$$

Equilibria are $\left(\theta_{\text {in }}+n \pi, 0\right)$ since

$$
\begin{aligned}
& \dot{x}_{1}=0 \Rightarrow x_{2}=0 \\
& \dot{x}_{2}=0 \Rightarrow \sin \left(\theta_{\text {in }}-x_{1}\right)=0 \Rightarrow x_{1}=\theta_{\text {in }}+n \pi
\end{aligned}
$$

Phase-Plane for PLL
$(K, T)=(1 / 2,1)$: focuses $(2 k \pi, 0)$, saddle points $((2 k+1) \pi, 0)$

Classification of Equilibria

Linearization gives the following characteristic equations:
n even:

$$
\lambda^{2}+T^{-1} \lambda+K T^{-1}=0
$$

$K>(4 T)^{-1}$ gives stable focus $0<K<(4 T)^{-1}$ gives stable node
\underline{n} odd:

$$
\lambda^{2}+T^{-1} \lambda-K T^{-1}=0
$$

Saddle points for all $K, T>0$

Periodic Solutions

Example of an asymptotically stable periodic solution:

$$
\begin{align*}
& \dot{x}_{1}=x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
& \dot{x}_{2}=x_{1}+x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right) \tag{1}
\end{align*}
$$

Periodic solution: Polar coordinates.

$$
\begin{aligned}
& x_{1}=r \cos \theta \quad \Rightarrow \quad \dot{x}_{1}=\cos \theta \dot{r}-r \sin \theta \dot{\theta} \\
& x_{2}=r \sin \theta \quad \Rightarrow \quad \dot{x}_{2}=\sin \theta \dot{r}+r \cos \theta \dot{\theta}
\end{aligned}
$$

implies

$$
\binom{\dot{r}}{\dot{\theta}}=\frac{1}{r}\left(\begin{array}{cc}
r \cos \theta & r \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\dot{x}_{1}}{\dot{x}_{2}}
$$

Now, from (1)

$$
\begin{aligned}
& \dot{x}_{1}=r\left(1-r^{2}\right) \cos \theta-r \sin \theta \\
& \dot{x}_{2}=r\left(1-r^{2}\right) \sin \theta+r \cos \theta
\end{aligned}
$$

gives

$$
\begin{aligned}
& \dot{r}=r\left(1-r^{2}\right) \\
& \dot{\theta}=1
\end{aligned}
$$

Only $r=1$ is a stable equilibrium!

Poincaré Map

Assume $\phi_{t}\left(x_{0}\right)$ is a periodic solution with period T. Let $\Sigma \subset \mathbb{R}^{n}$ be an n - 1-dim hyperplane transverse to f at x_{0}. Definition: The Poincaré map $P: \Sigma \rightarrow \Sigma$ is

$$
P(x)=\phi_{\tau(x)}(x)
$$

where $\tau(x)$ is the time of first return.

Existence of Periodic Orbits

A point x^{*} such that $P\left(x^{*}\right)=x^{*}$ corresponds to a periodic orbit.

Example-Stable Unit Circle

Rewrite (1) in polar coordinates:

$$
\begin{aligned}
& \dot{r}=r\left(1-r^{2}\right) \\
& \dot{\theta}=1
\end{aligned}
$$

Choose $\Sigma=\{(r, \theta): r>0, \theta=2 \pi k\}$
The solution is

$$
\phi_{t}\left(r_{0}, \theta_{0}\right)=\left(\left[1+\left(r_{0}^{-2}-1\right) e^{-2 t}\right]^{-1 / 2}, t+\theta_{0}\right)
$$

First return time from any point $\left(r_{0}, \theta_{0}\right) \in \Sigma$ is

$$
\tau\left(r_{0}, \theta_{0}\right)=2 \pi
$$

Stable Periodic Orbit

The linearization of P around x^{*} gives a matrix W such that

$$
P(x) \approx W x
$$

f x is close to x^{*}.

- $\lambda_{j}(W)=1$ for some j
- If $\left|\lambda_{i}(W)\right|<1$ for all $i \neq j$, then the corresponding periodic orbit is asymptotically stable
- If $\left|\lambda_{i}(W)\right|>1$ for some i, then the periodic orbit is unstable.

The Poincaré map is

$$
P\left(r_{0}, \theta_{0}\right)=\binom{\left[1+\left(r_{0}^{-2}-1\right) e^{-2 \cdot 2 \pi}\right]^{-1 / 2}}{\theta_{0}+2 \pi}
$$

$\left(r_{0}, \theta_{0}\right)=(1,2 \pi k)$ is a fixed point.
The periodic solution that corresponds to $(r(t), \theta(t))=(1, t)$ is asymptotically stable because

$$
W=\frac{d P}{d\left(r_{0}, \theta_{0}\right)}(1,2 \pi k)=\left(\begin{array}{cc}
e^{-4 \pi} & 0 \\
0 & 1
\end{array}\right)
$$

\Rightarrow Stable periodic orbit (as we already knew for this example)

